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Abstract: Adversarial attack is a genuine threat compromising the safety of many intelligent systems
curbing the standardization of using neural networks in security-critical applications. Since the
emergence of adversarial attacks, the research community has worked relentlessly to avert the
malicious damage of these attacks. Here, we present a new, additional and required element to
ameliorate adversarial attacks: the recovery of the original class after a detected attack. Recovering the
original class of an adversarial sample without taking any precautions is an uncharted concept which
we would like to introduce with our novel class retrieval algorithm. As case studies, we demonstrate
the validity of our approach on MNIST, CIFAR10 and ImageNet datasets where recovery rates were
72%, 65% and 65%, respectively.

Keywords: adversarial attacks; neural network; class recovery; label retrieval

1. Introduction

Deep learning is an ubiquitous machine learning approach which has been successfully
used in many applications to find a practical solution for complicated problems, e.g.,
medical image segmentation [1] and self-driving cars [2]. Recently, deep learning has
emerged as a cornerstone for safety and security-critical applications, like autonomous
vehicles [3] and malware detection [4]. It even supports other applications, e.g., facial
recognition, which may effect our daily lives.

One of the recent obstacles of using deep learning are adversarial attacks, which were
first introduced in [5]. The authors in [5] present a case of a malevolent attacker who
can exploit the high-dimensional inputs by slightly modifying the pixels approaching the
border of the high-dimensional geometrical manifold of the original class [6]. Although
the attacks can be very strong, reaching more than 90% confidence for misclassified classes,
the modification which has been applied to the original image is imperceptible to the
naked eye. Minor perturbation over the entire image is the first adversarial attack which
has been introduced by Goodfellow [7]. Many threatening results have surfaced urging
the research community to find some defense mechanisms, e.g., Ref. [8] demonstrates a
universal perturbation fooling a classifier on any image, Ref. [9] showed the possibility of
fooling a classifier with a 3D printed object.

The most commonly applied defenses against adversarial attacks depend on one of
three approaches: adversarial training [10], modifying the network [11] or a detection-
based approach [12]. Adversarial training slows down the training and it has also been
demonstrated by [8] that you can form an adversarial attack against a network which has
been trained with adversarial training. Most defenses which rely on modifying the network
are too computationally infeasible to be applied on larger networks or they only work
against specific attacks [13]. Detection-based approaches lack any notion of security in
safety and time-critical applications where an immediate decision has to be taken without
any delay, e.g., object detection in self-driving cars. Detection of adversarial attacks can be
a good first step, but, on its own, it is not enough to ensure safety in practical applications
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since detection will only render the autonomous system in complete doubt, preventing the
AI from making a sound and reliable decision. The ultimate safe solution for adversarial
attacks, in the case of accurate detection, is recovering the original class. We will introduce
a novel algorithm restoring the original class of the attacked image. We will demonstrate
the effectiveness of our algorithm on three different datasets MNIST, CIFAR10 and 10
randomly selected classes from ImageNet.

2. Adversarial Attacks

The term adversarial example was coined by [5], where attacks on neural networks
trained for image classification were generated via a very low intensity additive noise,
completely unobtrusive to the human eyes as in Figure 1. An adversarial example is a
misclassified sample which has been modified with unnoticeable perturbations drastically
changing the response of a network.

Figure 1. The figure illustrates an adversarial attack with a very low intensity perturbation entirely
unperceivable to the naked eye.

The eminent high risk of adversarial attacks urged the science community to thor-
oughly investigate any potential attack enlarging the concept of adversarial attack. Three
kind of attacks have been investigated (evasion attacks, poisoning attacks and exploratory
attacks) where the first published adversarial attack [5] belongs to the first category. Eva-
sion attacks are the most common attack in an adversarial setting where malicious samples
are created to fool the network during the testing phase, causing a misclassification [7,14].
Poisoning attacks [15] contaminate the training dataset by injecting meticulously contrived
samples compromising the training procedure. Exploratory attacks [16] are used when
we only have a black-box access to the model and, thus, the attacker tries to collect as
much knowledge as possible about the distribution of the training dataset and the network
response which can be used to build a network that is capable of building adversarial
samples. We will concentrate on the widespread white-box gradient-based attacks which
we will investigate in our paper and briefly describe in this chapter.

