
applied
sciences

Article

COVID-CGAN: Efficient Deep Learning Approach for
COVID-19 Detection Based on CXR Images Using
Conditional GANs

Amal A. Al-Shargabi 1,* , Jowharah F. Alshobaili 1 , Abdulatif Alabdulatif 2 and Naseem Alrobah 1

����������
�������

Citation: Al-Shargabi, A.A.;

Alshobaili, J.F.; Alabdulatif, A.;

Alrobah, N. COVID-CGAN: Efficient

Deep Learning Approach for

COVID-19 Detection Based on CXR

Images Using Conditional GANs.

Appl. Sci. 2021, 11, 7174. https://

doi.org/10.3390/app11167174

Academic Editors: Panagiotis

G. Asteris and Amir H. Gandomi

Received: 30 June 2021

Accepted: 2 August 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Technology, College of Computer, Qassim University,
Buraydah 51921, Saudi Arabia; j.alshobaili@qu.edu.sa (J.F.A.); 411200050@qu.edu.sa (N.A.)

2 Department of Computer Science, College of Computer, Qassim University, Buraydah 51921, Saudi Arabia;
ab.alabdulatif@qu.edu.sa

* Correspondence: a.alshargabi@qu.edu.sa

Abstract: COVID-19, a novel coronavirus infectious disease, has spread around the world, resulting
in a large number of deaths. Due to a lack of physicians, emergency facilities, and equipment,
medical systems have been unable to treat all patients in many countries. Deep learning is a
promising approach for providing solutions to COVID-19 based on patients’ medical images. As
COVID-19 is a new disease, its related dataset is still being collected and published. Small COVID-19
datasets may not be sufficient to build powerful deep learning detection models. Such models are
often over-fitted, and their prediction results cannot be generalized. To fill this gap, we propose
a deep learning approach for accurately detecting COVID-19 cases based on chest X-ray (CXR)
images. For the proposed approach, named COVID-CGAN, we first generated a larger dataset
using generative adversarial networks (GANs). Specifically, a customized conditional GAN (CGAN)
was designed to generate the target COVID-19 CXR images. The expanded dataset, which contains
84.8% generated images and 15.2% original images, was then used for training five deep detection
models: InceptionResNetV2, Xception, SqueezeNet, VGG16, and AlexNet. The results show that
the use of the synthetic CXR images, which were generated by the customized CGAN, helped all
deep learning models to achieve high detection accuracies. In particular, the highest accuracy was
achieved by the InceptionResNetV2 model, which was 99.72% accurate with only ten epochs. All
five models achieved kappa coefficients between 0.81 and 1, which is interpreted as an almost perfect
agreement between the actual labels and the detected labels. Furthermore, the experiment showed
that some models were faster yet smaller compared to the others but could still achieve high accuracy.
For instance, SqueezeNet, which is a small network, required only three minutes and achieved
comparable accuracy to larger networks such as InceptionResNetV2, which needed about 143 min.
Our proposed approach can be applied to other fields with scarce datasets.

Keywords: COVID-19 detection; generative adversarial network (GAN); conditional GAN (CGAN);
deep learning; chest x-ray (CXR)

1. Introduction

The coronavirus (COVID-19) outbreak has resulted in a worldwide crisis; globally,
the rate of cases has risen rapidly. The World Health Organization (WHO) has reported
131,020,967 confirmed COVID-19 cases and 2,850,521 deaths worldwide as of 6 April
2021 [1]. To investigate COVID-19 symptoms, a chest X-ray (CXR) imaging is considered a
first-line diagnostic examination. However, medical providers may suffer from a lack of
sufficient experience to conduct accurate diagnoses based on medical images such as CXR
and computed tomography (CT) due to the rapid and vast changes in the COVID-19 virus.
Therefore, artificial intelligence (AI), especially deep learning techniques, can be applied
as powerful tools to support practitioners’ efforts to automate diagnostic procedures for

Appl. Sci. 2021, 11, 7174. https://doi.org/10.3390/app11167174 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7312-9003
https://orcid.org/0000-0001-8416-4499
https://orcid.org/0000-0003-0646-5872
https://doi.org/10.3390/app11167174
https://doi.org/10.3390/app11167174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167174
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167174?type=check_update&version=2

Appl. Sci. 2021, 11, 7174 2 of 22

COVID-19. Deep learning solutions show promise as tools for developing medical-image-
based solutions for diagnosing COVID-19. Diagnosis via medical images using deep
learning techniques can provide precise and concise analysis results.

