
applied
sciences

Article

A Compute and Wait in PoW (CW-PoW) Consensus Algorithm
for Preserving Energy Consumption

Mostefa Kara 1,* , Abdelkader Laouid 1 , Muath AlShaikh 2, Mohammad Hammoudeh 3 ,
Ahcene Bounceur 4,* , Reinhardt Euler 4 , Abdelfattah Amamra 5 and Brahim Laouid 1

����������
�������

Citation: Kara, M.; Laouid, A.;

AlShaikh, M.; Hammoudeh, M.;

Bounceur, A.; Euler, R.; Amamra, A.;

Laouid, B. A Compute and Wait in

PoW (CW-PoW) Consensus

Algorithm for Preserving Energy

Consumption. Appl. Sci. 2021, 11,

6750. https://doi.org/10.3390/

app11156750

Academic Editor: Gianluca Lax

Received: 30 May 2021

Accepted: 25 June 2021

Published: 22 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 LIAP Laboratory, El Oued University, P.O. Box 789, El Oued 39000, Algeria;
abdelkader-laouid@univ-eloued.dz (A.L.); laouid.bahi@gmail.com (B.L.)

2 Computer Science Department, College of Computing and Informatics, Saudi Electronic University,
Riyadh 11673, Saudi Arabia; M.ALSHAIKH@seu.edu.sa

3 School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University,
Manchester M1 5GD, UK; M.Hammoudeh@mmu.ac.uk

4 Lab-STICC UMR CNRS, University of Western Brittany UBO, 6285 Brest, France;
Reinhardt.Euler@univ-brest.fr

5 Computer Science Department, California State Polytechnic University Pomona, 3801 W Temple Ave,
Pomona, CA 91768, USA; aamamra@cpp.edu

* Correspondence: karamostefa@univ-eloued.dz (M.K.); Ahcene.Bounceur@univ-brest.fr (A.B.)

Abstract: Several trusted tasks use consensus algorithms to solve agreement challenges. Usually,
consensus agreements are used to ensure data integrity and reliability in untrusted environments.
In many distributed networking fields, the Proof of Work (PoW) consensus algorithm is commonly
used. However, the standard PoW mechanism has two main limitations, where the first is the high
power consumption and the second is the 51% attack vulnerability. In this paper, we look to improve
the PoW consensus protocol by introducing several proof rounds. Any given consensus node should
resolve the game of the current round Roundi before participating in the next round Roundi+1. Any
node that resolves the game of Roundi can only pass to the next round if a predetermined number of
solutions has been found by other nodes. The obtained evaluation results of this technique show
significant improvements in terms of energy consumption and robustness against the 51% and Sybil
attacks. By fixing the number of processes, we obtained an energy gain rate of 15.63% with five
rounds and a gain rate of 19.91% with ten rounds.

Keywords: improved PoW consensus algorithms; blockchain; energy consumption; distributed
systems; game competition

1. Introduction

Distributed computing is a computing field that studies distributed systems (DS)
whose components are located on different networked computers spread over different
geographies and which communicate by transmitting messages in order to achieve a com-
mon goal [1]. In this scenario and with the absence of a global clock, the event of failure of
an independent component in the system must tolerate the failure of individual computers.
Each computer has only a limited and incomplete view of the system. Various hardware
and software architectures are used for DS. In peer-to-peer (P2P), there are no special
machines that provide services or manage network resources and the responsibilities are
evenly distributed among all machines called peers. Peers can serve as both clients and
servers. In the context of DS, the Byzantine Generals Problem (BGP) is a distributed com-
putational problem that was formalized by Leslie Lamport, Robert Shostak and Marshall
Pease in 1982 [2]. The BGP is a metaphor that deals with the questioning of the reliability
of transmissions and the integrity of the interlocutors. A set of elements working together
must indeed manage possible failures between them. These failures will then consist of
the presentation of erroneous or inconsistent information. The management of these faulty

Appl. Sci. 2021, 11, 6750. https://doi.org/10.3390/app11156750 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5736-8039
https://orcid.org/0000-0002-8175-8467
https://orcid.org/0000-0003-1058-0996
https://orcid.org/0000-0002-0043-7742
https://orcid.org/0000-0002-4294-286X
https://doi.org/10.3390/app11156750
https://doi.org/10.3390/app11156750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11156750
https://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/11/15/6750?type=check_update&version=3

Appl. Sci. 2021, 11, 6750 2 of 14

components is also called fault tolerance which leads us to talk about synchronous and
asynchronous systems. Fischer, Lynch and Paterson (FLP) [3] have shown that consensus
can not be reached in a synchronous environment if even a third of the processors are
maliciously defective. In an asynchronous system, even with a single faulty process, it is
not possible to guarantee that consensus will be reached (the system does not always end).
FLP says that consensus will not always be reached, but not that it ever will be. This study
concerns asynchronous systems, where all processors operate at unpredictable speeds [4].
Theoretically, a consensus can not always be achieved systematically asynchronously. But
despite this result, it is possible to obtain satisfactory results in practice, as for instance by
the non-perfect algorithms of Paxos Lamport [5] (in the context of obvious failures and no
Byzantine faults). Lamport, Shostak and Pease showed in [2], via the Byzantine Generals
Problem, that If f is the number of faulty processes, it takes at least 3 f + 1 processes (in
total) for the consensus to be obtained. Under these conditions, the PoW technique has
ensured the consensus perfectly, but its major problem is the enormous consumption of
energy. In this paper, we propose a consensus protocol for an asynchronous environment.
We minimize the energy consumption to ensure the synchronization by the application of
several rounds of consensus, where in each round the nodes make a Proof-Wait, i.e., show
the PoW then make a wait. The remainder of this paper is organised as follows: In Section 2,
we will discuss the consensus problem. In Section 3, we provide an overview of the con-
sensus protocol. In Section 4, we present our proposed protocol. Section 5 demonstrates
the validity of our protocol. Section 6 shows the compute and wait implementation. In
Section 7, we will discuss the hardness of the proposed cryptosystem. Finally, we conclude
with Section 8.

