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Abstract: Nowadays, the world is in a transition towards renewable energy solar being one of
the most promising sources used today. However, Solar Photovoltaic (PV) systems present great
challenges for their proper performance such as dirt and environmental conditions that may reduce
the output energy of the PV plants. For this reason, inspection and periodic maintenance are essential
to extend useful life. The use of unmanned aerial vehicles (UAV) for inspection and maintenance
of PV plants favor a timely diagnosis. UAV path planning algorithm over a PV facility is required
to better perform this task. Therefore, it is necessary to explore how to extract the boundary of PV
facilities with some techniques. This research work focuses on an automatic boundary extraction
method of PV plants from imagery using a deep neural network model with a U-net structure. The
results obtained were evaluated by comparing them with other reported works. Additionally, to
achieve the boundary extraction processes, the standard metrics Intersection over Union (IoU) and
the Dice Coefficient (DC) were considered to make a better conclusion among all methods. The
experimental results evaluated on the Amir dataset show that the proposed approach can significantly
improve the boundary and segmentation performance in the test stage up to 90.42% and 91.42%
as calculated by IoU and DC metrics, respectively. Furthermore, the training period was faster.
Consequently, it is envisaged that the proposed U-Net model will be an advantage in remote sensing
image segmentation.

Keywords: deep learning (DL); unmanned aerial vehicle (UAV); photovoltaic (PV) systems; image-
processing; image segmentation; semantic segmentation

1. Introduction

In the last decade, the world began the transition towards renewable energy the
harvesting of solar energy one of the most promising sources used today. Photovoltaic
(PV) energy production is a fast-growing market: The Compound Annual Growth Rate
(CAGR) of cumulative PV plants was 35% from year 2010 to 2019. The main reasons for this
accelerated growth are: production cost of PV panels have decreased, return on investment
ranging from 0.7 to 1.5 years. Some countries offer economic benefits for new facilities
and the performance ratio (which informs how energy-efficient and reliable PV plants
are against its theoretical production) is better nowadays. Before 2000 it was 70%, today
performance ranges from 80% to 90% [1,2].

Nonetheless, PV plants present some challenges for maintaining proper performance
with failures and defects being the most common ones. In general, failures on PV systems
are more concentrated in the inverters and PV modules. In the PV modules, because of dirty
equipment, environmental conditions, or manufacturing problems the PV plant energy
output can be reduced by 31% [3-5]. To detect these problem:s, it is necessary to consider
that the PV systems are commonly located on roofs, rooftops, and farms. Therefore the
access, maintenance, and detection of possible problems in the panels should be carried
out by trained and qualified personnel working at heights to detect these problems. These
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procedures can put the integrity of people, equipment, and PV Plants at risk [6]. Manual
inspection can take up to 8 h/MW, depending on the number of test modules. This period
can be more than double for rooftop systems, depending on the characteristics of the
installation [7].

As an alternative to use trained personnel for maintenance, the use of an Unmanned
Aerial Vehicle (UAV) has many advantages: it reduces the risks in maintenance labours,
increases reliability, and increases effectiveness of PV plants. As a result, research teams
are currently working on developing equipment that can automatically inspect and clean
PV systems, as shown in [8,9].

Compared to traditional methods, UAVs could perform an automatic inspection
and monitoring with lower costs, cover larger areas, and achieve faster detection. The
cameras installed on UAVs take photos [10], and through image processing, the area of
the PV systems can be identified in a process called boundary extraction [11]. Once the
area is identified, the ground control station calculates the Coverage Path Planning (CPP)
that guides the UAV in the automatic plant inspection. Any faults are detected with the
inspection, the required maintenance is scheduled.

This work focused on the boundary extraction of PV systems which is a key aspect
for UAVs to conduct autonomous inspections and enhance Operation and Maintenance
(O&M) [11].

