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Abstract: At the present time, power-system planning and management is facing the major challenge
of integrating renewable energy resources (RESs) due to their intermittent nature. To address this
problem, a highly accurate renewable energy generation forecasting system is needed for day-ahead
power generation scheduling. Day-ahead solar irradiance (SI) forecasting has various applications
for system operators and market agents such as unit commitment, reserve management, and biding
in the day-ahead market. To this end, a hybrid recurrent neural network is presented herein that uses
the long short-term memory recurrent neural network (LSTM-RNN) approach to forecast day-ahead
SI. In this approach, k-means clustering is first used to classify each day as either sunny or cloudy.
Then, LSTM-RNN is used to learn the uncertainty and variability for each type of cluster separately
to predict the SI with better accuracy. The exogenous features such as the dry-bulb temperature,
dew point temperature, and relative humidity are used to train the models. Results show that the
proposed hybrid model has performed better than a feed-forward neural network (FFNN), a support
vector machine (SVM), a conventional LSTM-RNN, and a persistence model.

Keywords: LSTM-RNN; solar irradiance; k-means; FFNN; SVM; RESs

1. Introduction

Electricity from renewable energy resources (RESs), especially from photovoltaics (PV)
is a key solution to the increasing global environmental and social challenges. Among these,
carbon emissions and energy shortages have major concerns. The international renewable
energy agency (IRENA) has predicted a solar generation capacity of up to 8500 gigawatts
(GW) by 2050 [1]. Meanwhile, in the United States, PV capacity on the utility-scale is
projected to grow by 127 GW between 2020 and 2050 [2], and the Republic of Korea is
aiming to add 30.8 GW of solar power generation by 2030 [3]. Similarly, China is following
the PV capacity expansion trend and plans to achieve capacities of up to 450 GW and
1300 GW for the years 2030 and 2050, respectively [4].

As energy from PV is clean, green, and naturally replenished over large areas, it is
considered to be the most promising alternative to fossil fuels [5]. However, the variability
in weather conditions creates uncertainties and variations for the PV resource, thus threat-
ening the reliability and stability of the electric power system. This resource intermittency
can lead to significant uncertainties related to the planning, management, and maintenance
of electrical energy systems; hence, the accurate forecasting of PV power generation is
essential [6]. Nevertheless, due to the volatile and random nature of this power source,
accurate prediction remains a challenging task.

There is presently widespread interest in the optimal integration of solar energy on
various scales of the power system. The electrical energy produced by PV plants can
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be classified into the following three levels: (i) the distributed generation level, (ii) the
microgrid level, and (iii) the large-scale power generation level [7]. To obtain energy
from PV, solar irradiance (SI) is utilized as a resource [8]. Therefore, the forecasting of SI
is of increasing interest among researchers. A highly accurate SI forecasting leads to a
secure and optimized solution for the power system [9]. In addition, SI forecasting has
been performed for various operational and management applications such as scheduling,
reserve management, congestion management, and so on [10]. These applications are
associated with specific forecasting time scales and horizons. The time scales are ranged
from a few seconds ahead to years ahead. Forecasting horizons are defined for specific
ranges of the time scales according to the applications’ requirements. Figure 1 depicts
various applications of the power systems related to each forecasting horizon and time
scale [11–13]. In the present study, a forecasting framework is proposed for the day-ahead
prediction of SI.
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In a power system, day-ahead SI forecasting is essential for power system operations
and day-ahead market (DAM). Accurate forecasting in unit commitment and economic
dispatch provides an improved and economically efficient operation. In addition, accurate
forecasting leads to better utilization of PV power and hence, results in less curtailment,
reduced uncertainty in power system operations, and minimized overall operating cost.
The study on the impact of the day-ahead solar energy forecasting for an independent
system operator in New England (ISO-NE) on system operation and overall operating cost
is presented in [14].

Day-ahead forecasting is also important to deal with the management of the operating
reserve [15]. In [16], the analysis on improved SI forecasting is performed in order to see the
effects on flexibility reserves while dealing with imbalanced markets. Results have shown
that better forecasting leads to a reduction in flexibility reserves. Likewise, in [17] for the
improved day-ahead SI forecast, authors have reported a reduction in spinning reserve
requirements for various system operators and utilities. For a concentrated solar-thermal
(CST) plant in Australia, [18] shows significant economic benefit for six months of operation
considering the improvement in short-term SI forecasting.

In the case of DAM, the bids are performed considering day-ahead forecasting. There-
fore, a highly accurate prediction for PV is essential. In [19], the analysis for day-ahead
forecasting for PVs in the Spanish electricity market is provided in order to see the economic
performance for various forecasting models. Similarly, in [20], the significance of accurate
forecasting for solar energy is shown in the context of German electricity market conditions.
Their analysis concludes that the improved forecast accuracy reduces the financial risks
however, it is also related to the market prices. DAM operation considering over-forecast
and under-forecast of the PV power with the effect of locational marginal prices (LMP) and
the real-time market is analyzed for California [21].
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In the proposed study, an improved forecasting model is presented using a hybrid
approach with a deep recurrent neural network based on long short-term memory (LSTM-
RNN). A clustering method is first used to classify the daily weather condition as either
sunny or cloudy. Then, the LSTM-RNN model is used to predict the SI for both types of
days. Clustering enables the identification of similar patterns for SI of each day type that
leads to the advantage of realizing better accuracy. As the LSTM-RNN model learn the
uncertainty and variability for each type of cluster separately, it allows fitting the curve
with more accuracy.

