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Abstract: Breast cancer prediction datasets are usually class imbalanced, where the number of data
samples in the malignant and benign patient classes are significantly different. Over-sampling
techniques can be used to re-balance the datasets to construct more effective prediction models.
Moreover, some related studies have considered feature selection to remove irrelevant features from
the datasets for further performance improvement. However, since the order of combining feature
selection and over-sampling can result in different training sets to construct the prediction model, it is
unknown which order performs better. In this paper, the information gain (IG) and genetic algorithm
(GA) feature selection methods and the synthetic minority over-sampling technique (SMOTE) are
used for different combinations. The experimental results based on two breast cancer datasets
show that the combination of feature selection and over-sampling outperform the single usage of
either feature selection and over-sampling for the highly class imbalanced datasets. In particular,
performing IG first and SMOTE second is the better choice. For other datasets with a small class
imbalance ratio and a smaller number of features, performing SMOTE is enough to construct an
effective prediction model.

Keywords: breast cancer; data mining; machine learning; feature selection; over-sampling;
class imbalance

1. Introduction

Breast cancer, which is cancer that develops from breast tissue, is one of the important
problems in the medical domain. It is the second most severe cancer among all of the
cancers that have already been discovered. Some factors have been found to cause breast
cancer, such as obesity, a lack of physical exercise, alcoholism, hormone replacement
therapy during menopause, ionizing radiation, a family history of breast cancer, etc. [1].
In practice, many medial institutes have paid much attention to the early detection of
breast cancer.

In related literatures, many data mining and machine learning techniques have been
used to develop various kinds of breast cancer prediction models. Among them, some
focus on the improvement of learning models and some focus on data pre-processing
steps. For example, convolutional neural networks (CNN), as one representative of a deep
learning technique, were modified to improve their prediction performance [2,3]. On the
other hand, some studies focus on feature selection for filtering out irrelevant features from
a given dataset for the construction of more effective classifiers [4,5] and data sampling
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for re-balancing class imbalanced datasets in order to decrease the effect of skewed class
distribution in the learning process [6,7].

For related works of feature selection, Sasikala et al. [8] propose a novel feature selec-
tion method based on the genetic algorithm to select a gene subset from high dimensional
gene data, which causes different classifiers perform better than the ones without feature
selection. In [9], a genetic algorithm is used for feature selection, where the selected subset
is used to construct different classifiers for performance comparisons. On the other hand,
Jiang and Jin [10] use a gradient boosting decision tree with Bayesian optimization to
remove the irrelevant and redundant features from gene expression data. Raj et al. [11]
compare several feature selection methods to determine the best one to combine with the
random forest classifier.

For related works on class imbalance learning, Zhang et al. [12] propose a clustering-
based under-sampling method to select informative samples from the clusters identified in
the majority and minority classes, and the decision tree based on this boosting technique is
employed for the prediction model. In [13], eighteen different under- and over-sampling
methods are used to balance related class imbalanced cancer datasets, in which the over-
sampling methods perform better than the under-sampling ones. Cai et al. [14] apply the
synthetic minority over-sampling technique (SMOTE) to balance the training dataset and
employ the stacking ensemble method to combine multiple classifiers, which achieved
better performance than conventional methods. Rani et al. [15] investigated the effect
of performing SMOTE on five different classifiers to determine the best one for breast
cancer prediction.

According to Fernandez et al. [16], SMOTE over-sampling can benefit from the use of
feature selection, where feature selection is performed over the class imbalanced dataset
to select a subset feature of it, and then the reduced dataset is over-sampled to make it
contain the same size of the data samples as in the majority and minority classes. Recently,
Solanki et al. [17] propose the contrary procedure that SMOTE be performed first to re-
balance the breast cancer dataset, and then wrapper-based feature selection methods can
be applied to reduce the feature dimensions.

However, to the best of our knowledge there is not any study examining the per-
formances of both procedures to combine feature selection and over-sampling for breast
cancer prediction. Therefore, the research objective of this paper is to compare these
two combination orders with two baselines by employing feature selection and over-
sampling individually. Particularly, filter and wrapper-based feature selection methods
are combined with SMOTE for performance comparison. In addition, one small- and
one large-scale breast cancer datasets are used in order to understand the performance of
different approaches.

The contribution of this paper is two-fold. First, the procedures of combining the
feature selection and over-sampling steps are compared in terms of breast cancer prediction,
which has never been done before. Second, the best combination procedure and combined
algorithms that will be identified in this paper can be used as one the representative
baseline methods for future research.