Several inspections and defect detection methods have been proposed in the literature.
Lately, UAVs have been used for the inspection of different PV plants, to identify the
correlation between altitude and the PV panel defects detection as: shape, size, location,
color, among others [12-16]. Many attempts have been committed to developing a reliable
and cost-effective aerial robot with optimum efficiency over PV plant inspection [10,17-19].
For autonomous inspection, large volumes of information or big data are required from PV
systems. These datasets improve the inspection by means of automatic learning algorithms
during the O&M process [7]. The O&M process of photovoltaic plants is an important aspect
for the profitability of investors. Autonomous inspection of PV systems is a technology with
great potential, mainly for large PV plants, roofs, facades and where manual techniques
have notable restrictions in terms of human risk, performance, time and cost.

Traditional Image Processing (TIP) has been used extensively by other authors. In
this study [13,20-24], the authors used TIP to defect recognition in the inspection of photo-
voltaic plants. Furthermore, using HSV transformation, color filtering and segmentation,
techniques have been implemented in many projects, especially for defect detection [25], to
enumerate photovoltaic modules [20,26] and identification of limits [27]. This technique has
a restriction for unsupervised procedures; the user should assist in the image processing by
adjusting the filter to the particular color of each target the technique aims to find. Therefore,
TIP is not a proper method for autonomous aerial inspection of photovoltaic plants.

The boundary extraction is referred to as an image segmentation technique. This
technique divides an image into a set of regions, and it is performed by dividing the image
histogram into optimal threshold values [28,29]. The aim is to substitute the representation
of an image into something easily analyzable to obtain detailed information on the region
of interest in an image and aid to annotate the scene of the object [30]. Image segmentation
is necessary to identify the content of the photo. Accordingly, edge detection is an essential
tool for image segmentation [31] and can be achieved by means of traditional image
processing techniques [27,32] or through artificial vision techniques [33].

The image segmentation techniques with TIP were developed to identify objects such
as the area of PV Plants out of an orthophoto [10,34,35]. Later, the Machine Learning
(ML) and Deep Learning (DL) image segmentation techniques, also known as semantic
segmentation, were proposed [36,37]. In semantic segmentation each pixel is labeled
with the class of its enclosing object or region [33]. Convolutional Neural Networks have
been used for semantic segmentation , such as the Fully Convolutional Network (FCN)
model [33], and U-Net network model [38], which drastically enhances the segmentation
certainty compared with TIP method results, and ML technique results [36,37].
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The convolutional neural networks are used for extracting dense semantic represen-
tations from input images and to predict labels at the pixel level. To perform this task, it
is necessary to obtain or create a dataset, perform a pre-processing of the data, select an
appropriate model and train it based on metrics, and then evaluate the results as shown
in [11]. This is a fundamental challenge in computer vision with wide applications in scene
interpretation, medical imaging, robot vision, etc. [39]. Once the segmentation is done, the
next step is to obtain the automatic Coverage Path Planning (CPP).

Although advances in GPS systems have improved and accuracy is around 10 cm in
low-cost Real Time Kinematics (RTK) GPS systems [40]. Most of the projects use software
tools that provide companies like Mission Planner [41] or development groups as Qground-
Control [42]. These tools are based on simple polygonal coverage areas and a coverage
pattern of zigzag path. They require time when the area is of complex geometry, or when
the plant is in continuous expansion. Additionally, the programmer preloads waypoints
without optimal coverage. As a consequence, to develop a real-time path-planning algo-
rithm for an autonomous monitoring system, it is a hard task in this platform. Therefore, it
is first necessary to determine the boundary of the PV plant. By taking out the boundaries
of PV plants, aerial photogrammetry and mapping can be faster, effective, economical and
customizable [27], they motivate to make this work.

The key contributions of this work are as follows:

o In the revised literature, there is no report of U-net model to extract the boundaries of
PV Plants; this work proposes such a model.

e The IoU and DC metrics were not used in previous related research works. For the
trained and tested of U-net and FCN model, this work uses these metrics and finds a
better solution.