The remainder of this paper is organized as follows. The related work is presented
in Section 2; the methodology of the proposed hybrid LSTMM-RNN approach for SI is
explained in Section 3; implementation details for the proposed method are presented in
Section 4; the results are presented and discussed in Section 5, and the conclusions are
summarized in Section 6.

2. Related Work

Several methods for forecasting the SI have been proposed in the literature, and
these can be broadly divided into two prediction modeling categories, namely physical
modeling and data-driven modeling. In a physical model, numerical weather prediction
(NWP) is used for forecasting tasks by using complex mathematical equations [22,23].
The NWP method gives a good performance in stable weather conditions. However, it
has limitations for cloudy weather. The coarse resolution puts a limitation to acquire
the information related to the clouds [12]. In a data-driven approach, historical data are
used that may or may not contain external weather parameters (temperature, humidity,
clearness index, etc.) with SI. The data-driven models are further categorized into two
sub-types, namely nonlinear autoregressive (NAR) models and nonlinear autoregressive
with exogenous (NARX) models. The first of these uses the endogenous input (i.e., the SI)
as the prediction parameter, while the latter includes the exogenous parameters such as
temperature, humidity, and clearness index, along with the endogenous parameter (SI).
Within the NAR and NARX categories, the data-driven models are further categorized into
statistical models, artificial intelligence (AI)-based models, and hybrid models.

The statistical models used for SI forecasting are mainly based on autoregressive (AR)
methods. These methods include the autoregressive moving average (ARMA), the ARMA
model with exogenous variables (ARMAX) and the autoregressive integrated moving
average (ARIMA) [24]. Further studies related to statistical models are available in [25–32].

The AI-based models perform better for the SI prediction as compared to conventional
statistical models. Among the AI models, machine learning models have the potential to
address the nonlinear relationship between input and output for prediction tasks. Machine
learning models include support vector machine (SVM), the feed-forward neural network
(FFNN), and the adaptive fuzzy neural network (AFNN), and so on. SVM has been used
to predict the solar insolation from three years of data [33]. In another study, the daily
solar irradiance was forecast for three locations in China using seven SVM models based
on sunshine duration as the input [34]. The findings indicated better results for the first
SVM model that shows the lowest error in the winter season as compared to other seasons.
For interested readers, a comprehensive review related to the SVM based forecasting of SI
and wind is presented in [35]. In addition, the FFNN approach has been used to forecast
the daily SI in France using 19 years of data. The results were compared with those of
other statistical and machine learning models such as AR models, Markov chains, Bayesian
inference, and the k-nearest neighbor (KNN). The results indicated that the FFNN provided
the best performance [36]. In another study, the FFNN approach has also been used to
forecast the daily SI, based on the NAR and NARX models along with a multi-output
FFNN architecture to indicate that the NARX and multi-output model provided the best
performance accuracy [37]. Additional studies related to use of FFNN for predicting solar
irradiance are available [38–41].
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The accessibility to large quantities of data (“big data”) and the potential for training
and strong generalization has attracted recent attention towards deep learning as a promis-
ing branch of AI. This approach has been widely implemented in pattern recognition, image
processing, detection, classification, and forecasting applications. A deep learning network
consists of multiple hidden layers that are used to learn data patterns. For SI forecasting,
deep learning technologies such as the recurrent neural network (RNN), the long short
term memory (LSTM), the wavelet neural network (WNN), the deep belief network (DBN),
the multilayer restricted Boltzmann machine (MRBM), the convolutional neural network
(CNN), and the deep neural network (DNN) are used in the literature [42]. Among these,
LSTM-RNN is used to predict the SI with better accuracy. For instance, a comparative
study of LSTM for predicting next-day SI has shown that the LSTM outperforms many
alternative models (including the FFNN) by a substantial margin [43]. Similarly, the LSTM-
RNN model with exogenous inputs has been applied and compared favorably with the
FFNN [44]. Meanwhile, another study used the LSTM network to predict SI and compared
the results with those obtained using the CNN, RNN, and FFNN models to demonstrate
that the LSTM shows the best performance [45].

To outperform the typical deep learning methods in forecasting applications, hybrid
models are presented in the literature [12]. In the hybrid approach, various models are
combined to perform forecasting. For instance, one method can be used for classification
(e.g., weather classification [46]) or data decomposition (e.g., wavelet decomposition [47]).
While the other method is used for forecasting the main feature. Several studies have
indicated that the hybrid approach has shown better performance than the single method
Several studies have indicated that the hybrid approach has shown better performance
than the single method [48–51]. A comprehensive review on hybrid models for solar
energy forecasting is presented in [10]. In this study, k-means clustering is used for weather
classification and LSTM-RNN for forecasting the SI. Classification of the days using the
clustering method groups the days into similar weather types that may have similar SI
patterns. The clustered data is fed to the separate forecasting models at the training stage
to train on similar patterns, which allow fitting the data with more accuracy for each model
and hence, improving the overall accuracy. For example, k-means clustering has been
used for weather classification in combination with SVM for enhanced accuracy in [52].
The results show that the accuracy is improved for sunny days and cloudy days with
RMSE of 49.26 W/m2 and 57.87 W/m2, respectively. However, partially cloudy days
show the RMSE of 62.7 W/m2. While overall RMSE for non-clustered data is reported
as 58.72 W/m2. In [46], a classification-based hybrid model is presented. Results have
shown that the classification technique enhances forecasting accuracy. Random forest
(RF) performs well for cloudy days while SVM for Sunny days with NRMSE of 41.40%
and 8.88%, respectively. In another study [53], an average daily SI and clear sky model
was considered for classification in combination with the FFNN for prediction to provide
improved performance. In this study, k-means clustering is used for weather classification
and LSTM-RNN for forecasting the SI.