The rest of this paper is organized as follows. Section 2 overviews related literature
on feature selection and over-sampling. Section 3 describes the two different combination
procedures and the experimental setup. Section 4 presents the experimental results, and
Section 5 concludes the paper.

2. Literature Review
2.1. Feature Selection

Feature selection is an important data pre-processing step in data mining and knowl-
edge discovery from databases. It focuses on selecting representative features from a given
training set, which have higher discriminative power to make classifiers better able to
distinguish between different classes. Moreover, another advantage of feature selection is
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to reduce feature dimensionality, which lowers the computational complexity during the
classifier training stage [5,18].

In general, feature selection algorithms are composed of four basic steps, which are a
generation procedure to generate the candidate feature subset, an evaluation function to
evaluate the effectiveness of the feature subset, a stopping criterion to determine when to
stop the previous steps, and a validation procedure to examine whether the feature subset
is valid [19].

Existing feature selection algorithms can be divided into filter, wrapper, and embedded
methods depending on how they combine the feature selection search with the construction
of the classifiers. In filter methods, the relevance of features such as distance, consistency,
dependency, information, and correlation are assessed,. That is, the feature relevance score
is calculated, in which low-scoring features are removed. Some representative methods
include relief, the Fisher score, and information gain.

In wrapper methods, a specific classification algorithm is used to determine the quality
of different subsets of features. Since the space of feature subsets can grow exponentially
with the number of features, heuristic search methods are used to guide the search for an
optimal subset. Therefore, wrapper methods are very computationally intensive, especially
when the construction of the chosen classifier requires a high computational cost. One
representative wrapper method is the genetic algorithm.

In embedded methods, feature selection is incorporated as part of the classifier train-
ing process. That is, the feature selection method is embedded in the modeling algorithm,
where the classifier is used to evaluate the quality of the selected subset of features. Em-
bedded methods have the advantage of including interaction with the classification model,
while at the same time being far less computationally intensive than wrapper methods.
One representative wrapper method is the decision tree classifier.

2.2. Over-Sampling

In practice, the class imbalanced dataset problem usually occurs since the number of
data samples in one class are significantly different from those of the other one; say the
imbalance ratio is 1:100. For the example of breast cancer datasets, they do not usually
contain both the malignant and benign patient classes, denoted as the minority and majority
classes, respectively. Without dealing with the class imbalance problem, most machine
learning models aim at maximizing the accuracy of its classification rule by ignoring the
minority class examples, with the classification of all testing examples being organized into
the majority class [6].

In general, there are three types of solutions to the class imbalance problem, which
are algorithm level, data level, and cost-sensitivity methods. Among them, the data level
methods based on data sampling techniques are usually considered first since they are used
independently of the classifier [6]. Data sampling techniques focus on re-balancing the
given training set. Particularly, under- and over-sampling techniques have been used, in
which the former is for reducing the size of the majority class, whereas the latter is used for
enlarging the size of the minority class. Among them, the synthetic minority over-sampling
technique (SMOTE) is one representative method, which has been used as the baseline in
many related studies [16].

The aim of SMOTE is to produce new synthetic examples for the minority class. For
example, a minority class instance i is selected as the basis to create new synthetic data.
According to a specific distance metric, usually the Euclidean distance, the number of the
neighbors nearest to i are chosen from the training set, e.g., i1, i2, and i3. Next, a randomized
interpolation is conducted to obtain new synthetic data, i.e., s1, s2, and s3.

3. Research Methodology
3.1. Two Combination Orders for Feature Selection and Over-Sampling

In this paper, two orders of combining the feature selection and over-sampling steps
are compared by being given a training set, denoted as TR, which is composed of M and N
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majority and minority class data samples, respectively, and each data sample is represented
by k dimensional features. For the first order, i.e., performing feature selection first and
over-sampling second, a chosen feature selection algorithm is employed to select some
representative features from the TR. As a result, a reduced feature subset of TR is produced,
denoted as TRreduced, where each data sample is represented by o dimensional features
(k > o). Next, the over-sampling algorithm is used to generate M–N synthetic data samples
for the minority class, leading to a balanced training set, denoted as TRreduced_balanced, which
is composed of 2M data samples. That is, the number of data samples in the majority and
minority classes are the same.

On the other hand, for the second combination order, the over-sampling algorithm is
used first to re-balance the training set, i.e., TR, which results in a balanced training set,
denoted as TRbalanced. TRbalanced is composed of 2M data samples, and each data sample
is represented by k dimensional features. Next, the chosen feature selection algorithm is
performed over TRbalanced, leading to a reduced feature subset of TRbalanced, denoted as
TRbalanced_reduced. In TRbalanced_reduced, each data sample is represented by p dimensional
features (k > p). Note that the number of features in TRreduced_balanced by the first combina-
tion order and TRbalanced_reduced by the second combination order are not necessarily the
same, i.e., o 6= p.