2.1. Adversarial Attack algorithms

The first attacks [7] were implemented by calculating the sign of the gradient of the
cost function (J) with respect to the input (x) and expected output (y), multiplied by a
constant to scale the intensity of the noise (formally εsign∇x J(θ, x, y), where theta is the
parameters of the model) where the calculated value is the perturbation which is added to
the original sample creating the adversarial image. This method, which is called the fast
gradient sign method (FGSM), allows for much faster generation of attacks.

An extension to FGSM by [14] is to use not only the gradient’s sing of the loss, but
rather a scaled version of the gradient’s raw value (ε∇x J(θ, x, y)). In the same paper a
targeted attack and an iterative basic method were proposed. A targeted attack can be
achieved by steering the perturbation to the opposite direction of the gradient of the loss
function (J(θ, x, ytarget)) maximizing the probability of a specific class (ytarget). Iterative-
based method attack, which is also called projected gradient descent attack (PGD), is a
targeted attack that can be applied N number of times with a small step size, taking into
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account the intensity boundary where the perturbations calculated at each iteration are
accumulated, leading to a misclassification.

Another extension to the iterative version of FGSM by [17] was to incorporate momen-
tum into the equation, hypothesizing that, similarly to regular optimization, momentum
helps in stabilizing the direction of the update and avoiding poor local minima or maxima,
narrow valleys and other non-convex patterns in the objective function’s landscape.

Ref. [18] proposed DeepFool attack to calculate minimum norm adversarial perturba-
tions, taking the image to the edge of the decision boundaries of the classifier. It is similar
to the basic iterative method in a sense that it relies on gradients, but DeepFool normalizes
the gradient by linearizing the boundaries of the manifold where the image resides.

Many other variations of PGD attack have been formulated enhancing the quality
and the speed of the adversarial attack [19,20]. A general overview of adversarial attacks,
containing most of the previously mentioned methods, can be found in the following
survey papers [13,21].

2.2. Adversarial Attack Detection

Defenses against adversarial attacks are required to prevent security threats in real-
world application of neural networks. Most defenses rely on one of the following three
main approaches:

• Modifying the training process, e.g., adding adversarial samples (adversarial train-
ing) [18] or modifying the input before testing (decision making) [22,23].

• Modifying the network, e.g., adding extra masking layer before the last layer [24]
and changing the loss function by penalizing the degree of variety per class in the
output [11].

• Using external model as a detector, e.g., SafetyNet [12] and convolutional filter statis-
tics detector [25].

Detectors can be a reliable choice providing the highest accuracy reaching ∼ 85% [25]
preventing most security breaches. There are a lot of other detectors [26,27] separating
the clean image from the adversarial one by finding some distinguishable features and
properties e.g. convolution filter statistics [25] and manifolds [26]. Although detectors are
considered strong defenses against adversarial attacks, an attack can cause a halt in the
system hindering the achievement of any task. In a time sensitive task e.g self-driving cars,
where an on-the-spot decision has to be drawn, detectors are not sufficient and a retrieving
approach has to be installed recovering the original class of the input.

3. Class Retrieval

Most non-detection defenses are vulnerable to counter-counter attacks [28], rendering
potential exposure and keeping the system in a state of being without any functioning
protective shield. Detection-based defenses, on the other hand, can be continuously up-
dated but lack the ability to steer the decision-making process obstructing the installation
of any safety measure. Thus, a recovery algorithm has to be employed after the detection
of adversarial attacks, providing robustness and resilience.