2. Consensus Problem

A fundamental goal in distributed computing and multi-agent systems is to achieve
overall system reliability in the presence of a number of faulty processes. This obviously
requires the coordination of the correct processes in order to reach an agreement on a final
decision. The processes must agree on a common value, where each process must provide
a local value which is broadcast to all the other processes (or else, it shows a measure or a
calculation). From all the proposed values, the processes must decide on a single common
value such that either a leader process initiates the accord phase, or the accord phase is
started at predetermined times. Many applications require consensus including blockchain,
clock synchronization, cloud computing, opinion-forming, page-rank, smart grids, drone
control, state estimation, load balancing and so on.

2.1. Conditions to be validated

The choice of the consensus algorithm is the main element. It determines the level of
security and impact, and thus the following points must be achieved:

• Accord: The decided value is the same for all the correct processes.
• Integrity: A process decides at most once and there is no change in value choice.
• Validity: The value chosen by a process is one of the values proposed by the other processes.
• Termination: The decision phase takes place in a finite time (any correct process

decides in a finite time).

2.2. Potential attacks

Choosing the wrong consensus algorithm can render the underlying system unusable
and put all stored data at risk. The vulnerability of a consensus can expose the system to
the following attacks:

• 51% attack: In the PoW algorithm, the domination can be achieved by controlling more
than half of the total computation of the network (hash rate) [6]. The pool (a group of
miners working together called a mining pool) would be able to add its own blocks
to the blockchain or create a competing independent branch to which the main and
legitimate branch will converge later. This type of attack notably allows the attacking

Appl. Sci. 2021, 11, 6750 3 of 14

pool to be able to spend twice its own funds (double-spending attack) and reject
transactions that it does not want to be included in the ledger.

• Sybil attack: One hostile node can conduct a Sybil attack by creating a large number
of identities and using them to exert disproportionate influence and to defraud the
system to break its trust and redundancy mechanism [7].

• DDoS attack: This attack aims to disrupt the normal functioning of the network by
flooding the nodes with information or to lower the expected success outlook of a
competing mining pool [8].

3. Consensus Protocol Overview

Bitcoin technology could refer to the most famous blockchain implementation that is
created in 2008 by a person or group working under the pseudonym “Satoshi Nakamoto” [9].
In public cryptocurrencies and distributed ledger systems, the fundamental infrastructure
of the blockchain is a peer-to-peer overlay network over the Internet [10]. Transactions
represent the exchanges between users, and the recorded transactions are grouped together
in blocks of size 1M at most. After recording recent transactions, a new block is generated
and all transactions will be validated by miners, who will analyze the entire history of the
blockchain. If the block is valid, it is time-stamped and integrated into the blockchain. The
transactions’ contents are then visible on the entire network. Once added to the chain, a
block can not be changed or deleted, which guarantees the authenticity and security of the
network. Each block in the chain is made up of the following elements: a collection of trans-
actions, the hash (sum of transactions) used as an identifier, the hash of the previous block
(except for the first block in the chain, called the genesis block) and the target (a measure of
the amount of work that was required to produce the block). The main application of this
technology is that of crypto-currencies such as Bitcoin [11]. Beyond its monetary aspect, this
decentralized information storage technology could have multiple applications requiring
secure exchanges without going through a centralizing body, or unfalsifiable traceability,
such as applications based on smart contracts, applications allowing the exchange of all
kinds of goods or services, means of improving their predictive systems known as oracles,
the traceability of products in the food chain, etc. Each node of the network operates
autonomously with respect to the set of rules to which it belongs, and this mechanism of
identity management plays a main role in determining the organization of the nodes of a
blockchain network.

From the system design perspective, a blockchain network contains four levels of
implementation. These are the data and network organization protocols, the distributed
consensus protocols, the autonomous organization framework based on intelligent con-
tracts and the application (the interface) [12]. In each type of blockchain, several consensus
algorithms are designed. One of the most famous algorithms is Proof of Work (PoW),
whose concept was first introduced by Cynthia Dwork and Moni Naor in 1993 [13] and in
which the authors have presented a computational technique to combat spam in particular
and control access to a shared resource in general. The main idea is to require a user to
calculate a moderately difficult but not insoluble function, in order to access the resource,
thus avoiding frivolous use. Then the work should be difficult to do for the requester, but
easily verifiable for a third party. In 1997, Adam Back implemented the idea with Hashcash,
an algorithm to easily produce proofs of work using a hash function (especially SHA-256),
and whose main use was electronic mail. The term ’proof of work’ has been coined in
1999 by Markus Jakobsson and Ari Juels in their article Proofs of Work and Bread Pudding
Protocols [14]. In Bitcoin, to validate a block, the miner had to build a draft of this block
(including transactions and payload data), indicate the identifier of the previous block
to make the link, and vary a number present in the header called the nonce. By varying
this nonce (as well as other parameters in the block), the miner was able to try a gigantic
number of possibilities so that the hash of the header produced a suitable result, i.e., a hash
starting with a sufficient number of zeroes. Due to the high power consumption of PoW, the
Proof of Stake (PoS) is positioned as an alternative. Peercoin was the first cryptocurrency

