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Abstract: Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the
lipreading method has achieved a high level of accuracy on large datasets and made breakthrough
progress. However, lipreading is still far from being solved, and existing methods tend to have
high error rates on the wild data and have the defects of disappearing training gradient and slow
convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level
lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal
Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the
proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate
the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this
yields notable performance improvement as well as faster convergence. Experiments show that
the training and convergence speed are 50% faster than the state-of-the-art method, and improved
accuracy by 2.4% on the GRID dataset.

Keywords: lipreading; temporal convolutional networks; 3D-CNN; ResNet50

1. Introduction

Lipreading, also known as visual language recognition, refers to decoding the content
of the spoken text based on the visual information of the speaker’s lip movement. It has a
wide range of applications values in speech recognition [1], public safety [2], intelligent
human–computer interaction [3], visual synthesis, etc.

Traditionally, the lipreading method can follow two stages. First, it extracted features
from the mouth region. Discrete Cosine Transform [4,5] was considered the most popular
feature extractor, and then it was fed to the Hidden Markov Model (HMM) [1,6,7]. At the
same time, there are some similar methods proposed: the difference is that the feature
extractor is replaced with a deep autoencoder, and HMMS was replaced with Long-Short
Term Memory (LSTM) [8,9].

Deep learning methods have achieved great success [10,11] in many complex tasks
based on traditional machine learning [12–14]. Convolutional Neural Networks (CNNs)
show superior performance in image and video feature extraction compared to tradi-
tional methods. For example, Stafylakis et al. [15] present a deep learning architecture for
lipreading and audiovisual word recognition. Petridis et al. [16] proposed an end-to-end
visual speech recognition system based on fully connected layers and LSTM networks.
At this stage, there are two solutions for the lipreading architecture based on deep learn-
ing, which are divided into Connectionist Temporal Classification(CTC) [17]-based speech
recognition [18,19] technology, and the attention-based sequence-to-sequence (seq2seq) [20]
neural network translation model.

Speech recognition [18,21] technology-based on the CTC approach has made a great
breakthrough. For the lipreading problem, Refs. [22–24] used Convolutional Neural
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Network (CNN) [25,26] as a feature extractor, Recurrent Neural Network(RNN) [27,28] as
the feature learner, and CTC [17] as the objective function, training an end-to-end sentence-
level lipreading architecture. Its architecture outperforms experienced human lipreaders on
the GRID dataset [29]. However, these architectures have two main problems. On the one
hand, a simple feature extractor is not competent for feature extraction of video data. On
the other hand, the use of RNN will have the defects of vanishing or exploding gradients.

The attention-based sequence-to-sequence model was first used in the neural network
translation model [20] to solve the problem that the input sequence and output sequence
are not aligned in time. For the lipreading problem, Refs. [30,31] use the Attention-
based seq2seq model to build a WAS (Watch, Attend and Spell) architecture. Outstanding
performance in LRW [32] and GRID [29] datasets shows a Word Error Rate(WER) of 23.8%
on the LRW [32] dataset. However, recent work [33,34] shows that the attention-based
sequence-to-sequence model cannot correctly align with the output sequence for longer
input sequences, so it is hard to converge during the entire training process.

However, recent results [35] show that the convolutional architecture performs better
than recurrent networks on audio synthesis and machine translation tasks. Ref. [36] pro-
posed a general TCN model and did a series of evaluation experiments for all serialization
tasks. The results show that the TCN performs better than the primary recurrent neural
network(e.g., BLSTM, BGRU) in a broad range of sequence model tasks.