This paper is structured as follows. In Section 2, the necessary definitions and tech-
niques to obtain the results are described. In Section 3, the three techniques implemented
for boundary extraction are compared to show the best method. Finally, in Section 4 some
conclusions are shown.

2. Materials and Methods
2.1. Samples Collection

Before the segmentation, training samples were collected, based on the orthoimage
and PV plant on-farm, rooftop, and roof photos. The samples collected to cover the spectral
variability of each class of PV panel and consider the lighting variation in the scene, also in
different parts of the world. For CNN, the samples were converted in a tagged image file
format (.jpg) file and mask image file format (.png) with a shape of 240 x 320. The total of
this dataset was found in the Amir dataset [43].

2.2. Boundary Extraction Procedure

UAVs must have a precise set of coordinates to define the coverage path planning
correctly and thus fly over the total area of PV Plants in the inspection mission. To achieve
this task automatically, it is necessary to explore how to extract the boundary of photovoltaic
facilities with some techniques. There is a process called semantic segmentation, where
each pixel is labeled with the class of its enclosing object or region, which can extract the
PV Plants as a particular object in an image [11], but with the constraints that this work
addresses. Two techniques have been implemented so far: Traditional Image Processing
(TIP) [10] and Deep Learning (DL) [11]. Figure 1 shows the steps followed to reach that
result by TIP and DL-based techniques.
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Boundary Extraction of photovoltaics installations

Traditional Image processing Deep learning method

Gaussian Blur Filter Data Understanding

Switch to HSV representation Modeling

Blue color channel filter Evaluation

Opening function Deployment

Canny edge detection

Figure 1. Steps of boundary extraction by image analysis with two techniques.

2.3. Traditional Image Processing (TIP)

The process to obtain the boundary pixels of a target can be achieved by means of
traditional image processing techniques with functions that extract, increase, filter, and
detect the features of an image and obtain its segmentation [27,32]. The main stages were
used to remove the borders of PV plants out of an image, as shown in Figure 1 [10]. In the
first stage, the original image was filtered using “filter2D” function from OpenCYV, that is a
convolution filter with 5 x 5 averaging filter kernel, as shown at Algorithm 1. This filter is
compound with various Low-Pass Filters (LPF) and High-Pass Filters (HPF). LPF helps in
removing noise, blurring images. HPF filters help in finding edges in images.

In the second stage, the filtered image is transformed into the HSV (hue, saturation,
and value) representation. The transformation lessens reflection caused by environmental
light during aerial image collection. Furthermore, this transformation helps in the color-
based segmentation required in the next stages.

In the third stage, each channel was processed separately to extract the area of the
PV plants. This was achieved by applying thresholding operations on the HSV image. To
extract the PV blue color out of the image, the HSV range limits for thresholding where
determined: from (50,0, 0) to (110,255,255). Thresholding was implementing using the
inRange function of OpenCV.

At the fourth stage, two morphological operators were applied: the “erode” and
“dilate” functions. Together these operations helps to reduce noise and to better define
the boundaries of the PV devices, the application of erosion followed by dilation is also
known as opening operation. Erosion and dilation requires an structuring element (also
known as kernel) to be applied to the images. In this case, a rectangular kernel of 2 x
2 pixels (MORPH_RECT,(2,2)) was used for both operations. Lines 13, 14 and 15 from
Algorithm 1 show the creation of the structuring element and the successive use of the
erode and dilate functions.

Then, the “findCountours” function was used to help in extracting the contours from
the image. The contour can be defined as a curve joining all the continuous points in the
boundary of the PV installation. The input parameters for this function are: the image
(dilated image from previous stage), the type of contour to be extracted (in this case only
the external contours, RETR_EXTERNAL) and the contour approximation method (in this
case not approximation, CHAIN_APPROX_NONE). Finally the area was recognized using
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a multi-stage algorithm to detect a wide range of edges in images, known as the Canny
edge detection “Canny” [44].