One of the main concerns is the lack of available medical image datasets related to
COVID-19, such as CXR and CT scans; the available datasets are considered small and
insufficient in terms of their size. This was expected, as COVID-19 is new to research, which
has resulted in the collection of small, relevant, labeled datasets and a lack of standardized
data. This is a major challenge for diagnosing COVID-19 using deep learning models,
where the size of medical image samples is insufficient for meaningful learning in the
clinical practice context [2].

Although existing deep learning detection models of COVID-19 achieve high perfor-
mance, these models may not be trusted as they are based on a small dataset. Overfitting
is an analysis that very closely resembles a specific dataset, and therefore most fail to
properly fit new unseen observations. Overfitting is a common problem that occurs with
deep learning models that are trained on limited datasets.

To overcome this issue, we suggest the use of generative adversarial networks (GANs) [3].
GANs can generate new images by learning the data distribution of the original dataset.
In this study, a conditional GAN (CGAN), which is a special type of the basic GAN, was
designed specifically for generating COVID-19 CXR images. CGAN [4], which extends the
GAN, can generate specific class data samples, for example, by manipulating an image
label that is a part of dataset metadata. CGAN was chosen over the basic GAN as the
quality of the sample generation process is enhanced due to the direct CGAN training
process [5,6]. In particular, we propose COVID-CGAN, a detection model for COVID-19
patients using multiple deep learning models based on the CXR images generated by the
designed CGAN. Several researchers [6–8] have applied GANs to synthesize COVID-19
images based on CXR or CT images. However, these studies did not create detection
models to diagnose COVID-19 based on the generated images. Some other researchers
constructed deep learning detection models for COVID-19, but such studies were mainly
based on relatively small datasets [9–16].

The main contributions of this paper are as follows:

• A customized CGAN was designed to generate CXR images that can be used for
COVID-19 detection studies. This includes the architectures of generator and discrimi-
nator networks as well as parameter configurations;

• An expanded COVID-19 CXR dataset that involves 3290 images that can be used to
build COVID-19 detection models was generated;

• COVID-19 detection using the synthetic CXR images generated by the CGAN was
demonstrated.

This paper is structured as follows: Section 2 presents the related work. Section 3
describes the materials and methods used in our experimental work. Section 4 presents the
results, and Section 5 discusses the main findings and concludes the paper.

2. Related Work

This section provides an overview of the state-of-the-art studies in relation to COVID-
19 detection based on CXR images. The section also provides a summary of previous
studies suggesting that applied GANs are able to overcome the problem posed by the small
COVID-19 dataset size.

Table 1 presents a summary of COVID-19-related studies in terms of image type used,
dataset size, GAN architecture applied to expand the dataset in cases where GANs are
used, classification method, and classification model performance.

Appl. Sci. 2021, 11, 7174 3 of 22

Table 1. A summary of COVID-19-related studies.

Study Image Type Dataset Size
(of COVID-19 Cases) GAN Used Classification Method Model

Performance

[9] CXR 170 - AlexNet 98% (Acc.)

[10] CXR 183 - Customized CNN model (COVID-Net) 92.6% (Acc.)

[11] CXR 100 - ResNet50, InceptionV3,
Inception-ResNetV2 98% (Acc.)

[12] CXR 100 - Customized CNN model 96% (Acc.)

[13] CXR 102 - ResNet50 and VGG16 94.4% (Acc.)

[14] CXR 68 - ResNet-50 96.23% (Acc.)

[16] CXR 145 - ResNet34, ResNet50, DenseNet169, VGG19,
Inception ResNetV2, RNN 95.72% (Acc.)

[17] CXR 219 - KNN, SVM, DT

98.97% (Acc.)
89.39% (Sens.)
99.75% (Spec.)

96.72% (F1-score)

[18] CXR 120 - NASNet 97% (Acc.)
97% (Sens.)