In this work, we propose a state-of-the-art model that improves the performance of
lipreading and the speed of convergence. First, we discard the basic BGRU or BLSTM
neural network layer and replace it with a TCN [36]. Secondly, we propose a more efficient
and complex feature extractor based on a 3D convolutional network and ResNet50 [37]. Its
efficiency is greatly improved compared with standard feature extractors. Finally, we use
the CTC [17] objective function as a decoder to implement an end-to-end sentence-level
lipreading architecture. It needs to be emphasized that the use of the TCN architecture
has a core effect on the improvement of lipreading performance. Experiments show that
the training and convergence speed is 50% faster than the state-of-the-art method, and
improved accuracy by 2.4% on the GRID dataset. Figure 1 shows the general architecture
of lipreading.
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Figure 1. The general end-to-end sentence-level lipreading architecture can be divided into three
steps. (1) Cut out the regions of the mouth based on the alignment of the face in each frame of the
video; (2) The feature extractor extracts visual features from the input image sequence. (3) A text
encoder predicts the text output from the hidden feature matrix.

2. Related Works

Traditionally, for lipreading, Luettin et al. [38] first applied the ASM model to lipread-
ing, using a set of feature points to describe the inner or outer lip contour. This model has
the disadvantage of manually labeling the training data. The quality of its feature extraction
depends on the accuracy of the labeling, which requires more effort. The choice of the
traditional lipreading system classifier depends on the task requirements. For large-scale
continuous sentence recognition tasks, traditional methods generally use a decoding model
based on GMM-HMM [8,39].
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Research shows that recurrent networks (e.g., LSTM, GRU [28,40]) are more suitable
for modeling sequence models than convolutional neural networks. Refs. [22–24,30] use
CNN-RNN architecture, combining convolutional neural networks (CNNs) and recurrent
networks (LSTM, GRU [28,40]) and training an end-to-end lipreading system. However,
the recurrent network (RNN) has the defects of slow convergence, disappearing gradient,
and local overfitting.

Deep learning practitioners commonly regard recurrent architectures as the default
starting point for sequence modeling tasks. A well-regarded recent online course on “Se-
quence Models” focuses exclusively on recurrent architectures [41]. Recent studies [42–44]
have shown that the convolutional architecture can achieve state-of-the-art performance
accuracy in audio synthesis, word-level language modeling, and machine translation.
This raises the question of whether these successes of convolutional sequence modeling
are confined to specific application domains or whether a broader reconsideration of the
association between sequence processing and recurrent networks is in order.

Recent studies [36] have shown that TCN show superior performance compared
to RNNs in most sequence modeling tasks, and overcome the shortcomings of RNNs,
while demonstrating longer effective memory.TCN solves the defects of slow convergence,
gradient explosion or disappearance, and local overfitting in RNN. In terms of lipreading,
we should reconsider the common association between the lipreading architecture and the
recurrent network, and regard TCN as the natural starting point for lipreading tasks.

3. Proposed Architecture

In this section, we introduce the proposed lipreading architecture. We should em-
phasize that the proposed architecture is an end-to-end sentence-level lipreading model.
Figure 2 shows the implementation diagram of the architecture. Table 1 shows the imple-
mentation details of the architecture.
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Figure 2. The proposed architecture. A lipreading video containing N frames as input is followed by one layer of 3D-CNN,
followed by a 3D average pooling layer. The 3D feature maps are passed through a residual network (ResNet50, [37]).
The classification and fusion of feature maps are processed by the 2-layer TCN [36] network; and the TCN output of each
time-step is processed by the linear layer and the softmax activation function. This end-to-end sentence-level lipreading
architecture is trained using the CTC objective function.
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Table 1. The detailed of the proposed lipreading architecture.

Layers Output Size Kernel/Stride/Pad

Input N × 112 × 112 × 3
batchnorm N × 112 × 112 × 3

3D-Conv N × 112 × 112 × 32 3 × 3 × 3/1, 1, 1/1, 1, 1
batchnorm/relu N × 112 × 112 × 32

3D-Pool N × 56 × 56 × 32 1 × 2 × 2/1, 2, 2

ResNet50 [37] N × 2048

TCN(1) N × 512 5/3/2
TCN(2) N × 512 5/3/2

Linear N × L
Softmax N × L

CTC loss 1
N is the number of frames in video; L is the number of labels.