Ref. [29] hypothesized that adversarial attacks exploit the edge of the decision bound-
ary between classes, pushing the adversarial sample to the targeted class. Their idea
stemmed from the speculation that training data will be pushed to the edge of the deci-
sion boundary once they are classified correctly. In [30,31], the authors assume that the
reason behind the adversarial vulnerability of neural networks is the highly positively
curved decision boundary where the curvature is very intricate near the classes borders.
The high dimensionality of neural networks creates convoluted borders between all the
classes, making a targeted adversarial attack highly possible. Taking into account the
complexity of the curvature of the decision boundary, we hypothesize that the distance
between the adversarial sample and the original class’s manifold in the feature space of the
decision boundary is smaller than the distance between the adversarial sample and any
other classes’ manifolds and, hence, all the adversarial samples and their counter attacks
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are in the vicinity of the original class manifold. We have implemented our idea, a class
retrieval algorithm, on the notion of our former hypothesis to predict the original class
by counter attacking the adversarial samples, targeting every class and then selecting the
class with the minimum loss. What we can derive from our hypothesis is that during the
counter attack, it would be the easiest to transform back the attacked image to its original
class since the attacked sample still contains many features belonging to the original class,
and the manifold of the attacked class is the closest to the decision boundary of the original
class, as we can observe in Figure 2. The counter attack can return the attacked sample
to its original class easily since the adversarial sample is on the edge of the original class
decision boundary. Due to the high dimensionality of the decision boundary curvature,
there exist an intricate border between the manifold of each of the two randomly selected
classes.

Figure 2. This figure displays a two-dimensional UMAP projection of the MNIST digits in the sklearn
package with an additional 100 attacked samples which originally belonged to class 7 and were
transformed to class 3 with the PGD algorithm. Each class is marked with a different color while
the adversarially attacked samples are marked with purple. We can notice that the newly generated
samples are between their original class and their new adversarial class, which led us to believe that
going back to the original class would be the fastest. We generated similar figures for other classes as
well, and the results were qualitatively the same in all cases.

To illustrate this hypothesis, we conducted experiments on the MNIST dataset, where
100 randomly selected samples from the same class were attacked (we considered them
to be a separate class) and the two-dimensional position of their manifolds were depicted
using the UMAP algorithm. An example can be seen in Figure 3, which confirms our
assumptions that going back to the original class manifold can be achieved in fewer
iterations than turning the sample to any other class, i.e., the cross entropy loss of a targeted
class will be the smallest when targeting the original class.
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Figure 3. A showcase of our algorithm is illustrated in the figure using an image from ImageNet
dataset, where the first two images show the clean sample, squirrel, and its adversarial version,
where Pred is the index of the predicted class and Prob is the confidence. The last image depicts
the losses of the counter adversarial attacks throughout 8 iterations, where the legends refer to the
targeted classes. We can see that the index of the original label, nine, have the smallest loss since the
first iteration.

Our class retrieval algorithm for a detected adversarial attack is presented in Algorithm 1
as a pseudo-code, and explained as a flowchart in Figure 4. AdvImg is the adversarial
image which has been selected by an adversarial attack detector filtering any potential
adversarial threat. The neural network prediction for the label of the adversarial image
is AdvLab, which is a misclassification according to our detector. NbClass is a fixed pa-
rameter representing the number of classes in our classification problem. We apply a
counter targeted attack using Attack() function where NbIter is the number of iterations
in the iterative adversarial attack and Target is the targeted label. The loss function, loss(),
calculates the cross entropy loss of the counter adversarial image, ContAdvImg, having
Target as a label. We exterminate the possibility of the adversarial label, AdvLab, being the
original class by setting its loss to infinity. The original label, OrigClass, is the class with
the minimum loss excluding the adversarial label where we used argmin function to return
the index of the smallest loss.

Algorithm 1: Class retrieval algorithm for a detected adversarial attack
1 Parameters: NbIter, NbClass, AdvImg, AdvLab Result: OrigClass
2 Losses = 0, Losses[AdvLab] = ∞
3 for Target : 0 to NbClass do
4 if Target! = AdvLab then
5 ContAdvImg = Attack(AdvImg, NbIter, Target)
6 Losses[Target] = loss(ContAdvImg, Target)
7 end
8 end
9 OrigClass = argmin(Losses)
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Figure 4. A flowchart explaining our class retrieval method starting from the input image until the
output label where the argmin process returns the index of the minimum loss, MaxY is the number
of classes and AdvY is the adversarial label.