[19] CXR 70 - VGG16 99% (F1-score)

[20] CXR 423 -

MobileNetv2, SqueezeNet, ResNet18,
InceptionV3,

ResNet101, CheXNet, VGG19,
DenseNet201

99.7%, (Acc.)
99.7%, (Prec.)
99.7% (Sens.)

99.55% (Spec.)

[21] CXR 127 - SVM 95.33% (Acc.)

[22] CXR 295 - SVM 99.27% (Acc.)

[23] CXR 250 - VGG16

0.98 (Acc.)
0.89 (F-1 score)

0.94 (Spec.)
0.87 (Sens.)

[24] CXR 184 - ResNet18, ResNet50, SqueezeNet,
DenseNet-121

98% (Sens.)
90% (Spec.)

[25] CXR 284 - Xception
89.6% (Acc.)
93% (Prec.)

98.2% (Sens.)

[26] CXR 90 - KNN, SVM, MLP, DT, RF 0.89 (F-1 score)

[27] CXR 127 - DarkNet 98.08% (Acc.)

[28] CXR 132 - VGG16

86% (Acc.)
86% (Sens.)
93% (Spec.)
90% (AUC)

[29] CXR 180 - Patch-based CNNs that consist of a
number of ResNets

88.9% (Acc.)
84.4% (Sens.)
96.4% (Spec.)

[30] CXR 25 - NB, NN, SVM, RBF, KNN, SGD, LR,
RF, DT, AdaBoost

A table of 12
classifiers and 10

evaluation
criteria

[31] CXR 313 -

Customized CNN, VGG16, VGG19,
Inception-V3,

Xception, InceptionResNet-V2, MobileNet-
V2, DenseNet-201, NasNet-mobile

99.01% (Acc.)
99.72% (AUC)

Appl. Sci. 2021, 11, 7174 4 of 22

Table 1. Cont.

Study Image Type Dataset Size
(of COVID-19 Cases) GAN Used Classification Method Model

Performance

[6] CXR 403 ACGAN VGG16
95% (Acc.)
96 % (Prec.)
90% (Recall)

[7] CXR 69 Traditional
GAN AlexNet, GoogleNet, Resnet18 100% (Acc.)

[8] CXR 337

Customized
GAN

(CVAE-
GAN)

InceptionV3, ResNet 85–87% (Acc.)

[32] CT 345 CGAN AlexNet, VGGNet16, VGGNet19,
GoogleNet, ResNet50 81.41% (Acc.)

Acc.: Accuracy; Sens.: Sensitivity; Prec.: Precision; Spec.: Specificity; AUC: Area under the curve.

From Table 1, we can draw the following observations:

• The majority of the studies used small datasets to feed their classification models. The
maximum size of these datasets was 423 images. Some of these studies used internal
datasets that have not been published for public use;

• Although most of the models achieved high accuracies, the prediction results based
on them cannot be generalized due to the limited samples on which the models
were trained;

• There are no studies that applied CGANs to CXR. To the best of our knowledge, one
study applied a CGAN to CT but did not achieve more than 81.41% accuracy.

The studies shown in Table 1 applied several machine learning methods such as sup-
port vector machines (SVM) and random forest (RF) as well as deep learning methods such
as AlexNet, GoogleNet, SqueezeNet, and ResNet18. Most of these methods achieved high
performance in detecting COVID-19 cases. Moreover, only a few studies [6–8,17] applied
GANs to expand the COVID-19 datasets. Specifically, these studies applied traditional
GANs or other GAN architectures, including CGAN, auxiliary classifier GAN (ACGAN),
and conditional variational auto-encoder GAN (CVAE-GAN).

In the following, we provide a summary of the related studies. Maghdid et al. [9]
developed a simple convolutional neural network (CNN) and a modified AlexNet model
to classify CXR and CT scan images. The results of the study showed that the two ap-
plied models provided accuracies of 94.1% and 98%, respectively. Wang and Wong [10]
introduced a customized convolutional neural network, i.e., COVID-Net, for COVID-19
cases diagnosis and made the used dataset available for public use. The model achieved an
accuracy of 92.4%.