3.1. 3D Convolutional Network

Convolutional Neural Networks (CNN) are commonly used to perform convolution
operations on images to improve the performance of computer vision tasks, such as
receiving image data as input [25]. The basic 2D convolutional layer mainly changes the
channel C to C’ of the image. Figure 3a can clearly describe the process of 2D convolution.
The convolution kernel of 3D convolution can be understood as a three-dimensional cube,
as shown in Figure 3b.

(a) (b) 

Figure 3. Schematic diagram of convolution structure, (a) 2D convolution operation, (b) 3D convolu-
tion operation.

The 3D convolutional network is composed of 32 convolution kernels with a size
of 3 × 3 × 3, followed by Batch Normalization (BN, [45]) and linear activation function
(ReLU, [46]). Finally, the extracted feature map passes through the 3D average pooling
layer, reducing the sampling rate and improving its robustness, The parameter weight of
the 3D convolutional neural network is ∼16 K.

3.2. ResNet

At each time step, a 3D feature map is followed by a residual network (ResNet, [37]).
Based on the needs of lipreading architecture design, we use the 50-layer ResNet version,
which was proposed for ImageNet [47]. Its main innovation is residual learning, so that a
deeper convolutional network can be trained. The most critical solution to achieve residual
learning is short connections. What we need to emphasize is that we did not use its pre-
trained weights on ImageNet [47], as they optimize completely different tasks and evaluate
other protocols. The weight initialization we adopt is standard random initialization, and
the random parameters obey Gaussian distribution.
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3.3. Temporal Convolutional Network (TCN)

A recent study [36] has shown that a simple convolutional architecture is superior to
classic recurrent convolutional networks, such as LSTM and GRU, on various tasks and
datasets while exhibiting longer effective memory. Compared to the language modeling
architecture of LSTM [28], TCNs have longer memory networks and can efficiently handle
longer inputs.

We should emphasize that lipreading is the task of Sequence Modeling. Our goal is
to replace BLSTM or BGRU with TCN to solve the a disappearing training gradient and
slower convergence. Figure 4 shows the basic architecture of the TCN.

X1 X2 XT-1 XT

Y1 Y2 YT-1 YT

…

…

Figure 4. The basic architecture of the Temporal Convolutional Network (TCN). (1) A sequence
of feature maps (x0, x1, . . . , xT−1, xT) as input. (2) The feature maps are learned and decoded by
Temporal Convolutional Network. (3) The TCN architecture finally produces a sequence of learning
results (y0, y1, . . . , yT−1, yT).

For the sequence modeling task, an input image sequence for x0, x1, . . . , xT , and we
wish to predict some corresponding outputs y0, y1, . . . , yT at each time:

y0, y1, . . . , yT = f (x0, x1, . . . , xT) (1)

A simple causal convolution network can only have a limited size of feature infor-
mation in the deep historical network. It is very challenging to build a sequence model
using simple sequence convolution. Our solution is to implement a dilated convolution
neural network to extend the receptive field. We use Dilated Convolutions to apply to the
lipreading task and use Formula (2) to briefly describe its outline:

F(s) = (x ∗d f )(s) =
k−1

∑
i=0

f (i)sx−d·i (2)

where x ∈ Rn as a 1D sequence input, f : {0, . . . , k− 1} 7→ R as a filter, d is the dilation
factor, k is the filter size, and s− d · i accounts for the direction of the past.

More radically, we replace ordinary convolutional networks with a residual block [37].
It consists of a convolutional layer with 512-dimensional kernels of 5 size and the stride
of 3 size, followed by Batch Normalization (BN, [45]), Rectified Linear Units (ReLU, [46]),
and Dropout [48].