Appl. Sci. 2021, 11, 6750 4 of 14

to use PoS by Sunny King and Scott Nadal in 2012 [15]. PoS asks the user to prove the
possession of a certain quantity of cyber money to pretend to validate blocks. To avoid
centralization (the richest member would always have an advantage) and the Nothing at
Stake attack, many alternatives exist for a move towards more comprehensive consensus
mechanisms which use random allocation methods taking into account the age of the
coin (as in the case of Peercoin) and depending on the velocity [16] used by the ReddCoin
cryptocurrency. The variant that is often considered as one of the most balanced protocols
between security, decentralization and network scalability is Delegated Proof of Stake used
by the BitShares cryptocurrency [17]. Its selection is based on votes in which the block
validator is randomly selected from a group of 101 delegates who have the highest stakes.
Proof of Burn (PoB), or Proof of Destruction [18], is an algorithm very similar to PoS. In
PoS, the participant sequesters a certain amount of cryptocurrency, which is a necessary
collateral to participate in the validation of the network, but if he wishes to leave this
network it is possible to recover his initial stake. What PoB and PoS have in common is
the fact that block validators must invest their own coins in order to participate in the
consensus mechanism. At PoB, this will involve destroying the coins that the participant
provided to gain the right to validate network transactions. This system is similar to PoS
in that the more coins it burns, the more likely it is to obtain the associated reward. Proof
of Burn is offered as an alternative to the classic Proof of Work, but this young technique
is criticized by some detractors who consider it a simple waste of tokens. It is the idea of
destroying cryptocurrency in order to create it.

There are also many challenges that attempt to replace “Work” in PoW. For example,
Proof of eXercise (PoX) in [19], where the challenge is to solve a real eXercise, a scientific
computation problem based on a matrix. The authors chose matrix problems because matri-
ces have interesting composability properties that help to solve the difficulty, collaborative
verification and pool-mining, and also that matrix problems cover a wide range of useful
real-world problems, being a primary abstraction for most scientific computing problems.
The miner must solve the following equation:

X1 ◦ X2 ◦ ... ◦ Xp = Y (1)

where Xi and Y are matrices, ◦ is an operator, e.g., a product, a sum, etc. Another challenge
proposed is Primecoin [20] which, as its name indicates, consists of finding prime numbers
instead of finding the nonce.

Proof of Space [21] or Proofs of Capacity (PoC) is a protocol between a prover P and a
verifier V which has two distinct phases. After an initialization phase, P is supposed to
store data F of size N, while V contains only a few information. At any later time, V can
initiate an execution phase of the proof, and at the end, V outputs reject or accept. The
authors demanded that V be very efficient in both phases, while P is very efficient in the
execution phase as long as it is stored and has random access to the data F. The simplest
solution would be for the verifier V to generate a pseudo-random file F of 100 GB and send
it to the prover P during an initialization phase. Later, V can ask P to return a few bits of F
at random positions, making sure that V stores (at least a large part of) F. Unfortunately,
with this solution, V still has to send a huge 100 GB file to P, which makes this approach
virtually useless in practice. The PoC scheme which they proposed is based on graphs
that are difficult to engrave. During the initialization phase, V sends the description of
a hash function to P, which then labels the nodes of a graph that is difficult to engrave
using this function. Here, the label of a node is calculated as the hash of the labels of its
children. V then calculates a Merkle hash of all the labels and sends this value to P. In the
execution phase of the proof, V simply asks P to open the labels corresponding to certain
nodes chosen at random.

Proof of Space-Time (PoST) is another consensus algorithm closely related to PoC.
PoST [22] differs from proof of capacity in that PoST allows network participants to prove
that they have spent a “space-time” resource, meaning that they have allocated storage
capacity to the network over a period of time. The authors called this ’Rational’ Proofs of

Appl. Sci. 2021, 11, 6750 5 of 14

Space-Time because the true cost of storage is proportional to the product of storage capacity
and the time that it used. The rational proof of financial interest in the network achieved by
PoST addresses two problems with proof of capacity. The first, Arbitrary amortized cost:
In a consensus system that doesn’t account for time, participants can generate an arbitrary
amount of PoC proofs by reusing the same storage space, and lowering their true cost. The
second, Misaligned incentives: A rational participant in a PoC system will discard almost
all stored data whenever computation costs less than the data storage do. This essentially
turns PoC into a partial PoW system, which is potentially more resource-intensive.

An extension of Bitcoin’s PoW via PoS is presented in Proof of Activity (PoA) by
Bentov et al. [23]. Miners start with PoW and claim their reward. The difference is that
the extracted blocks do not contain transactions. They are simply templates with header
information and the mining reward address. Once this nearly blank block is mined, the
system switches to PoS. The header information is used to select a random group of
validators to sign the block. They are coin holders (stakeholders) and the greater the stake
held by a validator, the more likely he or she will be selected to sign the new block. Once all
the chosen validators have signed the block, it becomes an actual part of the blockchain. If
the block remains unsigned by some of the chosen validators for a given time, it is rejected
as incomplete and the next winning block is used. Validators are chosen again and this
continues until a winning block is signed by all selected validators. The network costs
are divided between the winning miner and the validators who signed the block. PoA is
criticized that too much power is still needed to mine blocks during the PoW phase on one
hand. On the other hand, coin accumulators are even more likely to make the signatory list
and rack up more virtual currency rewards.

A random mining group selection to prevent 51% Attacks on Bitcoin is proposed
in [24]. The authors divide miners into several groups. Each peer node determines its
mining group using the Hg (·) hash function and its wallet address. Additionally, once
a block is created, its hash value is used with Hg (·) to determine which mining group
is supposed to find the next block. Only even nodes belonging to the mining group are
allowed to mine the next block and to compete with each other. Once a block is propagated
over the P2P network, other nodes can check if the block was generated by the correct
mining group by comparing the hash value of the previous block in the header of the
block with the address of block creators. Here, although there may be an attacker with
more than half of the total hash power, the chances of a successful double-spend attack
can be greatly reduced by increasing the number of mining groups as the mining groups
are chosen at random. In addition, the computational power required for block mining
is effectively reduced by 1/(number of groups) because even nodes not belonging to the
selected group do not participate in PoW and the difficulty level can be lowered due to the
smaller number of competing miners in each group. The authors show that if the number
of groups is greater than or equal to two, the probability of the attacker of finding the next
block is less than 50%.