Narin et al. [11] proposed three different convolutional network models to detect
COVID-19 patients, namely, ResNet50, InceptionV3, and Inception-ResNetV2. The results
showed that the ResNet50 model obtained the highest recognition performance, with 98%
accuracy, compared to the other two proposed models.

Zhang et al. [12] used 100 CXR images of COVID-19 patients and another 1431 CXR
images of other pneumonia cases. Based on this dataset, the authors developed a new deep
learning model for detection, which achieved a sensitivity of 96%. Hall et al. [13] used
pre-trained Resnet50 and VGG16 plus their own small CNN trained on 102 COVID-19
cases and 102 other pneumonia cases in 10-fold cross-validation. Their model achieved an
accuracy of 94.4%.

Farooq and Hafeez [14] proposed a public dataset for COVID-19 cases and other
pneumonia cases to be used by the public. The authors also proposed a novel model, i.e.,
COVID-ResNet, that was tested to reduce training time. The model achieved an accuracy
of 96.23%.

Appl. Sci. 2021, 11, 7174 5 of 22

Hammoudi et al. [16] proposed a number of deep learning models, i.e., ResNet34,
ResNet50, DenseNet169, VGG-19, Inception ResNetV2, and RNN, to detect pneumonia
infection cases, notably viral cases. They claimed that cases of viral pneumonia diag-
nosed during the COVID-19 period are extremely likely to be COVID-19 infections. The
DenseNet169 architecture reached the best performance with an average classification
accuracy of 95.72% on the CXR Images Pneumonia dataset.

Nour et al. [17] proposed a CNN-based hybrid model for detecting COVID-19. The
models used CNN as a feature extractor, and the extracted features were applied as the
input to classical machine learning techniques, specifically k-nearest neighbor, support
vector machine (SVM), and decision tree, to perform the classification task. The CNN-
SVM model achieved 98.97% accuracy, 89.39% sensitivity, 99.75% specificity, and 96.72%
F1-score. Neural architecture search network (NASNet) is a deep convolutional network
architecture developed by the Google Brain team in 2018. NASNet effectively shows
improved performance on classification tasks.

Martínez et al. [18] proposed the COVID-19 detection model based on NASNet. The
model achieved 97% in both accuracy and sensitivity. Alazab et al. [19] proposed a model
based on VGG-16 that detects COVID-19 from CXR images. The model achieved a 99% F1
score. They also proposed a model that predicted the cases of COVID-19 confirmations,
recoveries, and deaths over the next seven days in Jordan and Australia using three
architectures: prophet algorithm (PA), the autoregressive integrated moving average
(ARIMA) model, and long short-term memory neural network (LSTM). The empirical
results showed that PA achieved an average accuracy of 94.8 and 88.43% in predicting the
cases in Australia and Jordan, respectively.

To overcome the scarcity of data related to COVID-19 symptoms, Chowdhury et al. [20]
used transfer learning techniques and data augmentation to train pre-trained deep CNN
models to detect COVID-19 from CXR images. They used CheXNet, a CNN model that
consists of 121 layers trained on CXR images to detect different respiratory diseases, in
addition to MobileNetv2, SqueezeNet, ResNet18, InceptionV3, ResNet101, VGG19, and
DenseNet201. The empirical evaluation showed that all the models achieved high perfor-
mance in detecting COVID-19, and the highest performance was achieved by both CheXNet
and DenseNet201 when the data augmentation technique was applied. Sethy et al. [21]
introduced two types of hybrid models that use SVM as a classifier in detecting COVID-19
based on CXR images. Each model of the first type consists of a deep pre-trained CNN
model, specifically AlexNet, VGG16, VGG19, GoogleNet, ResNet18, ResNet50, ResNet101,
InceptionV3, InceptionResNetV2, DenseNet201, XceptionNet, MobileNetV2, and Shuf-
fleNet, as the feature extractor, and the extracted features were then fed to SVM to perform
the classification task. The second type used traditional image classification methods, e.g.,
local binary patterns (LBP), a histogram of oriented gradients (HOG), and a gray level
co-occurrence matrix (GLCM), with an SVM classifier. The experiment showed that the
ResNet50-based hybrid model achieved the best performance with an accuracy of 95.33%.