Therefore, the performances of the classifiers trained by TRreduced_balanced and
TRbalanced_reduced can be compared individually based on the same testing set. More-
over, other classifiers trained by TRreduced through performing feature selection alone
and TRbalanced through performing over-sampling alone are regarded as the baseline ap-
proaches for further performance comparison.

3.2. Experimental Setup
3.2.1. Datasets

In order to examine the performances of both orders of combining feature selection
and over-sampling, two related breast cancer datasets are considered. The first one is
based on the KDD Cup 2008 breast cancer dataset (https://www.kdd.org/kdd-cup/view/
kdd-cup-2008 (accessed on 15 February 2021)), which contains 102294 data samples, and
each data sample is represented by 117 different image features, which are extracted from
4 X-ray images per patient. Particularly, the class imbalance ratio is 163.2.

The second dataset is based on the Breast Cancer Wisconsin Dataset downloaded
from the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/
breast+cancer+wisconsin+%28original%29 (accessed on 15 February 2021)). It is composed
of 699 data samples, in which each data sample is represented by 10 features including
clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. In addition,
the class imbalance ratio is 1.86.

To train and test the classifier, the 5-fold cross validation method is used to divide
each dataset into 80% and 20% training and testing sets. This means that every subset
will be trained and tested five times, and the average prediction accuracy can obtained
consequently be. In other words, each patient data will be used as the training and testing
data example. In addition, the class imbalance ratio of the training set in each fold is
controlled to be the same as the original dataset.

3.2.2. The Feature Selection and Over-Sampling Methods

In this paper, the information gain (IG) as the filter method and the genetic algorithm
(GA) as the wrapper method are used for feature selection. Particularly, these two methods
have been used in many research problems, including text classification [20], gene expres-
sion microarray analysis [21], intrusion detection [22], financial distress prediction [23],
software defect prediction [24], etc.

IG evaluates the gain of each variable in the context of the target variable, which is
based on calculating the reduction in entropy. That is, the feature ranking stage focuses on

https://www.kdd.org/kdd-cup/view/kdd-cup-2008
https://www.kdd.org/kdd-cup/view/kdd-cup-2008
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ranking the subsets of features by high information gain entropy in decreasing order. In GA,
an initial set of candidate solutions (i.e., individuals) are created and their corresponding
fitness values are calculated for the later cross-over and mutation steps. Specifically, the
individuals are subsets of predictors, and the fitness values are measures of the model
performance.

Analyses were performed using the WEKA data mining software package. Most
related parameters are based on its default values, except for the genetic algorithm, where
the population size, crossover rate, and mutation rate were set as 50, 0.8, and 0.01, respec-
tively [25].

On the other hand, the over-sampling method is based on SMOTE. It has been widely
used as a baseline over-sampling method for breast cancer datasets [14–17]. The percentage
of synthetic instances was set to make the two datasets become balanced datasets where
the malignant and benign classes contain the same numbers of data samples. Other related
parameters were based on the default values of WEKA.

3.2.3. The Classifier Design

After the original training set TR was pre-processed by different approaches, i.e.,
TRreduced_balanced, TRbalanced_reduced, TRbalanced, and TRreduced, they were used to train the
support vector machine (SVM) classifier for performance comparisons. In related literature,
SVM has been widely used as the baseline classifier for breast cancer prediction [26–29].

The implementation of SVM was based on the RBF kernel function, and its related
parameters were based on the default values of WEKA.

4. Experimental Results
4.1. The KDD Cup 2008 Breast Cancer Dataset

Figure 1 shows the AUC (area under the ROC curve) rates of different approaches. In
addition, Figure 2 shows the type I errors of the different approaches, which represent the
error of miss-classifying the malignant cases into the benign class. Note that IG+SMOTE
and GA+SMOTE mean the combination order of performing feature selection first and
over-sampling second, whereas SMOTE+IG and SMOTE+GA represent the opposite com-
bination order. In addition, the baseline represents using the original training set without
performing any feature selection or over-sampling steps to train the SVM classifier.
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Figure 1. AUC rates of different approaches over the KDD Cup 2008 breast cancer dataset.
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Figure 2. The type I errors of different approaches over the KDD Cup 2008 breast cancer dataset.