3.4. Connectionist Temporal Classification (CTC)

The CTC objective function [17] was originally widely used in speech recognition. In
view of the similarity between speech recognition and lipreading, CTC was introduced
in lipreading.
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The core step of CTC is to convert the output of each time step of the sequence model
into a probability distribution in the label sequences. The softmax activation function of
the CTC network converts the output into a probability. The number of units is one more
unit than the number of labels L; therefore, the output of each softmax layer can denote the
probability distribution of the corresponding label.

Suppose a given input sequence x of length T, followed by a Bi-LSTM recurrent neural
network layer with m input, n output, and w weight. Therefore, define a continuous
mapping to denote Bi-LSTM, Nw : (Rm)T 7→ (Rn)T . Then, y = Nw(x) becomes the output
of the sequence model(e.g., Bi-LSTM) and defines yt

k as the probability distribution of
output k in time step t. We describe an alphabet L‘=L ∪ {blank}. For each true label path,
we obtain a probability by Formula (3):

p(π|x) =
T

∏
t=1

yt
πt , ∀π ∈ L‘T (3)

Formula (3) is the product of the probability distribution under a π path. There are
many such paths from output to label. Given a mapping function from output to label β :
L‘T 7→ L≤T , where L≤T is the combination of a series of possible labels. In the next step, we
delete blank and duplicate labels in all paths (e.g., β(c− cd−) = β(−cc−−ccdd−) = ccd).
For any given label l ∈ L≤T , through the inverse mapping of β−1(l), we can obtain all of
its π paths. Calculate the probability sum of all π paths by Formula (4):

p(l|x) = ∑
π∈β−1(l)

p(π|x) (4)

Through the above Formula (4), we only need to obtain the most probable labeling of
the input sequence as the output of CTC, as shown in Formula (5):

h(x) = arg max
l∈L≤T

p(l|x) (5)

Finally, we use the CTC network to minimize Formula (6) as the training goal, and
constantly update the weight parameters of the entire model:

ζctc = − ln h(x) (6)

In terms of lipreading, our dataset is video data and its corresponding text. Unfor-
tunately, it is difficult to align video data and text in units. If we directly train the model
without using alignment, it will be difficult for the model to converge due to the difference
in people’s speech speed or the distance between characters. From the above description of
CTC, we know that CTC is a solution that avoids manual alignment of input and output
and is very suitable for lipreading or speech recognition applications. Therefore, CTC is a
sensible choice for the lipreading task.

4. Database

this section describe the relevant dataset and evaluation protocol and perform evalua-
tion on the dataset according to the relevant protocol.

4.1. GRID Dataset

For this study, we use the GRID dataset [29]. There are a total of 33,000 sentence
sample videos, including 33 speakers. Each sentence consisted of a six-word sequence
of the form indicated in Table 2. Of the six components, three—color, letter, and digit—
were designated as “keywords”. Each sample video is fixed at 75 frames. The videos are
recorded in a controlled lab environment, shown in Figure 5.
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Figure 6. Alignment between the video frames and the character
output.

they were informed which program the video comes from,
and were allowed to look at some videos from the training
set with ground truth.

The lip reader was given 10 times the video duration to
predict the words being spoken, and within that time, they
were allowed to watch the video as many times as they
wished. Each of the test sentences was up to 100 charac-
ters in length.

We observed that the professional lip reader is able to
correctly decipher less than one-quarter of the spoken words
(Table 5). This is consistent with previous studies on the
accuracy of human lip reading [26]. In contrast, the WAS
model (lips only) is able to decipher half of the spoken
words. Thus, this is significantly better than professional
lip readers can achieve.

5.3. LRW dataset
The ‘Lip Reading in the Wild’ (LRW) dataset consists

of up to 1000 utterances of 500 isolated words from BBC
television, spoken by over a thousand different speakers.
Evaluation protocol. The train, validation and test splits
are provided with the dataset. We give word error rates.
Results. The network is fine-tuned for one epoch to clas-
sify only the 500 word classes of this dataset’s lexicon. As
shown in Table 8, our result exceeds the current state-of-
the-art on this dataset by a large margin.