Classification of the days using the clustering method groups the days into similar
weather types that may have similar SI patterns. The clustered data is fed to the separate
forecasting models at the training stage to train on similar patterns, which allow fitting
the data with more accuracy for each model and hence, improving the overall accuracy.
For example, k-means clustering has been used for weather classification in combination
with SVM for enhanced accuracy in [52]. The results show that the accuracy is improved
for sunny days and cloudy days with RMSE of 49.26 W/m2 and 57.87 W/m2, respectively.
However, partially cloudy days show the RMSE of 62.7 W/m2. While overall RMSE for
non-clustered data is reported as 58.72 W/m2. In [46], a classification-based hybrid model
is presented. Results have shown that the classification technique enhances forecasting
accuracy. Random forest (RF) performs well for cloudy days while SVM for Sunny days
with NRMSE of 41.40% and 8.88%, respectively. In another study [53], an average daily
SI and clear sky model was considered for classification in combination with the FFNN
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for prediction to provide improved performance. However, the classification of the day as
sunny or cloudy based on the daily average may not be sufficiently accurate. Generally, a
lesser amount of sunshine in the winter will lead to a low average. Therefore, it is more
likely the day being classified as cloudy. Nevertheless, for the clear-sky model, it is more
reasonable to classify the day as either sunny or cloudy.

As discussed above, in several studies, LSTM-RNN has shown better performance
among other deep learning models for SI forecasting. Therefore, this study is aiming to
combine the LSTM-RNN with weather classification to form a hybrid system due to its
advantage to achieve high accuracy. In the present paper, a hybrid model is proposed
that consists of k-means clustering and an LSTM-RNN network. First, the day types
are classified using the k-means clustering and then, LSTM-RNN models are trained for
each cluster of the day type. The classification is performed based on the clearness index
using k-means clustering. To train the model for each day type, exogenous inputs are
used. The results of the proposed hybrid LSTM-RNN approach are compared with those
obtained using empirical methods such as the hybrid FFNN and the hybrid SVM and
conventional LSTM-RNN (without weather classification). In brief, the present study
makes the following contributions:

• A hybrid LSTM-RNN approach is proposed. In the first stage, the datasets of three
locations are classified into cloudy and sunny days via k-means clustering. The LSTM-
RNN model is then trained for each day type in the second stage using exogenous
inputs.

• A comparative study with other models (including the SVM, the FFNN, and persis-
tence models) is provided for three datasets. For a fair comparison, these models
are also trained after the classification task. In addition, the proposed model is com-
pared with the conventional LSTM-RNN model, i.e., generic model without weather
classification.

3. Proposed Method

In this section, a hybrid LSTM-RNN model is presented to forecast the day-ahead SI. It
uses a classification method along with the LSTM-RNN model to maximize the advantage
in terms of achieving better accuracy. After classification, the days are clustered into similar
weather types. Therefore, the SI of similar patterns are sorted and the models learn these
patterns accordingly for each type of day (sunny day and cloudy day). Classification
enables the forecasting models to learn the variability and uncertainty for each day type
separately. This helps lower the complexity and difficulty of data fitting, thereby improving
the forecasting accuracy. Figure 2 shows the example of sunny and cloudy days, plotted
with the corresponding extraterrestrial irradiance.
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The proposed hybrid model for SI forecasting consists of the following five steps and
the overall flow of the proposed model is shown in Figure 3.
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Step 1: historical data are collected from the weather stations. These data include the
SI along with the other weather parameters such as humidity, dew point temperature, etc.,
that have been previously used as exogenous features in forecasting models.

Step 2: the clearness index for each day is then defined as the ratio of the SI at the
surface of the Earth (I) to the extraterrestrial irradiation (I0), as shown in Equation (1): [54]

CI = I/I0. (1)

Thus, the clearness index varies between 0 and 1, where 0 means 100% overcast and
1 indicates clear weather. The values for SI and extraterrestrial irradiation are taken as a
daily average to calculate the clearness index. The clearness index can be computed using
the SI from weather stations, which is obtained using NWP methods and is available for
several days [55]. In this way, we can classify the next day as a cloudy or sunny day. The
accuracy might not be high for such NWP methods. However, these can be used to classify
the day as a cloudy or sunny day by averaging the predicted SI for a day.

Step 3: k-means clustering is used to divide the data into sunny and cloudy days
based on the clearness index. In addition, the classification based on two parameters is also
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performed to see the effects on accuracy. For this purpose, the percentage of cloud covers
with a clearness index is used to classify the day.

Step 4: the forecasting model is then trained for sunny and cloudy days. For compar-
ison, three models (LSTM, FFNN and SVM) are trained for both days. Each forecasting
model is fed with only exogenous features in order to train each model for both types
of days.

Step 5: Finally, the results are tested and validated for each type of day via various
performance matrices.