The pseudo-code of the Traditional Image Processing is shown in Algorithm 1, and
was implemented in Python 3 using OpenCYV library.

Algorithm 1: TIP algorithms

1. input :A image Im of size w x [

N

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

0 N o o o W

output: A Boundary of the image
initialization

import cv 2, np

for i in range(n):

| < cv 2.imread (Im)

lrgh <—cv 2.cvtColor (I[w,!], COLOR_BRG2RGB)

Kernel <—np.ones ([5,5])

nlldst < cv 2.filter 2D(Irgb[w, [],—1,Kernel)

Ihsv <—cv 2.cvtColor (Idst[w, [],COLOR_BRG2hsv) /* Transformation from RGB to HSV */
LowerBlue < np.array([55,0,0])

UpperBlue <—np.array ([110, 255, 255])

mask <—cv 2inRange (lhsv|w, I],LowerBlue,UpperBlue)

K < cv 2.getStructuringElement (MORPH_RECT,(2,2))

lerosion <—cv 2.erode (mask[w, I] K iteration = 3)

Idilation <— cv 2.dilate (lerosion[w, I],K,iteration = 8)

cnt < cv 2.findCountours (|di|ation[w, l],RETRE_XTERNAL,CHAIN_APPROX_NONE)
mask2 < cv2.zeros ([w,I])

cc <+ cv 2.drawContours (mask2,cnt,—1,255,—1)

edge < cv2.Canny (cc,100,105)

2.4. Deep Learning

Another approach to ascertain the boundaries of PV plants uses a DL-based technique
which consists of several steps:

2.4.1. Data Specifications

The first step is to select the data for training the Neural Networks. The parameters
to take into account are: PV Plants in orthophotos and aerial images with the respective
masks for each image [11].

2.4.2. Data Understanding

The data preparation phase can be subdivided, into at least four steps. The first step is
data selection inside the dataset. The second step involves correcting the individual data,
which are assumed to be noisy, apparently incorrect, or absent. The third step involves
resizing the data as needed. Finally, most of the available implementations assume that
the data are given in a single table, so if the data are in several tables, they must be parsed
together in a single one [45].

2.4.3. Modeling

In the literature, the semantic segmentation task has many existing models that can be
selected for the desired task. In this work, two methods based on deep learning have been
selected, taking into account the following criteria: the most competent for the type of task,
the amount of data to be processed, the execution time, and the ease of implementation to
predict each label for each pixel. The methods were selected according to [11,46—49]. The
FCN model was the first one selected, which was proposed by [33] and used by [11]. The
network architecture is delineated in Figure 2. The second one is the U-Net model, first
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proposed by [38] and selected for this project. The network architecture is illustrated in
Figure 3.

Fully Convolutional Network

Modified backbone

Predicted

mask
Conv layer Mazx-pool layer Deconv layer
# Element-wise addition
Figure 2. FCN model.
U-net

Predicted

mask

Conv layer Max-pool layer Upsampling layer

Lambda layer (@ Channel concatenate

Figure 3. U-net Model.

(a). Fully Convolutional Network (FCN) model: This model has two blocks. The first
block is a series of 13 layers in order to create a modified version of a VGG16 backbone
Figure 2, which was introduced for the first time by [50]. The VGG16 backbone has
16 convolutional layers and its creators belong to the team “Visual Geometry Group”,
hence its name VGG16. The backbone is the network that takes the image as input and
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extracts the feature map upon which the rest of the network is based. The second block
consists of a series of deconvolutional layers that simply reverses the forward and backward
passes of convolution. The last layer uses a softmax function to predict the probability of
the category as shown in Figure 2. As a result, the input of FCN model is an RGB image,
and the output is the predicted mask of the PV plants. For more details, read [33]. The
parameters for the training process were depicted in Table 1.