4. Proposed Protocol

There are three types of blockchain, private, public and hybrid. A private blockchain
(permissioned) operates in a restrictive environment, i.e., a closed network. In an au-
thorized blockchain that is under the control of an entity, only authorized nodes with a
revealed identity are allowed to enable basic functionalities such as consensus participation
or data propagation [25]. Comparatively, in a public blockchain (permission-less/open
access), if the node has a valid pseudonym (account address), it can freely join the net-
work and activate any available network functionalities such as sending, receiving and
validating transactions and blocks according to common rules. Therefore, there is usually
such a blockchain network instance on a global scale that is subject to public governance.
Specifically, anyone can participate in the blockchain consensus, although a person’s voting
power is generally proportional to its possession of network resources, such as computing
power, wealth token and storage space [26]. A hybrid blockchain (consortium or federated)

Appl. Sci. 2021, 11, 6750 6 of 14

is a creative approach to solving the needs of organizations which have a need for public
and private blockchain functionality. Some aspects of organizations are made public, while
others remain private. The consensus algorithms in a consortium blockchain are controlled
by the predefined nodes. It is not open to the popular masses, it still has a decentralized
character and there is not a single centralized force that controls it. Therefore, it offers all
the functionalities of a private blockchain, including transparency, confidentiality, and effi-
ciency, without a single party having to consolidate power. In this paper, we are concerned
with the second type only, which is the public blockchain.

As shown in Figure 1, we divided the overall operation to reach consensus into several
rounds (Supplementary Materials). At the start, a node launches the first round and looks
for a solution for its own block, like the basic PoW algorithm, but with a much lower degree
of difficulty than what is currently applied. Where the difficulty was X and the number
of rounds was 1, in the proposed algorithm, the difficulty is X′ < X and the number of
rounds is Y > 1. Once the solution is found, the node shares it and checks whether there
are nine (9) other solutions found in the network for this round (for example, in a scenario
of 10 solutions to find). If so, this node has the right to participate in the next round and
to restart the PoW. If not, i.e., there are not yet nine (9) solutions found by other nodes,
this candidate node will wait until it receives the remaining nine (9) solutions. In the last
round, the first node that will find the solution will be the miner, so that in the last round
the protocol looks for a single solution. In the original PoW, the proof consists of finding
the nonce according to the inequality: Hash(Block + Nonce) < Target. In the proposed
protocol, the proof of round i is according to the following inequality:

Hash(Block + IDRoundi−1 + Nonce) < Target (2)

Initially, the identifier (ID) Round is equal to 1. After that, the ID Round is equal to the
sum of nonces found in the previous round. Therefore, in each round, there is a new ID
so that the nodes will work on it. If we have ten solutions to find in each round, we will
obtain the following equation:

IDRoundk =
10

∑
i=1

(noncei o f roundk−1) (3)

time

Start of consensus

C

Round 1Round 2 Round 3 Last round

C

W
C

C

C C

S

C

. . .

End of consensus

Process 1

Process 2

Process n

C

C C

W W W

C

S

S

C

W

C : compute
W : wait
S : succes

W

. . .

Figure 1. A Compute and Wait Consensus PoW Algorithm.

Let NbrR be the number of rounds and NbrS the number of solutions to find in each
round. If two nodes succeed in finding the solution in the last round, then the other nodes
will receive two solutions. In this case, the nodes must calculate the standard deviation of

Appl. Sci. 2021, 11, 6750 7 of 14

the solutions found in all the rounds for each of these two winners. The miner is the node
with the smallest standard deviation. There is another parameter that we can introduce
here, which is the consensus state. For the moment, in which round do the processes work?
Assuming that a process decides to leave competition if the other processes exceed it by
5 rounds (or 4, for example), this will minimize the energy to be consumed. For a process,
if the other competitors overtake him by two rounds, there is little hope of catching them.
This process will lose energy unnecessarily if it continues the calculation.

5. Protocol Demonstration

The four conditions of a consensus are: accord, integrity, validity and termination. In
fact, we see that there is a fifth condition that must be satisfied in every consensus to be
perfect. This condition is equality of opportunity (no domination). In the following, We
explain how our protocol verifies these five conditions.

1. Accord: In the final round, in the event that there is only one winner, all the nodes
will agree on him. In the case where there is more than one winner, for each winner,
we will calculate the standard deviation of his solutions found during all the rounds
and we will choose the minimum of these standard deviations. Mathematically, this
value is unique. In case there are two branches of the blockchain (fork problem), this
problem is solved in basic PoW by the golden rule, where the nodes will choose the
longest chain. Finally, the decided value is the same for all the correct nodes and in
all cases.

2. Integrity: Once the Px process obtains a valid nonce Hash (Blocki + Nonce1) < Target,
the process broadcasts it over the network with a specific date (timestamp). Of course,
this nonce is concerned with a specific block (Bi+1) and Nonce (N1), i.e., Px(Bi+1, N1).
After having obtained a second nonce N2, the process will broadcast it (Px(Bi+1, N2)),
and we notice here that there are two nonces N1 and N2 for the same block Bi+1. In
this case, there are several actions we can take, including to choose the smallest nonce.
Eventually, each process will participate with at most one value, so we have fulfilled
the condition of integrity.

3. Validity: For each solution received, the node will check its validity. The miner at
the end is a network node, having a unique public address and resolving the PoW in
all rounds.

4. Termination: Nodes express their acceptance of the block by working on creating the
next block in the chain, using the hash of the accepted block as the previous hash [6].
PoW resolution is estimated at 10 min, and these 10 min are more than enough for
the propagation in the network, and the candidate block will have been added to the
blockchain. In the proposed technique, the difficulty is minimized and the number of
rounds is increased. To ensure the termination in a finite time, we just need to balance
between the two factors difficulty and rounds. So, if the PoW has a termination, the
proposed protocol also has a termination.