Methods LRW [9] GRID [11]
Lan et al. [23] - 35.0%
Wand et al. [39] - 20.4%
Assael et al. [2] - 4.8%
Chung and Zisserman [9] 38.9% -
WAS (ours) 23.8% 3.0%
Table 8. Word error rates on external lip reading datasets.

5.4. GRID dataset

Figure 7. Still images from the GRID dataset.

The GRID dataset [11] consists of 34 subjects, each
uttering 1000 phrases. The utterances are single-syntax
multi-word sequences of verb (4) + color (4) +
preposition (4) + alphabet (25) + digit (10) +
adverb (4) ; e.g. ‘put blue at A 1 now’. The total vocab-
ulary size is 51, but the number of possibilities at any given
point in the output is effectively constrained to the numbers
in the brackets above. The videos are recorded in a con-
trolled lab environment, shown in Figure 7.
Evaluation protocol. The evaluation follows the standard
protocol of [39] and [2] – the data is randomly divided into
train, validation and test sets, where the latter contains 255
utterances for each speaker. We report the word error rates.
Some of the previous works report word accuracies, which
is defined as (WAcc = 1− WER).
Results. The network is fine-tuned for one epoch on the
GRID dataset training set. As can be seen in Table 8, our
method achieves a strong performance of 3.0% (WER), that
substantially exceeds the current state-of-the-art.

6. Summary and extensions
In this paper, we have introduced the ‘Watch, Listen, At-

tend and Spell’ network model that can transcribe speech
into characters. The model utilises a novel dual attention
mechanism that can operate over visual input only, audio
input only, or both. Using this architecture, we demonstrate
lip reading performance that beats a professional lip reader
on videos from BBC television. The model also surpasses
the performance of all previous work on standard lip read-
ing benchmark datasets, and we also demonstrate that vi-
sual information helps to improve speech recognition per-
formance even when the audio is used.

There are several interesting extensions to consider: first,
the attention mechanism that provides the alignment is un-
constrained, yet in fact always must move monotonically
from left to right. This monotonicity could be incorporated
as a soft or hard constraint; second, the sequence to se-
quence model is used in batch mode – decoding a sentence
given the entire corresponding lip sequence. Instead, a more
on-line architecture could be used, where the decoder does
not have access to the part of the lip sequence in the future;
finally, it is possible that research of this type could discern
important discriminative cues that are beneficial for teach-
ing lip reading to the deaf or hard of hearing.

8

Figure 5. Random frames from the GRID dataset.

Table 2. Sentence structure for the GRID dataset.

Com Color * Prepos Letter * Digit * Adverb

bin blue at A–Z 0–9 again

lay green by now

place red in please

set white with soon
Com is short for command; Prepos is short for preposition; * means case insensitive.

4.2. Evaluation Protocol

We refer to the standard protocols in [22,49] to define an evaluation protocol. The Word
Error Rate (short: WER) is a way to measure the performance of lipreading. It compares a
reference to an hypothesis and is defined like this:

WER =
S + D + I

N
(7)

where S, D, I, N represent the number of substitutions, deletions, insertions, and words in
the reference, respectively.

Character Error Rate (CER) is another way to measure the performance of lipreading.
It is very similar to Word Error Rate (WER). The difference is that words are replaced
with characters.

5. Experiment

This section conduct experiments on the proposed architecture on a public benchmark
dataset, summarize the corresponding performance data, and compare it with other state-
of-the-art methods.

5.1. Data Alignment

The videos were processed with the DLib face detector, and the iBug face landmark
predictor [50] with 68 landmarks coupled with an online Kalman Filter. Using these
landmarks, we apply an affine transformation to extract a mouth-centered crop of size
112 × 112 × 3 pixels per frame. Therefore, each sample takes 75 × 112 × 112 × 3 data as
the model input, where 75 is the number of frames of the video sample.