(b). The U-net network model: This model has two blocks: a decreasing path and
an increasing path, respectively, which gives it the u-shaped architecture or horizontal
hourglass shape [51]. The decreasing path is a typical convolutional network that consists
of repeated application of convolutions, each followed by a rectified linear unit (ReLU) and
a max-pooling operation. During the decrease, the spatial information is reduced whereas
feature information is increased. The increasing pathway combines the feature and spatial
information through a sequence of upsampling layers followed by two layers of transposed
convolution for each step [38,52], as illustrated in Figure 3. The parameters for the training
process were depicted in Table 1. Its architecture is shown in Table 2. The platform used for
FCN and Unet models by this work was Tensorflow with Keras backend [53]. The U-net
model had never been used for this kind of application so far.

Table 1. Summary of the FCN and U-net model parameters for the training process.

Activation Activation . . . .
(Last Layers) (Inner Layers) Optimizer Loss Function Metrics Epoch Batch Size
Sigmoid Relu RMS Binary_cross N/A 150 1
Sigmoid Elu Adam Binary_cross IoU,F1 score 15 8

The FCN and U-net models additionally have a binary cross-entropy function (Hp)
to calculate the loss in the process of training the neuronal network [54]. As the problem
at hand is a semantic segmentation task, Equation (1) is used. This function examines
each pixel and compares the binary-predicted values vector with the binary-encoded
target vector.

N
Hye) =~ Lvi-10g(p()) + (1~ i) - Tog(1 — p(y) )

where v is the label of each pixel, it takes the value of 1 for the PV plants area and 0 to
indicate other areas or elements, and p(y) is the probability of the pixel belonging to the
PV plants area for all N points. The Adam optimization function is used to optimize the
models [55]. Because semantic segmentation is the task at hand, it is essential to implement
metrics to ensure the model performs well.

Table 2. Architecture of the U-net.

Layer (Type) Output Shape Parameters
Input Layer (Nomne, 240,320,3) 0
Lambda (None, 240,320,3) 0

Conv2D None, 240,320, 16
Dropout None, 240,320, 16
Conv2D None, 240,320,16 2320

( ) 448
( )
( )

MaxPooling2D (None, 120,160, 16) 0
( )
( )
( )

Conv2D None, 120,160, 32 4640
None, 120,160, 32
None, 120,160, 32

Dropout

Conv2D 9248
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Table 2. Cont.

Layer (Type) Output Shape Parameters
MaxPooling2D (None, 60,80,32) 0
Conv2D (None, 60,80, 64) 18,496
Dropout (None, 60,80,64) 0
Conv2D (None, 60,80, 64) 36,928
MaxPooling2D (None, 30,40, 64) 0
Conv2D (None, 30,40,128) 73,856
Dropout (None, 30,40,128) 0
Conv2D (Nore, 30,40, 128) 147,584
MaxPooling2D (None, 15,20,128) 0
Conv2D (None, 15,20, 256) 295,168
Dropout (Nomne, 15,20, 256) 0
Conv2D (Nomne, 15,20, 256) 590,080
Conv2D_Transpose (None, 30,40,128) 131,200
Concatenate (None, 30,40,128) 73,856
Conv2D (Nomne, 30,40,128) 295,040
Dropout (None,30,40,128) 0
Conv2D (None, 30,40,128) 147,584
Conv2D_Transpose (None, 60,80, 64) 32,832
Concatenate (Nomne, 60, 80,128) 0
Conv2D (None, 60,80, 64) 73,792
Dropout (None, 60,80, 64) 0
Conv2D (None, 60,80,64) 36,928
Conv2D_Transpose (None, 120,160, 32 8224
Concatenate (None, 120,160, 64) 0
Conv2D (None, 120,160, 32) 18,464
Dropout (None, 120,160, 32) 0
Conv2D (None, 120,160, 32) 9248
Conv2D_Transpose (None, 240,320,16) 2064
Concatenate (None, 240,320,32) 0
Conv2D (None, 240,320,16) 4624
Dropout (None, 240,320,16) 0
Conv2D (None, 240,320,16) 2320
Conv2D (None,240,320,1) 17

2.4.4. Metrics

The metrics evaluate the similarities between the predicted mask (N) and the original
mask (S). Such similarity assessment can be performed by considering spatial overlapping
information, that is, by computing the true positives (TP), false positives (FP) and false
negatives (FN) given by TP =[N N S|, FP =|N\ S|, and FN =S \ N/, respectively.