6. Implementation

In our experiment, we simulated each node by a process, where we implemented
multi-process programming. In several tests, we created a different number of processes,
each of them starting with the creation of a random number blockID ← random(), which
is considered as the ID of the candidate block that the process is working on. After that,
each process follows the execution of the proposed algorithm (Algorithm 1). Using five
rounds and ten processes, the test took about 5 min, and we got the result shown in
Figure 2. The execution at University of El Oued was defined in Python using a mainframe
made up of 32 dual-processor nodes of 10 cores each. The intensive computing unit has a
management node with the following specifications: Processor: Intel Xeon (R) E5-2660 v3
@ 2.60 GHz x 20, memory: 64 GB of RAM, disk: 2 TB HDD, OS: RedHat Enterprise Linux
Server 7.2, OS type: 64 bit. The computing unit has 32 nodes. Each node has the following

Appl. Sci. 2021, 11, 6750 8 of 14

characteristics: 10 physical cores, storage capacity: 500 GB HDD and available memory:
64 GB. The Proposed technique can be defined by the following algorithm:

Algorithm 1 Consensus algorithm

Require: NbrS, NbrR
Ensure: solution

1: procedure CONS(NbrS, NbrR)
2: sols← 0
3: roundID← 0
4: currentRound← 1
5: q← Queue()
6: blockID← random()
7: while currentRound <= NbrR do
8: while solution not f ound do
9: search f or solution

10: end while
11: sols← sols + 1
12: if currentRound is NbrR then
13: print(I am the winner) , Exit()
14: end if
15: Broadcast(currentRound, solution)
16: put on(q, solution)
17: while sols < NbrS do
18: Nothing
19: end while
20: sols← 0
21: currentRound← currentRound + 1
22: RoundID← ∑NbrS

i=1 q(i)
23: Broadcast(currentRound, RoundID)
24: end while
25: end procedure

73

110 119

150
136

189 195

157

186

221

61

35 30
8

52

4 0

41

17
6

0

50

100

150

200

250

p10 p2 p7 p6 p3 p5 p1 p9 p4 p8

Ti
m

e
(s

)

10 processes and 5 rounds

compute wait 45,52

24,14
20,13

5,06

27,66

2,07
0,00

20,71

8,37

2,64

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

p10 p2 p7 p6 p3 p5 p1 p9 p4 p8

ga
in

process

wait/(wait+compute)

average gain rate = 15,63 %

.
.

.
.

.

.
.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

Figure 2. Compute and wait example execution.

We repeated the experiment tens of times in each scenario (each input variation). For
example, in Figure 3 with the first scenario where the number of processes is equal to 5
and the number of rounds equal to 5, the gain was 12.07. We repeated this test several
times and we obtained different values (between 11 and 14), but we took the most frequent
value which was 12.07. We did this at each input change (NbrR, NbrP = (5, 5); (5, 10);
(5, 15); (5, 20). We did not take the average of measurements, but we considered the most
frequent value.

Appl. Sci. 2021, 11, 6750 9 of 14

12,07

15,63

19,34

23,66

0

5

10

15

20

25

5 10 15 20

N
et

w
o

rk
 g

ai
n

Number of processes (NbrP) and number of
solutions (NbrS)

5 rounds

13,39

10,68

5,63

3,71

0

2

4

6

8

10

12

14

16

5 10 15 20

N
et

w
o

rk
 g

ai
n

Number of processes (NbrP)

5 rounds
5 solutions

.

.

.

.

.

.

.

.

Figure 3. The influence of NbrP for fixed NbrR.

The formal definition of gain: In each round, the process searches for a solution
(compute time). Then the process will wait until it receives the latest solution. We will
consider this wait time as a gain, and we can formulate the gain rate as follows: gain rate
= wait time/total execution time. If the total execution time is the wait and compute time,
we obtain:

gain rate = wait time/(wait time + compute time) (4)

We let Ci,x (respectively, Wi,x) be the compute (respectively, wait) time of the process i
in round x. The gain of the process i can be formulated as follows:

gaini =
NbrR

∑
j=1

(Wi,j/(Wi,j + Ci,j)) (5)

The average gain rate (network gain rate) is:

Gain =
NbrP

∑
i=1

(gaini/NbrP) (6)

In the scenario shown in Figure 2, we have set the number of rounds NbrR = 5,
NbrP = NbrS = 10, where NbrP (respectively, NbrS) is the number of processes (respec-
tively, of solutions). We do not put different values between NbrP and NbrS in order to
study the pure effect of the number of rounds. We notice that there is a real compute and
wait in each round for most of the processes. Process 10 is the fastest because it has the
minimum execution time and the maximum waiting time, that is why it has the highest
gain rate (45.52%). On the other hand, process 1 (p1) is the heaviest process, because p1
has the highest execution and the lowest waiting time, and thus the lowest gain rate. For
p1, the gain rate = wait/(wait + execution) = 0/(0 + 195) = 0. We explain that p1 is the
last process to find the solution, it wakes up the others, and then starts directly the next
round without making any wait. Even though p1 didn’t wait, its computing time is less
than the one of p8. We explain this by two possibilities. The first is given when p8 started,
the second possibility when p1 quickly found the solution in the last round (there is no
wait after the last round) and p8 took a long time in the last round. In general, the average
gain of the network is 15.63%.