As noted in Step 4, although the prime focus of this study is to use the LSTM forecast-
ing model with the clustering approach using exogenous features, the results are compared
with those obtained using the other forecasting models (i.e., FFFN and SVM). In addition,
the k-means clustering is used with the FFNN and SVM models in order to provide a fair
comparison. Each of these models is described and discussed in the following subsections
in order to provide a better intuition regarding their mechanisms.

Detailed LSTM-RNN Architecture with k-Means Clustering

The primary focus of the present study is to train the LSTM-RNN network using the
results of classification. In this approach, SI data were fed into the k-means clustering
algorithm. The clearness index was calculated from the extraterrestrial irradiance and
surface solar irradiance via Equation (1). The days were accordingly classified as sunny
or cloudy. The results were then used to train the LSTM-RNN network for each day type
from the associated data. The detailed architecture of the proposed approach is shown in
Figure 4.
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After classification, the LSTM network is trained for each day type. From Figure 4,
dashed boxes represent the training examples that input to the LSTM network. The feature
dimensions d ∈ D for M number of training examples include exogenous and categorical
features for each example, where t presents the time steps, which are 24 h in day-ahead
forecasting for each training example.

The network consists of various layers, including the input layer, several LSTM-based
hidden layers, the fully connected layer, and the output layer. The inclusion of more than
one LSTM-based layer increases the depth of the network and helps it to learn the temporal
dependencies associated with the relevant time steps. The fully connected layer and output
layer are used to output the predicted result.

From the input layer, the first-time step of the training example X1 is fed to the
first LSTM unit. The initial state of the network is also fed into the LSTM unit in order to
compute the first output h1. It updates cell state c1 as well. At time step t, the corresponding
LSTM unit takes the current state of the network ( ct−1 , ht−1) and time step Xt from training
example to generate the output ht and update the cell state ct. After passing the examples
from the network, final outputs for day-ahead SI are generated as G1,....GT .

4. Implementation Details

The experimental description for the proposed methodology is presented in this
Section. Separate subsections are dedicated to dataset description, data division, feature
selection, and hyperparameter optimization.

4.1. Dataset Description

To demonstrate the diversity of the proposed study, datasets from three locations
in the USA, Germany, and Switzerland are included. Information about the sizes of the
dataset, latitude and longitude for all locations are mentioned in Table 1.These datasets
were recorded from the following weather stations: The Solar Radiation Research Lab-
oratory (SRRL) in Golden, Colorado (USA) [56], the weather station at the Max Planck
Institute of Biochemistry (MPIB) in Jena (Germany) [57], and the weather station in Basel,
Switzerland [58].

Table 1. The location co-ordinates and dataset size.

Location Latitude (◦) Longitude (◦) Dataset Size (Years)

Golden, Colorado, USA 39.7329 −105.2389 12
Jena, Germany 50.9288 11.5899 7

Basel, Switzerland 47.5584 7.5733 12

These datasets include the other parameters to be considered along with SI for the
present study, including the dew point temperature, the relative humidity, the dry bulb
temperature, cloud covers, wind speed, etc. These are taken as the exogenous features.
These obtained input features are the measured values. For the proposed model, these are
assumed as the perfectly forecasted values because these exogenous features are used as
the forecasted metrological data for the next day as inputs to predict the SI.

4.2. Data Division

In many studies, the datasets are divided into training and testing sets only. In
the present study, the datasets are divided into training, validation, and test sets. The
distributions of the datasets are detailed in Table 2. The training set is used to train the
proposed model. The validation set is used to tune the hyperparameters, regularization,
and feature selection process. Finally, the test set is used to evaluate the performance of
the model. Results for validation data sets are reported in Appendix B. Performance of the
proposed model is evaluated and discussed using test sets in Section 4.



Appl. Sci. 2021, 11, 6738 9 of 23

Table 2. Dataset distribution.

Location Datasets Division Years Number of Examples

Golden
Training set 10 3650

Validation set 1 366
Test set 1 365

Jena
Training set 6 2190

Validation set 1 365
Test set 1 365

Basel
Training set 10 3651

Validation set 1 365
Test set 1 365

4.3. Feature Selection

Feature selection is crucial to the performance of the forecasting algorithm [59]. In the
present study, the SI was selected for the unsupervised k-means clustering of the datasets
in order to classify the days as either sunny or cloudy day. For the LSTM-RNN, model
external parameters (exogenous input parameters) are selected to train it for clustered
data. The correlation of the external parameters with the SI was calculated using Pearson’s
correlation coefficient (PCC). It enables to see the relevancy of the external parameters
towards the SI. The PCC ranges from −1 to +1, with a value close to +1 indicating a higher
correlation and values approaching −1 indicating a negative or inverse relationship. For
example, relative humidity has a negative value that shows an inverse relationship with SI.
In this case, if relative humidity goes high, SI goes down and vice versa. PCC of external
parameters with SI is shown in Figure 5. At the x-axis, the locations are mentioned whereas,
the y-axis presents the variables including SI and other external parameters. Each box
shows the PCC value for the variable with SI.
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Provided two variables (X,S), the formula for calculating PCC is given below in
Equation (2):

PCC(X, S) =
1

N − 1

N

∑
i=1

(
Xi − µX

σX

)(
Gi − µS

σS

)
, (2)

where µ and σ are the mean and standard deviation of the variables (X,S), and N is the
number of observations in each variable.
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For the proposed study, an error evaluation approach was used to select the suitable
features among the exogenous features, i.e., listed in Section 4.1. This approach is known as
the wrapper approach [60]. According to this approach, errors for all the possible variable
subsets are evaluated using evaluation metrics such as RMSE, in this study. We evaluated
the results for various combinations of the variables (exogenous inputs) and find out the
combination that showed the minimum error. The error was evaluated using training and
validation sets. The features’ selection method indicated that the dry-bulb temperature, the
dew point temperature and the relative humidity were the best choices for the analysis.