To determine the effect of preprocessing on improving the detection of COVID-19
in CXR images, Togaçar et al. [22] focused on preprocessing the images using fuzzy and
stacking techniques. To evaluate the preprocessing step’s effectiveness, two deep learning
models, MobileNetV2 and SqueezeNet, with SVM as a classifier, were trained with the
original dataset and the preprocessed dataset. The experiment results proved that the
preprocessing step improves the classification models.

Brunese et al. [23] introduced a three-stage architecture that detects and highlights
the lung area infected by COVID-19 from CXR images. The model uses VGG-16 in the
first and second stages to differentiate between healthy and COVID-19 cases. If the image
is classified as COVID-19, the gradient-weighted class activation mapping (Grad-CAM)
algorithm is used to generate an activation map that visually illustrates the infected areas.
Minaee et al. [24] prepared a dataset of 5000 CXR images, called COVID-Xray-5k, that
includes 184 CXR images of COVID-19. They compared the performance of four pre-
trained convolutional models trained on the COVID-Xray-5k dataset, specifically ResNet18,

Appl. Sci. 2021, 11, 7174 6 of 22

ResNet50, SqueezeNet, and DenseNet-121. Khan et al. [25] proposed a deep convolutional
neural network model, called CoroNet, based on Xception, that is able to distinguish
between three types of pneumonia: viral pneumonia, bacterial pneumonia, and COVID-19,
from CXR images. Pereira et al. [26] comparatively studied different feature extraction
approaches with different classification algorithms. To train the models, they prepared a
dataset of CXR images called RYDLS-20 with an unbalanced distribution of the classes
to reflect the real-world distribution. The dataset has CXR images that belong to normal,
majority, and six other pneumonia classes, including COVID-19. Ozturk et al. [27] proposed
DarkCovidNet, a deep learning model based on the DarkNet model that works as a binary
classifier and multi-class classifier to classify CXR images into COVID or no findings,
and COVID, pneumonia, or no findings. Civit-Masot et al. [28] proposed a multi-class
classification model that uses VGG-16 to classify CXR images into COVID-19, pneumonia,
or healthy.

To effectively train a deep network for detecting COVID-19 with a limited dataset,
Oh et al. [29] introduced a patch-based convolutional neural network algorithm con-
sisting of a segmentation network and a classification network. The model extracts the
lung area from the CXR image, and different patches of the extracted area are classified
with a classification network that consists of a network of ResNet. Mohammed et al., in
their benchmarking paper [30], stated that the large number of machine learning models
proposed for detecting COVID-19 from CXR images complicates the task for health orga-
nizations in selecting an appropriate model. Therefore, they proposed a benchmarking
methodology using a multi-criteria decision-making (MCDM) model that evaluated 12 ma-
chine learning classification algorithms on ten time-consuming and accuracy parameters,
e.g., precision and recall. To conduct the experiment, they constructed a dataset of 50 CXR
images, including 25 COVID-19 CXR images, and the InceptionV3 model was used as a
feature extractor. Rajaraman et al. in [31] evaluated the performance of a custom CNN and
eight different pre-trained CNN-based models, e.g., VGG-16 and Inception-V3, in detect-
ing COVID-19 from CXR images. To reduce model complexity, and improve robustness
and generalization, they used modality-specific transfer learning, iterative pruning, and
ensemble strategies.

Abdul Waheed et al. [6] introduced an ACGAN-based model for generating CXR
images of COVID-19. They compared the performance of a VGG16 model trained on the
original dataset to another VGG16 model trained on a dataset augmented by the ACGAN
model. Based on CT scan images, Loey et al. [32] applied CGANs to differentiate COVID-19
and non-COVID-19 images.

In this study, we propose using CGANs to generate COVID-19 CXR images and
then using them along with the original images to detect COVID-19 cases. Although
Loey et al. [32] applied a CGAN, they used it with CT images, not CXR images. Loey et al. [7]
applied a GAN to CXR images to detect respiratory diseases from the images. The original
dataset contained 306 CXR images in four classes, 97 of which were COVID-19 CXR im-
ages. The best-performing model was GoogleNet, which achieved 100% accuracy in the
discrimination of normal and COVID-19 CXR images compared to 52.8% before using the
GAN. Based on 16 classes, Albahli [8] empirically evaluated the performance of several
deep-learning-based models that detect and classify different respiratory diseases, includ-
ing COVID-19, from CXR images. The results showed that the best-performing model was
ResNet, which achieved 85 to 87% validation accuracy.