Compute and wait implementation: In the original PoW, each process will continue
the calculation for 10 min (until one of the processes finds the hash). In the proposed
protocol there are two types of processes, winning processes, which are processes that
participate in all rounds (noting that the final winner is the process that has the minimum
standard deviation of his solutions). The other type are those processes that leave the

Appl. Sci. 2021, 11, 6750 10 of 14

competition after such rounds (for example, when the number of solutions of the next
round is equal to NbrS). In these two types, no process does the calculation during 10 min,
there is a proof-wait (first type) or a proof-abandon (second type). So, there are two main
factors that must be handled, the number of rounds NbrR and the number of solutions to
be found in each round NbrS.

Lemma 1. If NbrR > 1 then Gain > 0

Proof. Based on the randomness of the hash function (Block + Nonce) < Target and on the
arbitrary speed of each process, we have:

Ci,x 6= Cj,x, ∀i, j ∈
{

1, ..., NbrP
}

, ∀x ∈
{

1, ..., NbrR
}

(7)

where NbrP is the number of processes and 0 < x < NbrR. According to Equation (7),
|Ci,x − Cj,x| > 0, so either Wi,x > 0 or Wj,x > 0, which implies that Wi,x/(Wi,x + Ci,x) > 0
or Wi,x/(Wj,x + Cj,x) > 0. We obtain Gain > 0.

Lemma 2. If NbrP increases then Gain increases when NbrP = NbrS

Proof. We let the probability of finding the solution by 5 (respectively, 10) processes be
P5 (respectively, P10), we have P10 > P5. Let Tp be the compute time to find the solution
with a probability p. So, Tp10 < Tp5 implies that the wait time Wp10 > Wp5 . According to
Equation (4), gain10processes > gain5processes.

Discussion: In the first scenario shown by Figure 3, we fixed NbrR to 5, and we made
several tests, during which we increased the number of processes (NbrP = 5, 10, 15, 20) to
study the effect of this increase and its influence on the gain. These tests have shown that
the more many processes do compute and wait, the more the gain increases. We explain
this by the following example: in the round x, if first process pi finds a solution after 4 min,
we suppose that pi will wait t1 = 1 minute to start the next round x + 1, so the gain is
1/(1 + 4) = 20%. With NbrP = 10, the first process pj will find a solution in 3 min, pj will
wait for t2 > t1 (t2 = 2 min), so the gain is 2 / (2 + 4) = 30%.

In the second curve (curve on the right in Figure 3), where the NbrS is constant, we
observe that the gain decreases, because the number of processes (which are waiting)
decreases compared to the total number of processes. On the other hand, the number of
processes that do not wait is increasing, which implies a decrease in the average gain in
the network.

Lemma 3. While NbrR < upper bound, if NbrR increases then Gain increases.

Proof. Let w be the wait time, c the compute time, and e the execution time, so e = w + c.
The gain g = w

e , and if a process does little computation and a lot of wait, then it will have a
high gain rate. We know that there is no wait time in the last round, therefore, if NbrR = 2,
then g = w

e1+e2
where w is the wait time of round 1, e1 the compute time of round 1, and e2

the compute time of round 2. Let e1 + e2 = 2× e. If NbrR = 3, then g = 2×w
3×e , if NbrR = 4,

then g = 3×w
4×e . . . , if NbrR = α, then g = α×w

(α+1)×e . The effect of the wait time absence in
the last round decreases if we increase NbrR and the gain g converges to w

e because α
(α+1)

converges to 1.

Discussion: In the second scenario illustrated by Figure 4, we fixed NbrP to 10, and we
made several tests, in each of them increasing the number of rounds (NbrR = 5, 10, 15, 20)
to study the effect of this increase and its influence on the gain. These tests have shown
that the more NbrR increases, the more the gain increases but not absolutely. Rather, this
increase converges to an upper bound related to the number of processes. Then the gain
decreases because the difficulty is also reduced (NbrR increases then difficulty decreases).

Appl. Sci. 2021, 11, 6750 11 of 14

Therefore, the processes will end almost at the same time because the solution is easy
to find.

10,96

12,12 11,81
11,36 11,02

0

2

4

6

8

10

12

14

5 10 15 20 25

N
et

w
o

rk
 g

ai
n

Number of rounds (NbrR)

10 solutions

15 processes

23,25
24,88 25,28 25,4 25,49

0

5

10

15

20

25

30

5 10 15 20 25

N
et

w
o

rk
 g

ai
n

Number of rounds (NbrR)

15 solutions

15 processes

....
...

.

.
.

Figure 4. The influence of NbrR, case A.

Lemma 4. If NbrR increases then Gain(Gnw) converges to a number G

Proof. The average gain of the network (Gnw) = (g1 + g1 + . . . gNbrR)/NbrR where gi is
the gain of round i. We have gNbrR (gain of the last round) equal to 0 because there is a
calculation and there is no wait. gi depends on moments ti,j at which solutions are found
(ti,1 is the instant where the first solution of round i is found, ti,NbrR is the instant at which
the last solution of round i is found). In general, these times are random in each round,
therefore, g1 ≈ g2 ≈ . . . gNbrR−1 and then Gnw = (NbrR− 1)× g1/NbrR

We obtain:
Gnw = g1 − (g1/NbrR) (8)

We observe that if NbrR = 1 then Gnw = 0 and if NbrR increases then Gnw ≈ g1 = G
Discussion: Figure 5 shows how the gain converges to a constant number G when the

number of rounds increases (NbrR = 5, 10, 15, 20, 25). Usually, G depends on the number of
processes and the number of solutions. In Figure 5, we have fixed the number of processes
and the number of solutions. In Figure 5-right, (NbrP, NbrS) = (10, 5) and we have set up
several scenarios (NbrR = 5, . . . until NbrR = 200). We noticed that starting from NbrR = 20
the gain remains greater than 8 and less than 9. In the similar way, in Figure 5-left, the gain
remains close to 19.5 whenever NbrR > 20 (20 5 NbrR 5 200). This is why we said that
the gain converges to a constant number G when the number of rounds increases. G ≈ 8.5
with (NbrP, NbrS) = (10, 5) and NbrR = 20; G ≈ 19.5 with (NbrP, NbrS) = (10, 10) and
NbrR = 20.