For features selection, various other methods are reported that are related to corre-
lation methods. Nevertheless, the wrapper approach is used in this study. Using other
correlation methods for feature selection, may not give us good performance because
the correlation of a feature can be irrelevant by itself. However, it can provide better
performance improvement when combining with other features.

To further highlight the improved performance, additional categorical features are
introduced to this methodology, namely: the hours of the day (1–24) and the months of the
year (1–12).

4.4. Hyperparameter Tuning

As well as depending on the feature selection process described in Section 4.3, the
performance of the forecasting model is highly dependent on the selection of the hyper-
parameters that are used for tuning the learning rate. Moreover, the hyperparameter
selection also affects the computation and memory factors. Therefore, optimization of the
hyperparameters is always a point of debate among researchers. Nevertheless, some rules
have been defined by scientists and researchers for setting the values. In the present study,
the following hyperparameters were considered for tuning the model: feature scaling,
learning rate, optimization solver, number of epochs, dropout rate, number of hidden units,
and number of hidden layers.

As the computation significantly depends on the learning rate, this is the most
important hyperparameter. For the optimization solver, the adaptive moment estima-
tion (ADAM) [61], stochastic gradient descent with momentum (SGDM) [62], and RM-
Sprop [63,64] algorithms were tested, and SGDM was found to be the best solver. For
hyperparameter optimization, search space is defined based on the trial and error method.
Based on the defined search space, the hyperparameters were finally optimized. Table 3
shows the hyperparameters with the chosen optimal value for the LSTM-RNN model from
the search space. In addition, hyperparameters were optimized using only the Golden
dataset and applied these same parameters to other datasets. It avoids the over tuning of
the model.

Table 3. Hyperparameter optimization.

Hyperparameter Value Search Space

Feature scaling Standard Min-max and Standard scaler
Number of layers 2 1, 3, 5, 7, 10, 12, 15

Learning rate 0.005 0.0005, 0.1, 0.01 and 0.001–0.005
Optimization solver SGDM ADAM, SGDM, RMSprop
Number of epochs 1500 500–4000

Dropout rate 0.1 0.05–0.8
Hidden units 24 12, 24, 48, 96, 192
Hidden layers 3 2–6

The number of hidden layers was optimized as 3 and the hidden units were optimized
as 24. Feature scaling showed the best results with a standard scaler method. The dropout
rate was set to 0.1, which also works to avoid the overfitting problem. Finally, the number
of epochs was tuned to 1500.

By contrast, the hyperparameters used for the FFNN network were the same as in
a previous study [44], i.e., the learning rate was 0.001, the number of hidden units was
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10, and 2 hidden layers were set. Full batch gradient descent was used, along with L2
regularization, standard scalar, and 1000 epochs.

For the SVM algorithm, standard feature scaling and a gaussian kernel were used
with a sequential minimal optimization (SMO).

4.5. Performance Evaluation

The performance was evaluated using four indicators that are widely used in the
literature to evaluate the performance of forecasting models. These are: the root mean
square error (RMSE), the normalized root mean square error (NRMSE), the mean ab-
solute error (MAE), and the normalized mean absolute error (NMAE), as defined by
Equations (3)–(6) [65–67]:

RMSE =

√
1
N ∑N

i=1

(
xa

i − xp
i

)2
, (3)

NRMSE =
RMSE

max(xa)−min(xa)
∗ 100%, (4)

MAE =
1
N ∑N

i=1

∣∣∣xa
i − xp

i

∣∣∣, (5)

NMAE =
MAE

max(xa)−min(xa)
∗ 100%, (6)

where xa
i and xp

i are the actual and predicted points, and N is the total number of samples.
Thus, normalization of the RMSE and MAE is performed using the min-max method.

5. Results and Discussion

The results obtained using the proposed methodology and four comparison models
(including the persistence model) for three locations are presented in this Section. Test
sets of all the locations are used to perform the performance evaluation for all the models.
Validation sets are used for the validation of the models. Results for the validation are
reported in Appendix B. The simulations were performed on a desktop computer using
the Windows 10 operating system (OS) with an Intel i7 processor and 16 GB RAM. The
classification is performed using k-means clustering.

5.1. Clustering with One Parameter

The results for sunny and cloudy days at each location are indicated in Figure 6, and
the corresponding centroid values are listed in Table 4. For example, the Golden (Colorado)
location has sunny and cloudy days with centroid values of 0.69 and 0.38, respectively.
If the clearness index is high, then the day is more likely to be sunny and vice versa.
After classifying the days as sunny or cloudy based on the centroid value at each location,
the LSTM-RNN, FFNN, SVM, and persistence models are each trained for cloudy and
sunny days.

Table 4. The centroid values for sunny and cloudy days at the study locations.

Location Cloudy Days Centroid Sunny Days Centroid

Golden 0.38 0.69
Jena 0.24 0.55
Basel 0.34 0.65
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Figure 6. The classification of days via k-means clustering for the study locations.