3. Materials and Methods
3.1. Overview of COVID-CGAN

Figure 1 depicts an overview of COVID-CGAN. As shown in the figure, a dataset of
CXR images was collected. The dataset includes normal and COVID-19 images. To ensure
that our smart detector is able to accurately recognize COVID-19 images, pneumonia
images were added to the dataset. The collected dataset was augmented using generative
models that synthesize images from the dataset. Specifically, a CGAN was designed to

Appl. Sci. 2021, 11, 7174 7 of 22

generate the images. The expanded dataset resulting from this phase was then used to
detect COVID-19 patients based on their CXR images. In particular, the generated images
were used to train multiple deep learning models based on certain configurations of the
model’s parameters. The trained model was later used to predict the presence of COVID-19
based on testing data.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 23

Figure 1. A block diagram of COVID-CGAN.

3.2. CGAN for COVID-19 CXR Image Generation

3.2.1. Conditional Generative Adversarial Networks (CGANs)

GANs are structured to train generative models. They contain two networks: the

generator (G) and discriminator (D). These two networks work against each other to

produce convincing yet false images. GANs generate samples from the random noise that

is provided as the input to the generator. CGANs are designed to include extra

information about images (y) for both the generator (G) and the discriminator (D), which

control the class of the generated output (Figure 2).

Figure 1. A block diagram of COVID-CGAN.

The details of the image generation phase, i.e., dataset expansion and the deep learning
approach to COVID-19 detection, are presented in the following two subsections.

3.2. CGAN for COVID-19 CXR Image Generation
3.2.1. Conditional Generative Adversarial Networks (CGANs)

GANs are structured to train generative models. They contain two networks: the
generator (G) and discriminator (D). These two networks work against each other to
produce convincing yet false images. GANs generate samples from the random noise that
is provided as the input to the generator. CGANs are designed to include extra information

Appl. Sci. 2021, 11, 7174 8 of 22

about images (y) for both the generator (G) and the discriminator (D), which control the
class of the generated output (Figure 2).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 23

Figure 2. An overview of the CGAN architecture.

3.2.2. The Original Dataset

There are three classes in the dataset: normal, COVID-19, and pneumonia. The

dataset contains around 500 CXR images for each class. As COVID-19 images are not

widely available, they were collected from various datasets [33–35]. The normal and

pneumonia CXR images were collected from a dataset that was published in 2018 [36],

and the number of images was chosen to be balanced with the COVID-19 images. A

sample of each of the three classes is shown in Figure 3. All CXR images were

preprocessed to have the same color system, type, and size. Specifically, the images were

unified to be RGB of PNG type. Flipping was applied to the images in which the images

were reflected horizontally with 50% probability.

In addition, some of the images were cropped to remove any details that do not

belong to the main CXR image such as the header and footer. All annotates and arrows

generated by X-ray devices were also removed from the images. Additionally, all the

images in the dataset were resized to be 128 × 128.

Figure 3. CXR image samples from the original dataset.

Figure 2. An overview of the CGAN architecture.

3.2.2. The Original Dataset

There are three classes in the dataset: normal, COVID-19, and pneumonia. The dataset
contains around 500 CXR images for each class. As COVID-19 images are not widely
available, they were collected from various datasets [33–35]. The normal and pneumonia
CXR images were collected from a dataset that was published in 2018 [36], and the number
of images was chosen to be balanced with the COVID-19 images. A sample of each of the
three classes is shown in Figure 3. All CXR images were preprocessed to have the same
color system, type, and size. Specifically, the images were unified to be RGB of PNG type.
Flipping was applied to the images in which the images were reflected horizontally with
50% probability.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 23

Figure 2. An overview of the CGAN architecture.

3.2.2. The Original Dataset

There are three classes in the dataset: normal, COVID-19, and pneumonia. The

dataset contains around 500 CXR images for each class. As COVID-19 images are not

widely available, they were collected from various datasets [33–35]. The normal and

pneumonia CXR images were collected from a dataset that was published in 2018 [36],

and the number of images was chosen to be balanced with the COVID-19 images. A

sample of each of the three classes is shown in Figure 3. All CXR images were

preprocessed to have the same color system, type, and size. Specifically, the images were

unified to be RGB of PNG type. Flipping was applied to the images in which the images

were reflected horizontally with 50% probability.