The number of solutions is a very important factor because it designates the number
of processes that will wait; therefore, it controls the gain. Figure 6 shows the increase in
gain as NbrS increases. On the other hand, we cannot introduce a number of solutions
without having a multi-round environment. The importance of NbrS directs us towards
private blockchains; In which we can talk about NbrS compared to the total number of
processes. In another philosophy, we may consider that the node leaves the competition if
NbrS of the next round is saturated. In this case, we will increase the gain to the maximum
(Table 1). The downside of this philosophy is that after a round j in which the number

Appl. Sci. 2021, 11, 6750 12 of 14

of processes is NbrS and one of these processes breaks down, the rest of the competitors
(NbrS-1) cannot continue because NbrS (in round j + 1) will never be reached.

9,85

8,02

9,27
8,55 8,61

0

2

4

6

8

10

12

5 10 15 20 25

N
et

w
o

rk
 g

ai
n

Number of rounds (NbrR)

5 solutions

10 processes

16,91

21,18

18,84 19,12 19,62

0

5

10

15

20

25

5 10 15 20 25

N
et

w
o

rk
 g

ai
n

Number of rounds (NbrR)

10 solutions

10 processes

.

.

.
. .

.

.

. . .

Figure 5. The influence of NbrR, case B.

5,8

10,97

14,58

21,21

0

5

10

15

20

25

5 10 15 20

N
et

w
o

rk
 g

ai
n

Number of solutions (NbrS)

5 rounds
20 processes

.

.

.

.

.

Figure 6. The influence of NbrS.

Table 1. The gain rate with leaving competition.

NbrR NbrS NbrP Gain Rate

5 5 10 55

5 5 20 60

5 5 30 70

5 5 100 90

7. Analysis

To increase the level of security, PoW is based on the degree of difficulty. However, it
remains weak against 51% attacks [27]. Regarding domination, when the difficulty is equal
to D, there will be only one candidate (N1) who has the greatest computing power. We
have already done a test and reduced the difficulty to 50% to obtain 10 candidates, so the
probability that N1 wins is 10% instead of 100%, because no process controls the standard
deviation of its solutions. Therefore, the dominance has been reduced.

Appl. Sci. 2021, 11, 6750 13 of 14

As for the 51% attack, when dominance is reduced, the 51% attack will also be reduced.
On the other hand, the pool can not work freely to find a single solution, it has to go through
several rounds. After each round, the node must share the identifier of this round (idround)
which is calculated from the solutions trounced in the previous round, from which the
protocol implies to introduce this idround in the next proof of round (Equation (3)). These
steps will slow down the operation of producing another longer chain (branch) for use in
double-spending.

Speaking of the Sybil attack, it is in principle impracticable unless the attacker has
more than 50% of the network’s computing resources. Also, the consensus mechanism does
not prevent an attacker from disrupting the network by creating a number of malicious
nodes (false identities). The proposed protocol combines two techniques, multi-rounds and
standard deviation. In comparison to the basic PoW, it is difficult for these two techniques
and for a false identity to be the final winner. These false identities must create a chain
longer than the chain known in the network. The first technique (multi-rounds) will slow
down their work, the second (standard deviation) will decrease their chances.

8. Conclusions and Future Work

In this work, we have proposed an effective and applicable consensus algorithm, and
shown that, in blockchain or in any setting where we need an agreement, it is adaptable.
We have studied its validity according to the four known conditions of the agreement. We
have shown the energy gain achieved by this protocol to reach a drop of 15.63% with five
rounds and to reach a drop of 19.91% with ten rounds. We have set up several scenarios
establishing in each one several tests, with the manipulation of three factors (number of
rounds, number of processes and number of solutions in each round). We have studied
separately the influence of each factor on the energy consumed, and also, the influence of
introducing these factors in comparison to the basic PoW. We have seen the robustness of
the algorithm against the most famous attacks (51% and Sybil attack). In the future, we
intend to implement this algorithm in other sectors such as healthcare, for instance.

Supplementary Materials: Compute and Wait Proof o Work (CW-PoW) Video is available online at
https://mmutube.mmu.ac.uk/media/POW_Demonstration/1_zrjr8fqq.

Author Contributions: Formal analysis, A.B.; Methodology, M.K., A.L. and R.E.; Software, M.H.;
Supervision, A.A.; Validation, M.A. and B.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Garcia-Molina, H. Elections in a distributed computing system. IEEE Trans. Comput. 1982, C-31, 48–59. [CrossRef]
2. Lamport, L.; Shostak, R.; Pease, M. The Byzantine generals problem. In Concurrency: The Works of Leslie Lamport; Association for

Computing Machinery: New York, NY, USA, 2019; pp. 203–226.
3. Fischer, M.J.; Lynch, N.A.; Paterson, M.S. Impossibility of distributed consensus with one faulty process. J. ACM (JACM) 1985,

32, 374–382. [CrossRef]
4. Turek, J.; Shasha, D. The many faces of consensus in distributed systems. Computer 1992, 25, 8–17. [CrossRef]
5. Lamport, L. The part-time parliament. In Concurrency: The Works of Leslie Lamport; Association for Computing Machinery:

New York, NY, USA, 2019; pp. 277–317.
6. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2019; pp. 1–9. Available online: www.bitcoin.org (accessed on

20 May 2021).
7. Zhang, S.; Lee, J.H. Double-spending with a sybil attack in the bitcoin decentralized network. IEEE Trans. Ind. Inform. 2019,

15, 5715–5722. [CrossRef]
8. Johnson, B.; Laszka, A.; Grossklags, J.; Vasek, M.; Moore, T. Game-theoretic analysis of DDoS attacks against Bitcoin mining

pools. In Proceedings of the International Conference on Financial Cryptography and Data Security, Christ Church, Barbados,
3–7 March 2014; pp. 72–86.

https://mmutube.mmu.ac.uk/media/POW_Demonstration/1_zrjr8fqq
https://mmutube.mmu.ac.uk/media/POW_Demonstration/1_zrjr8fqq
http://doi.org/10.1109/TC.1982.1675885
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1109/2.153253
www.bitcoin.org
http://dx.doi.org/10.1109/TII.2019.2921566

Appl. Sci. 2021, 11, 6750 14 of 14

9. Nakamoto, S.A Peer-to-Peer Electronic Cash System. Bitcoin—URL. 2008; Volume 4. Available online: https://bitcoin.org/
bitcoin.pdf (accessed on 20 May 2021).