The results obtained using the various models are presented and evaluated according
to their RMSE, NRMSE, MAE, and NMAE values in Table 5. In addition, the average
NRMSEs of the four models for the three geographical locations are indicated by the bar
charts in Figure 7. Thus, it can be seen that the proposed LSTM model gives the best
performance for all three locations, followed by the FFNN and SVM models, while the
persistence model gives the least accurate forecasting results.
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Table 5. The obtained results for the proposed hybrid model and other models.

Location Model
RMSE (W/m2) NRMSE (%) MAE (W/m2) NMAE (%)

Sunny Cloudy Avg. Sunny Cloudy Avg. Sunny Cloudy Avg. Sunny Cloudy Avg.

Golden

LSTM 44.55 42.27 43.41 4.11 4.19 4.15 21.23 13.97 17.6 1.95 1.38 1.67
FFNN 52.93 46.08 49.51 4.88 4.57 4.73 25.35 15.07 20.21 2.33 1.49 1.91
SVM 64.2 52.2 58.2 5.92 5.18 5.55 31.37 16.2 23.79 2.93 1.6 2.27
Pers. 112.64 105.83 109.24 10.39 10.51 10.45 50.95 33.76 42.36 4.7 3.35 4.03

Jena

LSTM 46.87 46.63 46.75 5.1 5.6 5.35 21.05 18.34 19.7 2.29 2.2 2.25
FFNN 56.5 49.32 52.91 6.15 5.93 6.04 25.76 20.45 23.11 2.8 2.45 2.63
SVM 58.41 50.06 54.24 6.36 6.02 6.19 25.94 18.23 22.09 2.82 2.19 2.51
Pers. 84.65 79.62 82.14 9.22 9.57 9.4 34.65 30.3 32.48 3.77 3.64 3.71

Basel

LSTM 44.4 55.6 50 4.97 6.88 5.93 21.56 18.89 20.23 2.42 2.26 2.34
FFNN 51.71 52.89 52.3 5.79 6.54 6.17 22.39 18.69 20.54 2.51 2.31 2.41
SVM 54.88 58.48 56.68 6.15 7.23 6.69 23.62 19.95 21.79 2.64 2.46 2.55
Pers. 70.1 80.49 75.3 7.86 9.96 8.91 26.42 27.62 27.02 2.96 3.41 3.19
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In detail, the LSTM provides minimum and maximum average NRMSEs 4.15 and
5.93%, respectively, over both types of days. While the average NMAE error percentage is
~2%. With respect to the three locations, all four models give their best performances for
the data from Golden (Colorado). Overall, the proposed model gives a better performance
on sunny days as compared to cloudy days. In addition, the SVM and FFNN giving closely
comparable performances and low deviations. Therefore, since more time is required
to train the FFNN than the SVM, the computational burden at the training stage can be
reduced by selecting the SVM rather than the FFNN.

The measured SI and the corresponding values for cloudy and sunny days predicted
by the proposed and comparison models at the three locations are plotted graphically in
Figure 8. The results for sunny days are presented in the left-hand column of the figure,
while those for cloudy days are presented in the right-hand column. Thus, it can be seen
that the persistence model gives the worst performance for both day types, while the LSTM
gives better results than all other models. Comparatively, the results for cloudy days are
less accurate than those for sunny days.
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The results of the proposed model for the three locations are also compared with those
obtained using the conventional LSTM model in Table 6 and Figure 9. The conventional
LSTM-RNN model is trained, validated, and tested for the whole dataset without classify-
ing the days into sunny and cloudy. Therefore, it can be referred to as the all-sky model.
As expected, these results indicate that the hybrid LSTM provides the better performance,
with a minimum error of 4.15% for the Golden (Colorado) prediction and a maximum
error of 5.93% for the Basel prediction. By contrast, the conventional LSTM gives errors of
5.56 and 7.98% at Golden and Basel, respectively. This is because the proposed approach
learns the SI pattern well and helps predict the SI more accurately as compared to the
conventional method.

Table 6. A performance comparison of the hybrid and conventional LSTM models.

Location Hybrid LSTM
(NRMSE %)

Conventional LSTM
(NRMSE %)

Golden 4.15 5.56
Jena 5.35 7.16
Basel 5.93 7.98
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Scatter plots of the measured SI values at each location against those predicted by the
proposed hybrid LSTM model are presented in Figure 10 for sunny (left-hand column) and
cloudy (right-hand column) days. The goodness of fit to a straight line is also indicated,
with points close to the blue line indicating more accurate predictions and points far from
the line indicating less accurate prediction. Thus, the proposed model is seen to accurately
predict the data measured at Golden (Colorado) for both cloudy and sunny days, whereas
the predictions at other sites are less accurate for cloudy days than for sunny days.
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5.2. Clustering with Two Parameters

So far, the analyses have been performed for one dimension k-means clustering for
the classification. In previous studies such as [45,52], two variables are used to classify the
day. Therefore, we have performed classification with two parameters and compare the
performance of the forecasting with a single parameter classification-based model. To see
the effects of two parameters on classification, one site is considered for further analysis.
For this purpose, the cloud covers are considered with a clearness index to define a sunny
and cloudy day. If the percentage of the cloud covers is high and the clearness index is low,
then the day is more likely to be classified as cloudy. Figure 11 shows the classification for
Golden, Colorado (USA) with two parameters.
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Figure 11. Classification with two parameters for Golden.