As we can see, the combinations of feature selection and over-sampling can allow the
SVM to provide higher AUC rates and related lower type I errors than the ones with feature
selection and over-sampling alone at the baseline. More specifically, the combination order
of performing feature selection first and over-sampling second outperforms the opposite
combination order. In particular, IG+SMOTE is the best combined approach, which causes
the SVM to provide an AUC rate of 0.788 and a type I error rate of 0.003, which significantly
outperforms the others (p < 0.05). On the other hand, for the feature reduction result, using
IG and GA produce the selection of 94 and 14, respectively.

4.2. The Breast Cancer Wisconsin Dataset

Figures 3 and 4 show the AUC rates and the type I errors of different approaches,
respectively. Different from the previous results, the approach that performed the best for
the AUC was SMOTE (i.e., 0.962), whereas the second one was the baseline (i.e., 0.960). On
the other hand, the approach that performed the best for the type I error is SMOTE+IG
(i.e., 0.032), whereas the second-best ones are the baseline and SMOTE (i.e., 0.037). The other
approaches producing similar AUC results were IG (i.e., 0.959), IG+SMOTE (i.e., 0.957) and
SMOTE+IG (i.e., 0.955), whereas IG+SMOTE and IG produced similar type I errors, which
were0.038 and 0.044. These approaches do not have a significant level of performance
difference. In particular, for the feature reduction result, using IG and GA produce 8 and
1 selected features, respectively.

The experimental results based on two different breast cancer datasets indicate that
when the collected dataset is highly class imbalanced and contains a certain number of
features, it is better to consider the combination of feature selection and over-sampling.
Particularly, performing feature selection first and over-sampling second is likely to cause
the classifier to provide higher accuracy than performing over-sampling first and feature
selection second.

On the other hand, if the imbalance ratio of the collected dataset is not very high and
it does not contain a large number of features, there is no need to consider the combination
of feature selection and over-sampling. On the contrary, performing over-sampling to re-
balance the dataset is enough to allow the classifier to provide relatively good performance.
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5. Conclusions

Feature selection aims at selecting representative features from a given training set,
whereas over-sampling is for re-balancing the class imbalanced training set. In this paper,
the order of combining feature selection and over-sampling for breast cancer prediction
are compared in terms of classification accuracy. In order to assess the performances of
different combination approaches, the information gain (IG) and the genetic algorithm (GA)
as the filter and wrapper-based feature selection methods and the synthetic minority over-
sampling technique (SMOTE) were employed for creation of the combinations. Moreover,
two breast cancer datasets with significantly different class imbalance ratios and number
of features were used for the experiments.

Regarding the experimental results, for the highly imbalanced dataset containing a
large number of features, performing both feature selection and over-sampling can cause
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the SVM classifier provide higher AUC rates than performing feature selection and over-
sampling alone as well as at the baseline. In particular, it is recommended to execute
feature selection first and over-sampling second. On the contrary, for the dataset with the
low imbalance ratio and small number of features, performing over-sampling alone is the
better choice.
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28. Vidić, I.; Egnell, L.; Jerome, N.P.; Teruel, J.R.; Sjøbakk, T.E.; Østlie, A.; Fjøsne, H.E.; Bathen, T.F.; Goa, P.E. Support vector machine
for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study. J. Magn. Reson. Imaging 2017,
47, 1205–1216. [CrossRef]

29. Wang, H.; Zheng, B.; Yoon, S.W.; Ko, H.S. A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur. J.
Oper. Res. 2018, 267, 687–699. [CrossRef]

http://doi.org/10.1613/jair.1.11192
http://doi.org/10.3390/electronics10060699
http://doi.org/10.3233/IDA-1997-1302
http://doi.org/10.1007/s10462-021-09970-6
http://doi.org/10.1109/TCBB.2012.33
http://doi.org/10.1016/j.cose.2011.05.008
http://doi.org/10.1016/j.knosys.2014.10.010
http://doi.org/10.3390/app9132764
http://doi.org/10.1016/j.knosys.2012.11.005
http://doi.org/10.1186/s40537-019-0247-7
http://doi.org/10.1002/jmri.25873
http://doi.org/10.1016/j.ejor.2017.12.001

	Introduction 
	Literature Review 
	Feature Selection 
	Over-Sampling 

	Research Methodology 
	Two Combination Orders for Feature Selection and Over-Sampling 
	Experimental Setup 
	Datasets 
	The Feature Selection and Over-Sampling Methods 
	The Classifier Design 


	Experimental Results 
	The KDD Cup 2008 Breast Cancer Dataset 
	The Breast Cancer Wisconsin Dataset 

	Conclusions 
	References