10. Rathi, V.K.; Chaudhary, V.; Rajput, N.K.; Ahuja, B.; Jaiswal, A.K.; Gupta, D.; Elhoseny, M.; Hammoudeh, M. A Blockchain-Enabled
Multi Domain Edge Computing Orchestrator. IEEE Internet Things Mag. 2020, 3, 30–36. [CrossRef]

11. Mudassir, M.; Bennbaia, S.; Unal, D.; Hammoudeh, M. Time-series forecasting of Bitcoin prices using high-dimensional features:
A machine learning approach. Neural Comput. Appl. 2020, 1–15. [CrossRef] [PubMed]

12. Wang, W.; Hoang, D.T.; Hu, P.; Xiong, Z.; Niyato, D.; Wang, P.; Wen, Y.; Kim, D.I. A survey on consensus mechanisms and mining
strategy management in blockchain networks. IEEE Access 2019, 7, 22328–22370. [CrossRef]

13. Dwork, C.; Naor, M. Pricing via processing or combatting junk mail. In Proceedings of the Annual International Cryptology
Conference, Santa Barbara, CA, USA, 16–20 August 1992; pp. 139–147.

14. Jakobsson, M.; Juels, A. Proofs of work and bread pudding protocols. In Secure Information Networks; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 258–272.

15. King, S.; Nadal, S. Ppcoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake; Self-Published Paper, August; Peace Consortium of
Defense Academies and Security Studies Institutes: Garmisch-Partenkirchen, Germany, 2012; Volume 19, pp. 1–6.

16. Ren, L. Proof of Stake Velocity: Building the Social Currency of the Digital Age. Self-Published White Paper. 2014; pp. 1–13.
Available online: www.reddcoin.com (accessed on 20 May 2021).

17. Larimer, D. Delegated Proof-of-Stake (dpos). Bitshare Whitepaper. 2014. Available online: http://107.170.30.182/security/
delegated-proof-of-stake.php (accessed on 20 May 2021).

18. Karantias, K.; Kiayias, A.; Zindros, D. Proof-of-burn. In Proceedings of the International Conference on Financial Cryptography
and Data Security, Kota Kinabalu, Malaysia, 10–14 February 2020; pp. 523–540.

19. Shoker, A. Sustainable blockchain through proof of exercise. In Proceedings of the IEEE 16th International Symposium on
Network Computing and Applications (NCA), Cambridge, MA, USA, 30 October–1 November 2017; pp. 1–9.

20. King, S. Primecoin: Cryptocurrency with prime number proof-of-work. citeseerx.ist.psu.edu 2013, 1, 1–6.
21. Dziembowski, S.; Faust, S.; Kolmogorov, V.; Pietrzak, K. Proofs of space. In Proceedings of the Annual International Cryptology

Conference, Santa Barbara, CA, USA, 16–20 August 2015; pp. 585–605.
22. Moran, T.; Orlov, I. Simple proofs of space-time and rational proofs of storage. In Proceedings of the Annual International

Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2019; pp. 381–409.
23. Bentov, I.; Lee, C.; Mizrahi, A.; Rosenfeld, M. Proof of activity: Extending bitcoin’s proof of work via proof of stake [extended

abstract] y. ACM Sigmetrics Perform. Eval. Rev. 2014, 42, 34–37. [CrossRef]
24. Bae, J.; Lim, H. Random mining group selection to prevent 51% attacks on bitcoin. In Proceedings of the 48th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks Workshops (DSN-W), Luxembourg, 25–28 June 2018; pp. 81–82.
25. Xiao, Y.; Zhang, N.; Lou, W.; Hou, Y.T. A survey of distributed consensus protocols for blockchain networks. IEEE Commun.

Surv. Tutor. 2020, 22, 1432–1465. [CrossRef]
26. Unal, D.; Hammoudeh, M.; Kiraz, M.S. Policy specification and verification for blockchain and smart contracts in 5G networks.

ICT Express. 2020, 6, 43–47. [CrossRef]
27. Shi, N. A new proof-of-work mechanism for bitcoin. Financ. Innov. 2016, 2, 1–8. [CrossRef]

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1109/IOTM.0001.1900089
http://dx.doi.org/10.1007/s00521-020-05129-6
http://www.ncbi.nlm.nih.gov/pubmed/32836901
http://dx.doi.org/10.1109/ACCESS.2019.2896108
www.reddcoin.com
http://107.170.30.182/security/delegated-proof-of-stake.php
http://107.170.30.182/security/delegated-proof-of-stake.php
http://dx.doi.org/10.1145/2695533.2695545
http://dx.doi.org/10.1109/COMST.2020.2969706
http://dx.doi.org/10.1016/j.icte.2019.07.002
http://dx.doi.org/10.1186/s40854-016-0045-6

	Introduction
	Consensus Problem
	Conditions to be validated
	Potential attacks

	Consensus Protocol Overview
	Proposed Protocol
	Protocol Demonstration
	Implementation
	Analysis
	Conclusions and Future Work
	References