The results for various forecasting techniques considering both sunny and cloudy
days are presented in Table 7. Results show the supremacy of LSTM among other mod-
els as expected. Average NRMSE for LSTM, FFNN, SVM and persistence models are
recorded as 4.65%, 5.46%, 5.76% and 11.58%, respectively. Errors for this approach are
closely comparable with the former classification approach, however, performance is not
improved. Therefore, the classification using one parameter is suitable for forecasting with
the advantage of better accuracy and less computation burden as more computation time
is required for a classification task that uses two parameters.

Table 7. Results for the proposed and other models with two parameters clustering for Golden.

Model
RMSE (W/m2) NRMSE (%)

Sunny Cloudy Avg. Sunny Cloudy Avg.

LSTM 49.51 50.82 50.17 4.56 4.73 4.65
FFNN 53.81 64.01 58.91 4.96 5.95 5.46
SVM 57.34 67.06 62.20 5.29 6.23 5.76
Pers. 98.63 151.22 124.93 9.10 14.06 11.58

Overall, the proposed model is showing better performance for forecasting the SI,
however, it has some limitations for a practical system. As in this study, inputs are obtained
from the weather stations that are measured values and are assumed as the perfectly
forecasted values for the proposed approach. However, in a real system, these exogenous
features are used as the forecasted metrological data for the next day to predict the SI.
Therefore, the accuracy of the SI prediction may be affected by a forecasted error of the
meteorological data. This is the limitation of the data-driven forecasting approach that uses
exogenous features as inputs.
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Another limitation is related to the data availability. We trained the model using
several years’ measured data. However, in practice, it might be difficult to obtained
measured data of several years to train the model, specifically, for a new site. The proposed
solution to the limitation is the generalization of the model for SI forecasting [68]. The
model can be generalized using the data from the nearby weather station and the use for
the new site. The performance of the generalized model may vary however, but can be
improved with time. The model can be trained continuously using upcoming data for a
particular site.

6. Conclusions

In this paper, a hybrid LSTM-RNN framework for forecasting the SI was proposed
and compared with the hybrid approach with FFNN and SVM. K-means clustering was
used to classify the days as either sunny or cloudy, then the LSTM-RNN model was used to
forecast the SI, and exogenous features were used to train the model. The proposed model
was shown to provide the best performance for all three study locations (Golden, Colorado
(USA), Jena (Germany), and Basel (Switzerland)) followed by the FFNN and SVM models.
In detail, the hybrid LSTM provided maximum and minimum average NRMSEs 4.15% and
5.93% over both types of the day at Golden and Basel, respectively. In terms of the NMAE,
the average error percentage was around 2% for both types of day. Overall, the proposed
model provided better performance on sunny days than on cloudy days. Furthermore, the
hybrid LSTM model exhibited less error than the conventional LSTM model, as indicated
by the maximum NRMSEs of 4.15% and 5.56%, respectively.

In addition, the proposed approach is tested for classification considering two pa-
rameters (clearness index and cloud covers). Results have shown no improvement in the
forecasting as compared to the former way of clustering. Therefore, using one dimension
k-means clustering should be significant to use with the advantages of better performance
and less computational burden. Finally, it is concluded that as compared to other methods,
the proposed hybrid approach to day-ahead SI forecasting can be a more suitable option
for power-system applications such as unit commitment, economic dispatch, and other
day-ahead market operations.

In future works, we are aiming to perform the analysis and comparison on the effect
of errors from forecasted meteorological data. More analysis will be performed on k-means
clustering with various combinations of the parameters to see the effect of the classification
on the overall model performance. Furthermore, generalization of the proposed model will
be performed to make the model more suitable for practical use.
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Appendix A. Theoretical Overview

Appendix A.1. The K-Means Clustering Algorithm

K-means clustering is an unsupervised machine learning algorithm used to allo-
cate data points into groups or clusters by identifying the mean distance between data
points [69]. This process is then iterated to provide more precise classifications over the
course of time. In k-means clustering, the basic concept is to choose a number (k) of
centroids for each cluster. Since different positions of centroids produce distinct results, it is
possible to place the centroids strategically. The better option, however, is to position them
at large distances from each other. After defining the centroids, a point is taken from the
dataset and linked to the closest centroid. This process is first performed for all the points
to generate an initial grouping, then the k new cluster centroids are calculated accordingly.
Based on the k new centroids, new associations are then made between the same dataset
points and the closest new centroids. Thus, the centroids change their positions iteratively
until no further adjustments can be made (i.e., the problem has converged to one solution).
In brief, the algorithm minimizes an objective function (a squared error function in the
present case) to form an association between centroids and dataset points. The objective
function is given by Equation (2) [69]:

J = ∑k
j=1 ∑n

i=1

∥∥∥ x(j)
i − cj

∥∥∥2
, (A1)

where ‖x(j)
i − cj‖2 is a chosen distance measure between data-point x(j)

i and the cluster
center cj as an indicator of the distance of the n data points from their respective cluster
centers.

Appendix A.2. The Support Vector Machine (SVM)

The SVM is a machine learning method that was introduced by Cortes and Vapnik
to perform classification and regression tasks [70]. To predict time series data, the SVM
performs a regression or support vector regression (SVR).