There are three standard metrics commonly employed to evaluate the effectiveness of
the proposed semantic segmentation technique [29,48,49,56]. The three metrics, namely,
pixel accuracy (Acc), region Intersection over Union (IoU), and Dice Coefficient (DC).
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(a) Filter2D (b) HSV filter (c) Blue filter (d) Opening
-

Pixel accuracy is the ratio of correctly classified PV plants pixels to the total number of
PV plants pixels in the original mask image [57], which can be mathematically represented
as Equation (2).

TP
TP+ FN @
The IoU metric (the Jaccard index) is defined by Equation (3). This equation is a ratio

between the intersection of the predicted mask N, and the original mask S and the union
of both. More details can be found in [58].

Accuracy =

_INNS| TP

IoUN,S) = {505 = TP PP+ EN

®)

The DC metric [56,58,59] is expressed as Equation (4). This equation divides the
intersection of the predicted mask N, and the original mask S times two by the sum of N
and S.

_2INNS| 2.TP

“IN|+|S|  2TP+FP+FN
To validate the results of the techniques described above, the FCN and U-net models

were trained and their performance was evaluated by validating and testing samples of

the Amir dataset [43]. The next section describes such results and compares the models
in detail.

DC(N, S)

(4)

3. Results and Discussion
3.1. Database Specification

For this work, the DeepSolar [60], Google Sun-Roof [61], OpenPV [62], and Amir’s
databases were accessed [43]. Only the last database met the established parameters. It
contained PV plants in orthophotos and aerial images with their respective masks. Further-
more, the PV plants images were from different countries around the world. Therefore, the
”Amir” dataset was selected.

3.2. Results with TIP Technique

The results obtained in this work were compared with the results obtained in previous
investigations where the TIP and the deep learning techniques were used alongside the
FCN model [11].

The stages to obtain the results are shown in Figure 4. In the First Stage, a 2D filter
was applied, depicted in Figure 4a. In the second stage, the filtered image is transformed
into the HSV representation, Figure 4b. In the third stage, the blue color was filtered out,
Figure 4c. At the fourth stage, the opening function was used, as seen in Figure 4d. Finally,
the area was recognized using the canny method illustrated in Figure 4e. The results were
satisfactory and can be modified depending on the environment.

The results are shown in Table 3. The TIP technique was obtained by randomly
selecting images out of the test dataset, then applying the functions described in the
methodology section (Section 2), and finally comparing the mask obtained with the original
mask. The IoU metric obtained was 71.62% and the DC was 71.62%.

(e) Edge

Figure 4. Steps of boundary extraction by TIP.
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3.3. Results with DL-Based Techniques

The training data consisted of 2864 aerial images selected at random: 90% of the
training dataset in the Amir database. The validation data were the remaining 10% of
the same training dataset. Figure 5a shows the loss function and IoU metric of the FCN
model during the training and validation process. The general trend of the two curves is
consistent, showing that the network converges rapidly and is stable at iteration 30, and the
loss value tends to 0.04%. Figure 5b shows the DC metric of the model during the training
and validation stage. The general trend of the two curves is consistent at iteration 30.

On the other hand, using the same metrics, the U-net model proposed in this work
shows a better performance. Figure 6a shows the loss function and IoU metric of the model
during the training and validation stage. The common trend of the two curves shows the
network converges quickly and is stable at iteration 16, and the loss value tends to 0.03%.
Figure 6b shows the DC metric of the model all along the training and validation phase.
The prevalent trend of the two curves is consistent and in iteration 16.

b) Dice Coefficient during Model Training

—o— dice coef . M
val_dice_coef Y adil
0.8 /’
—e— loss

IoU_metric /
—o— val_loU_metric 0.6

0.4

a) Loss Funtion and IoU metric during Model Training

15 20 25 30 0 5 10 15 20 25 30

Figure 5. Performance and metrics of the FCN model using the training and validation sets.

b) Dice Coefficient during Model Training

.