What we should emphasize is that the original data can not be used as the model
input. Before, the data samples should be normalized to make the model more robust.
In this experiment, we use Z-score normalization as the normalization process. The specific
implementation process can be obtained from the following formula:

µ =
1

37632

111

∑
i=0

111

∑
j=0

2

∑
k=0

xijk (8)

σ =

√√√√ 1
37632

111

∑
i=0

111

∑
j=0

2

∑
k=0

(xijk − µ)2 (9)
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x∗ =
x− µ

σ
(10)

where x∗ is the final normalized result. Normalization processing is very critical for the
model and can accelerate the convergence of the model.

5.2. Implementation Details

We use the proposed architecture for Tensorflow [51] training and testing. Table 1
summarizes the detailed parameters of the proposed architecture at each layer. The adopted
back-propagation optimization algorithm is the ADAM optimizer [52], the initial learning
rate is 0.0001, and the batch size is 8. Connectionist Temporal Classification (CTC) is used
as the objective function. We trained the proposed architecture for 100 epochs on the public
GRID dataset and reached a stable convergence point.

There are 33,000 sentence sample videos including 33 speakers on the GRID dataset [29].
This experiment randomly uses 31 speakers with 31,000 samples as the training set and
two speakers with 2000 samples as the evaluation set. we should calculate the training
loss, evaluation loss, the training and evaluation of Word Error Rate (WER), and Character
Error Rate (CER) for every epoch.

For the GRID dataset, the proposed approach is compared with [22–24,30], which
are referred to as ‘LipNet’, ‘WLAS’, ‘LCANet’, and ‘3D-2D-CNN-BLSTM’, respectively.
In addition, in order to reflect the impact of key modules on the architecture, we separate
the various modules of the architecture for comparison experiments.

5.3. Convergence Speed

What we should emphasize is that replacing the recurrent neural network (e.g., LSTM,
GRU) with a Temporal Convolutional Network (TCN) [36] is for adequate training, speed-
ing up the convergence speed, and preventing the disappearance of the gradient. We im-
plemented a comparison of four different architectures to illustrate the role of TCN in
serialization learning, such as lipreading, machine translation, and so on. The four different
architectures are 3D-2D-CNN-BGRU-CTC, 3D-ResNet50-BGRU-CTC, 3D-2D-CNN-TCN-
CTC, and 3D-ResNet50-TCN-CTC. Figure 6 shows the diagrams of ablation experiments
with different architectures.

3D-CNN

2D-CNN

Bi-GRU(512)

Bi-GRU(512)

CTC

3D-CNN

2D-CNN

TCN(512)

TCN(512)

CTC

3D-CNN

ResNet50

Bi-GRU(512)

Bi-GRU(512)

CTC

3D-CNN

TCN(512)

TCN(512)

CTC

ResNet50

(a) (b) (c) (d)

INPUT INPUT INPUT INPUT

Figure 6. Diagrams of ablation experiments with different architectures. (a) 3D-2D-CNN-BGRU-CTC,
(b) 3D-ResNet50-BGRU-CTC, (c) 3D-2D-CNN-TCN-CTC, (d) 3D-ResNet50-TCN-CTC.

We trained 45 epochs for each architecture, and calculate its training and evaluate loss
under one epoch for each iteration. To describe the differences more vividly, we use curve
graphs to represent these data, as shown in Figures 7 and 8. From the figure, it can be
seen that the losses of the four architectures are steadily decreasing until they approach a
fixed value. Comparing the 3D-2D-CNN-BGRU-CTC and 3D-ResNet50-BGRU-CTC archi-
tectures, the 3D-2D-CNN-TCN-CTC and 3D-ResNet50-TCN-CTC architectures converge
faster, there is no vanishing gradient, and minimal losses can be achieved. Comparing
the 3D-2D-CNN-BGRU-CTC and 3D-2D-CNN-TCN-CTC architectures, the 3D-ResNet50-
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BGRU-CTC and 3D-ResNet50-TCN-CTC architectures use efficient feature extractors, so
the final loss is relatively small, and the accuracy rate is relatively improved.