The dataset for training the SVR model is formed in the same way as for other models,
with input and output pairs {(x1, y2), . . . . . . .(xn, yn)} the regression problem is then given
as the map in Equation (A2):

f (x) = x′η + b, (A2)

where η is the weight factor and b is the bias value. To find the flat f (x), it is necessary to
minimize the norm value (η′η) of the weighting factors via Equation (A3):

minJ(η) =
1
2

η′η. (A3)

This is subject to the inequality in Equation (A4):∣∣yn −
(
x′nη + b

)∣∣ ≤ ε, (A4)

which indicates that the function provides an accurate approximation within the margin
of ±ε. However, it not always possible to maintain a tight margin. To solve this problem,
points that lie outside the margin are dealt with by the introduction of slack variables ξn, ξ∗n.
The objective function then takes the form of Equation (A5):

minJ(η) =
1
2

η′η + C
N

∑
n=1

(ξn − ξ∗n), (A5)

which is subject to the in Equalities (A6) and (A7):

yn −
(
x′nη + b

)
≤ ε + ξn, ξn ≥ 0, (A6)
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(
x′nη + b

)
− yn ≤ ε + ξ∗n, ξ∗n ≥ 0. (A7)

The constant C is the controller for the slack variables and has a value greater than
zero. This defines the amount of deviation of the slack variables ±ε.

Appendix A.3. The Feed-Forward Neural Network (FFNN)

The FFNN is used to map input and output to provide a better approximation of the
function y = f (x, θ), where θ ∈ {w, b} and w and b are the weights and bias vectors, respec-
tively. These values are adjusted via the learning process [71]. Typically, the FFNN consists
of an input layer, one or more hidden layers, and an output layer. The inputs are taken
from the input layer to the hidden layer, and then the calculated values are transferred to
the output layer. At the output layer, a specific type of calculation is performed depending
upon whether the task is a classification or regression task. This depends on the activation
function and the data orientation. The simplified calculation for the FFNN is described by
Equations (A8)–(A11) below.

There are n input signals (or nodes) in the input layer, M hidden units in the hidden
layer, and k output signals in the output layer. This allows the construction of M linear
combinations of input variables x1, . . . , xn as in Equations (A8) and (A9):

aj = ∑n
i=1 wij · xi + bj, (A8)

zj(x, θ) = Activation
(
aj
)
, (A9)

where j is the index and M the total number of linear combinations of input variables (i.e.,
j = 1, . . . , M), wij and bj are the weights and biases, and aj is the linear combination of
the weighted sum. The value aj is then passed to the activation function that applies a
transformation (e.g., tanh, logistic sigmoid, rectified linear unit (Relu), etc.) to the output
(zj) of the hidden layer. This process is then repeated for the output layer, as in Equations
(A10) and (A11):

ak = ∑M
j=1 wkj · zj + bk, (A10)

yk(x, θ) = Activation(ak), (A11)

where k = 1, . . . , K, (K being the total number of outputs), and wkj and bk are the weights
and biases for the output layer from the hidden layer. The output unit activations are then
finally transformed via an activation function to produce a set of network outputs yk.

To learn the weights and bias values, the FFNN employs backpropagation algorithms
to reduce the error between the predicted and actual output values in order to provide an
accurate prediction.

Appendix A.4. The Long Term Short Term Memory-Based Recurrent Neural Network (LSTM-RNN)

Although the FFNN model discussed in the previous subsection does not use the
information from the previous time steps to learn the equations, this information has
significant value in improving the performance of a prediction task. To overcome this
problem, RNN is introduced into time series forecasting. The RNN uses the information
from the output of the previous step to predict the next time step. However, because
this is an iterative process, the retention of information for a long time may lead to a
vanishing gradient problem that results in worse predictions. To solve this problem, LSTM-
based RNN is used to store the relevant information from the previous time steps and
discard any information that is not needed. These tasks are performed using different gate
functionalities in the LSTM cell.

The LSTM was developed in 1997 by Hochreiter and Schmidhuber [72]. In the LSTM-
RNN network, hidden RNN layers are replaced by the LSTM cells. As shown in Figure A1,
each cell consists of various gates that can manage the inputs and outputs, including an
input gate, a forget gate, a cell state, and an output gate. The LSTM cells also contain a
tanh block, a sigmoid block, and a multiplication function. The input gate is used to store
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new information in the memory, while the forget gate is responsible for discarding the
previously stored information when it is activated. Finally, activation of the output gate
allows the propagation of the latest cell output to the ultimate state. The function of the
sigmoid block is to generate values between 0 and 1 to indicate what percentage of each
component should be allowed. The tanh block creates a new vector to be added to the state,
and the cell state is accordingly reorganized depending on the outputs formed by the gates.
Mathematically, LSTM cells can be represented by the Equations (A12)–(A16): [73]

ft = σ
(

Wx f · xt + Wh f · ht−1 + b f

)
, (A12)

ct = ft · ct−1 + it · tanh (Wxc · xt + Whc · ht−1 + bc), (A13)

it = σ(Wxi · xt + Whi · ht−1 + bi), (A14)

ht = ot · tanh(ct), (A15)

ot = σ(Wxo · xt + Who · ht−1 + bo), (A16)

where σ is the sigmoid, i, f, o and c are the input gate, forget gate, output gate, and cell gate,
respectively, h is the hidden vector that defines the (identical) size of each gate, and W is
the weight matrix.
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