4_4___"___.,—0—-—-""""’_

-2

0.8 /,,'
—e— loss
IoU_metric 0.6
—o— val_loU_metric

0.4

—&— dice coef
val_dice_coef

0o 2

1

6

8 10 12 14 0 2 4 6 8 10 2 1

Figure 6. Performance and metrics of the U-net model obtained using the training and validation sets.

In the evaluation stage, 716 images were used along with the trained FCN model
for PV plant detection. Some relevant results are shown in Figure 7. In this figure, the
columns correspond to different PV plants. The first row contains the original images;
the second row, the original masks; and, the third one, the predicted masks. The images
used were taken in deserted regions and vegetation zones. The FCN model detects the PV
plants in vegetation zones with some false positives. As an example, the second and third
predictions of Figure 7 identify a lake and vegetation as part of the PV plants. In deserted
regions, PV plants are detected more precisely. Although these images have very high
precision, their predicted shape does not fully correspond to the original mask. Hence, it
was necessary to review the performance metrics of the algorithm [63].

The segmentation results in the evaluation stage, using the same 716 images and
the trained U-Net model, are shown in Figure 8. The arrangement is the same as in the
previous Figure 7. It is noteworthy that this model correctly segments the photovoltaic
plant while the other model does not achieve this result, as can be seen in the second and
third predictions in Figure 8.
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IMAGE 104 min 0, max 0 IMAGE 202 min 0, max 0 IMAGE 302 min 0, max 0 IMAGE 408 min 0, max 0 IMAGE 505 min 0, max 0
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Figure 7. Evaluation with test data FCN Model.

IMAGE 104 min O, max 0 IMAGE 202 min 0, max 0 IMAGE 302 min O, max 0 IMAGE 408 min 0, max 0 IMAGE 505 min 0, max 0
shape (240, 320, 3) shape (240, 320, 3) shape (240, 320, 3) shape (240, 320, 3) shape (240, 320, 3)

LABEL 104 min 0, max 1 LABEL 202 min 0, max 1 LABEL 302 min 0, max 1 LABEL 408 min 0, max 1 LABEL 505 min 0, max 1
shape (240, 320) shape (240, 320) shape (240, 320] shape (240, 320) shape (240, 320)

[ TEELIL NPT

PREDICTION 104 min {J max 1 PREDICTION 202 min 0 max 1 PREDICTION 302 min 0 max 1 PREDICTION 408 min {J max 1 PREDICTION 505 min {J max 1
shape (240, 320 shape (240, 320 shape (240, 320 shape (240, 320 shape (240, 320

MEAOLIE

Figure 8. Evaluation with test data U-net Model.

Afterwards, the trained model tested 716 samples. Table 3 shows the results and
comparison among the TIP technique, the U-net proposed model and the FCN model used
by [11], which was replicated in this study. The FCN and the proposed U-net models were
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compared. The accuracies obtained for the FCN model in the stages of training and testing
were 97.99% and 94.16% respectively [11]. For U-Net proposed, the accuracy obtained in
the stages of training and testing were 97.07% and 95.44%, respectively. Both results can be
seen in Table 3.