To demonstrate the validity of our work, we assumed the existence of an optimal
detector which can identify any adversarial attacks. We investigated four different ad-
versarial attacks (projected gradient descent attack (PGD) [32], MPGD [17], Deepfool [18],
TPGD [20], PGDDLR [19]; most of the attacks were adopted from Torchattacks library [33]
while we used the codes of the original paper for the Deepfool attack) which were briefly
explained in the previous section. Deepfool is not a targeted attack and the last two attacks
are extended versions of the first attack; thus, we only used the first two previously men-
tioned attacks, PGD attack and PGD with momentum, as a counter adversarial attack. All
the investigated adversarial attacks are white-box attacks, and this relies on the gradients
to calculate the small perturbations fooling the classifier. For the sake of reproducibility,
you can find our codes online https://github.com/Al-Afandi/class_retrieval (accessed on
7 June 2021), which include the chosen investigated parameters.

4. Results
4.1. MNIST

To validate our hypotheses, detailed experiments were conducted using the MNIST
and other datasets, as we will see in the next paragraphs. MNIST is a commonly investi-
gated dataset with ten classes containing 70 thousand images of handwritten digits with a
28 × 28 resolution. We investigated five different adversarial attacks (PGD, MPGD, Deep-
fool, TPGD and PGDDLR) to create a matrix of success rate with another two counter
attacks (PGD and MPGD). In each case, we attempted to retrieve the class of 1000 success-
fully attacked samples, which means 10,000 experiments altogether were conducted. The
maximum distortion of the adversarial attack was set to 0.2. The number of iterations,
NbIter, is 10 for the adversarial attacks insuring a successful attack, but we set it to 3 for
the counter adversarial attack, illustrating the fast convergence to the original class.

AlexNet architecture was used throughout our experiments, providing a good baseline
network where the average accuracy on clean samples is 96% (the original 28 × 28 images
were rescaled to 224 × 224, ensuring the required input size). Figure 5 demonstrates
the high accuracy of the class retrieval algorithm investigating the usage of two counter
attacks against the adversarial samples of five different attacks. On average, 72% of the

https://github.com/Al-Afandi/class_retrieval
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attacked samples were correctly recovered, predicting their original class and averting
misclassification.

Figure 5. The figure illustrates the success rate of our class retrieval algorithm on the MNIST dataset,
where each cell represents the accuracy of the retrieval in a specific setup, i.e., the algorithm used
for the attack can be seen in the rows and the algorithm used for the counter attack can be found in
the columns.

4.2. CIFAR10

We investigated another simple but more intricate dataset, CIFAR10, to show the
effectiveness of our novel approach. The same setup described in detail in the previous
paragraph was used. The only parameters which were significantly modified were the
adversarial attack maximum distortion and number of iterations NbIter, where we set the
former to 0.05 and the latter to 5. We opted to use these smaller values in comparison
to our setup with MNIST due to the faster and easier conversion to adversarial samples.
Figure 6 shows the success rates using our class retrieval algorithm over the CIFAR10
dataset, engulfing ten different setups. We used the ResNet-18 architecture throughout
our experiments, providing a good baseline with 93% accuracy in classifying clean sam-
ples. The overall averaged retrieval accuracy is 65%, which demonstrates the viability of
our approach.