The above experiments prove that the proposed architecture has back propaga-
tion paths in different sequence time directions, thereby avoiding gradient explosion/
disappearance in RNNs (such as LSTM, GRU). In addition, the use of an efficient feature
extractor combining 3D and ResNet50 [37] convolutional networks has improved the
performance of our architecture.
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Figure 7. Training curve. Training Loss curves with epochs for four different architectures. Epoch
and Loss in the figure, respectively, represent the number of Epoch and the Loss reached under
the Epoch.
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Figure 8. Evaluation curve. Evaluation Loss curves with epochs for four different architectures.
Epoch and Loss in the figure respectively represent the number of Epoch and the Loss reached under
the Epoch.

6. Results

Comparing the [22–24,30] architectures, the proposed architecture achieves the state-
of-the-art accuracy (Acc = 1 −WER). We have presented the detailed report data in Table 3.
In the table, ‘NA’ indicates that the method did not evaluate the evaluation protocol,
‘unseen’ indicates that the training data are separated from the evaluation data, and ‘seen’
is the opposite by coincidence.
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Table 3. Performance on the GRID dataset.

Method Seen(WER) Unseen(WER) Seen(CER) Unseen(CER)

LipNet [22] 4.8% 11.4% 1.9% 6.4%

WLAS [30] 3% NA NA NA

LCANet [23] 2.9% NA 1.3% NA

3D-2D-CNN-BLSTM [24] 1.3% 8.6% NA NA

Our model 1.1% 6.2% 1.2% 4.1%

We also present statistics of the performance data of the four architectures for 3D-2D-
CNN-BGRU-CTC, 3D-ResNet50-BGRU-CTC, 3D-2D-CNN-TCN-CTC, and 3D-ResNet50-
TCN-CTC on the GRID dataset [29]. The experimental results are shown in Table 4.
3D-ResNet50-TCN-CTC is our proposed architecture, which achieves the state-of-the-art
accuracy on each evaluation protocol. The experimental results show that an efficient fea-
ture extractor and high-performance TCN [36] as a feature learner have apparent practical
effects for accelerating model convergence, improving performance accuracy, and reducing
training memory requirements.

Table 4. Comparison between different architectures.

Method Seen(WER) Unseen(WER) Seen(CER) Unseen(CER)

A 1.5% 8.9% 1.6% 5.6%

B 1.4% 7.9% 1.4% 5.1%

C 1.3% 8.1% 1.3% 5.2%

D 1.1% 6.2% 1.2% 4.1%
A is the architecture of 3D-2D-CNN-BGRU-CTC; B is the architecture of 3D-ResNet50-BGRU-CTC; C is the
architecture of 3D-2D-CNN-TCN-CTC; D is the architecture of 3D-ResNet50-TCN-CTC.

7. Conclusions

This paper proposed an efficient end-to-end sentence-level lipreading architecture,
using an efficient feature extractor that combines 3D convolution and ResNet50 [37], and
replacing the traditional recurrent neural network with a Temporal Convolutional Network
(TCN) [36]. Finally, an end-to-end sentence-level lipreading architecture was trained using
the CTC objective function [17]. The proposed architecture overcomes the difficulties of
slow convergence, disappearing gradient, and poor performance. Experiments on the
GRID dataset show that, compared with the state-of-the-art method, the performance
accuracy increase by 2.4%, and the convergence speed increase by 50%.

We divide our future work into three directions: first, the CTC objective function [17]
used by the proposed architecture is based on independent conditional probability. There-
fore, our research will focus on proposing a solution to this defect. Secondly, we can fully
integrate voice features and visual features to seek further breakthroughs in performance.
Finally, due to the shortcomings of long text samples in lipreading, designing a set of
efficient and long-term dependent decoders is our future research direction.
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