To compare the FCN model proposed by Amir [11], and the U-net model proposed in
this work, the two most used metrics in semantic segmentation problems were used. The
FCN model was implemented with the standard IoU metric, whose result for the training
stage was 94.13%,and the validation stage was 90.91% and for test stage was 87.47%. The
DC metric of the validation 92.96% and test 89.61% which deviates a little from the training
95.10%. However, using the same metrics the U-net model proposed in this work shows a
better performance. The IoU metric obtained was 93.57% in the training stage, 93.51% in
the validation stage, and 91.42% in the test stage. The DC metric of the validation 94.44%
was almost the same as that of the training 94.03% which deviates a little from the test
91.42%. Table 3 shows these results. Due to this, a difference was found between the FCN
and U-net model for the first metric of 2.95% and for the second metric used of 1.81%
difference was calculated. All files and logs from the experiments are available at GitHub
in [64].

Table 3. Comparison between three techniques.

Parameter TIP Method FCN Model Amir [11] U-Net Proposed
Metrics N/A N/A IoU, F1 scor

Acc train N/A 97.99% 97.07%
Acc test N/A 94.16% 95.44%
IoU metric N/A 94.13% 93.57%
Dice coef metric N/A 95.10% 94.03%
val IoU metric N/A 90.91% 93.51%
val Dice coef N/A 92.96% 94.44%
test JoU metric 71.62% 87.47% 90.42%
test Dice coef metric 71.62% 89.61% 91.42%

3.4. Discussion

The U-net model proposed reconstructs the segmented image and protects the original
image shape characteristics by storing the grouping indices of the max-pooling layer, a
process that is not done in the FCN model.

The training and testing accuracy is the percentage of pixels in the image that are
classified correctly and cannot be taken as indicators of how similar the predicted PV
plants and the original mask are [65]. For the purpose of comparing the similarity in the
results, the JoU metric was used. This metric varies from 0 to 1 (0-100%) with 0 meaning
no similarity and 1 meaning total similarity between original and predicted masks [63].

The U-net model proposed in this work aimed to obtain a value closer to 1 in the IoU
metric. The iteration times show the model used is faster and therefore reliable for the
training and processing stages obtaining results virtually in real time [66]. The DC is the
other metric used in this work. This metric also ranges from 0 to 1, with 1 signifying the
greatest similarity between the predicted and original masks [63]. Both metrics were used
to determine if the U-net model was better than the FCN model in the validation and test
stages. The values of the IoU and Dice metrics in Table 3 showed the U-net model had a
better performance when compared to the FCN model. This work was implemented with
VGG16 as an encoder because it was the encoder used by Amir [11], which is a comparison
work, but in future work, it is possible to use other encoders like ResNet, AlexNet, etc. [37].

Finally, the results obtained with the TIP and FCN model agree with the results
obtained by other authors [11,13]. The authors mentioned they did not use the standard
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metrics for these kinds of problems and the bias in the results were expected. On the
contrary, this work did take these metrics into account and found satisfactory results. The
U-net network increased the processing speed, veracity in the segmentation process, and
the overall performance of the model.

4. Conclusions

This work used three techniques, namely, the TIP technique, the DL-based FCN and
U-net models. This work applied the U-net model to PV plants. All the models were used
for the extraction of the PV plants boundaries out of an image. As a consequence, the TIP
technique can be very precise but requires constant adjustment depending on the image,
whereas the FCN and U-net network models are more useful when it comes to unknown
PV plants.

The U-net network model is novel for this kind of problem. It allows greater processing
speeds and performance when predicting the area of PV plants, also better features. The
results obtained open the door for further investigation of this model in this problem.

The U-net technique turned out to be satisfactory compared to the TIP technique and
the FCN model used in previous studies. The values obtained in the implemented metrics
guarantee that the areas predicted for the PV plants are similar to the real ones. The results
also help to predict possible false positives, such as lakes in the vicinity of photovoltaic
plants. The relevant features of an object can be obtained using this technique while using
the FCN technique is not possible.
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Abbreviations

The following abbreviations are used in this manuscript:

DL Deep Learning

ML Machine Learning

UAV Unmanned Aerial Vehicle

PV Photovoltaic

TIP Traditional Image Processing
O&M  Operation and Maintenance
FCN Fully Convolutional Network
CAGR Compound Annual Growth Rate
MV Machine Vision
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