Figure 6. The figure illustrates class retrieval success rates on the CIFAR10 dataset, where each cell
represents the accuracy of the retrieval in a specific setup, i.e., the algorithm used for the attack and
the algorithm used for the counter attack.
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4.3. ImageNet

Our algorithm can be applied, in practice, with datasets that contain a limited number
of classes N, because of the nature of the algorithm (N− 1 number of counter attacks have to
be made). To investigate complex and more practical datasets with high-resolution images,
we have randomly selected 10 classes from ImageNet to execute similar experiments as in
case of MNIST and CIFAR10. We did not use Deepfool as an adversarial attack because
only targeted adversarial attacks can be used due to the fact that we can only target one of
the ten selected classes. Altogether, 8000 attacks and retrievals were made and, to balance
the effect of random class selection, we selected ten different classes for each 100 attacks.
Throughout our investigation, we used the pretrained version of Inceptionv3 architecture
from the torchvision models library. The inception model has one thousand possible output
classes, but our adversarial and counter attacks were only targeting the randomly selected
ten classes. We can see the success rate on ImageNet in Figure 7, where each cell represents
the accuracy of a specific attack and counter attack investigating thousand cases with 10
different random classes for each hundred trials. There was a 65% average accuracy of
recovering eight thousand attacked images from ImageNet using our class retrieval.

Figure 7. The figure depicts the success rate of our adversarial retrieval on ImageNet dataset, where
each cell represents the accuracy of the retrieval in a specific setup investigating 1000 cases selecting
10 random classes for each hundred trials.

4.4. Parameters Investigating

Our class retrieval algorithm has two important parameters, number of iterations
(NbIter) and number of classes (NbClass). NbIter parameter does not have much effect on
the algorithm according to our measurements, and it gave the same results after the first
iteration, as we can observe in Figure 3. NbClass parameter is essential to the algorithm
as we have to conduct (NbClass− 1) counter attacks. Statistically, the accuracy will drop
when having a large number of classes preventing a correct retrieval. We conducted an
extensive investigation over the CIFAR10 dataset, evaluating the success rate of adversarial
attacks having different number of classes, from four to ten classes. We used AlexNet
architecture to train a classifier for the randomly selected classes (4 to 10 classes), and
we then calculated the average of the success rate of our class retrieval for each classifier
(evaluating the retrieval of 10k adversarial attacks) to create a plot, Figure 8, illustrating the
relationship between the accuracy of our algorithm and NbClass parameter. We can see
that the algorithm is functioning effectively with a relatively high number of classes, but
the accuracy will eventually decrease when processing a huge number of classes. Although
a high number of classes is a limitation of our method due to time consumption and
statistical probability, in most practical applications, only a few output classes are used.
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Figure 8. The figure depicts the relationship between class retrieval algorithm and number of classes
parameter. It is clear that the algorithm is still working well with an expected drop in the accuracy.

Another parameter which can effect our method is the size of the input space. While
low-resolution images, e.g., MNIST, are difficult to attack with small bounded unnoticeable
perturbation, high-resolution images, e.g., ImageNet, are easy to attack because of their
high dimensionality, rendering a complicated but vulnerable decision boundary curvature
which can be easily compromised by slightly modifying the high number of pixels.

As we mentioned before, we assumed the existence of an optimal detector which
can identify any adversarial attacks, and we implemented our experiments in light of
this assumption. Unfortunately, practical detectors may result in false positive and false
negative samples. False negative samples will not be processed by our method but false
positive samples will, yielding bad classification and reducing the success rate of our
method. In practice, the success rate of our method will drop slightly due to false positive
detected samples, but we hope that with the rapid development of this field, a near optimal
detector will be available soon.

5. Conclusions

We presented a novel problem, class retrieval and the recovery from adversarial
attacks along with a proposed solution, which can be used as a baseline approach in
further experiments. Our retriever is a self-evident addition to adversarial attack detectors
and the combination of these two methods can enable the practical applicability of deep
network even in case of attacks. We investigated four different adversarial attacks (PGD,
MPGD, Deepfool, TPGD and PGDDLR) on three different datasets (MNIST, CIFAR10
and ImageNet). The results are promising and consistent across all attacks and datasets,
where the average accuracy is 72%, 65% and 65%, respectively. Our retrieval algorithm
was not able to recover the original class in all cases but, as a preliminary concept, it
clearly shows that it is possible to build an algorithm where the original class can be
retrieved. We hope this can open the way for further development and fine tuning of class
retrievals of adversarial attacks, which can increase the robustness of deep neural networks
in real-world applications.
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