In addition, some of the images were cropped to remove any details that do not

belong to the main CXR image such as the header and footer. All annotates and arrows

generated by X-ray devices were also removed from the images. Additionally, all the

images in the dataset were resized to be 128 × 128.

Figure 3. CXR image samples from the original dataset. Figure 3. CXR image samples from the original dataset.

In addition, some of the images were cropped to remove any details that do not belong
to the main CXR image such as the header and footer. All annotates and arrows generated
by X-ray devices were also removed from the images. Additionally, all the images in the
dataset were resized to be 128 × 128.

Appl. Sci. 2021, 11, 7174 9 of 22

3.2.3. The Proposed CGAN Architecture

Based on the theories of the CGAN presented earlier, we constructed a customized
CGAN that uses CXR images from the original dataset to generate new images. The loss
scores were calculated based on the following equation:

min
G

max
D

V(D, G) = Ex∼Pdata (x)[log D(x|y)] + Ez∼Pz (z)[log(1− D(G(z|y)))] (1)

where D(x|y) is the discriminator’s estimate of the probability that a real data instance (x)
is real for a given class (y), and D(G(z|y)) is the discriminator’s estimate of the probability
that a fake instance is real for a given class (y).

The specific architectures of the CGAN generator and discriminator networks are
shown in Figures 4 and 5, respectively. As shown in Figure 4, the generator (G) contains a
total of 18 layers: an input layer (noise), a project and reshape layer (proj), an embedding
layer (embed), a concatenation layer (concat), five transposed convolutional layers (tconv1-
tcon5), four batch normalization layers (bnorm1-bnorm4) [37], four rectified linear unit
(ReLU) layers (relu1-relu4), and a hyperbolic tangent layer (tanh).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 23

3.2.3. The Proposed CGAN Architecture

Based on the theories of the CGAN presented earlier, we constructed a customized

CGAN that uses CXR images from the original dataset to generate new images. The loss

scores were calculated based on the following equation:

min
G

max

D
 V(𝐷, 𝐺) = E𝑥∼Ρ𝑑𝑎𝑡𝑎 (𝑥)[log 𝐷(𝑥|𝑦)] + E𝑧∼𝛲𝑧 (𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑦)))] (1)

where D(x|y) is the discriminator’s estimate of the probability that a real data instance (x)

is real for a given class (y), and D(G(z|y)) is the discriminator’s estimate of the probability

that a fake instance is real for a given class (y).

The specific architectures of the CGAN generator and discriminator networks are

shown in Figures 4 and 5, respectively. As shown in Figure 4, the generator (G) contains

a total of 18 layers: an input layer (noise), a project and reshape layer (proj), an embedding

layer (embed), a concatenation layer (concat), five transposed convolutional layers

(tconv1-tcon5), four batch normalization layers (bnorm1-bnorm4) [37], four rectified

linear unit (ReLU) layers (relu1-relu4), and a hyperbolic tangent layer (tanh).

Figure 4. The proposed architecture of the CGAN generator. The generator takes a noise vector and

image labels and up-samples the generated images using five transposed convolutional layers.

In particular, the network converts a noise vector of 100 samples into 4 × 4 × 256 arrays

using project and reshape and then up-scales the resulting arrays to 128 × 128 × 3 using a

series of transposed convolution layers with batch normalization and ReLU layers.

Notably, the number of the transposed convolutional neural networks as well as the

filter number and sizes, i.e., 5, were chosen carefully so that the generated images were

128 × 128. If the desired size is different, then the number of the transposed convolutional

neural networks will differ as well. For example, if the desired size is 64 × 64, then there

will be four transposed convolutional neural networks instead of five.

The network converts a noise vector of 100 samples into 4 × 4 × 512 arrays using the

project and reshape layer. Then, it converts the categorical labels to embedding vectors

and reshapes them to a 4 × 4 array. After, the network concatenates the resulting images

from the two inputs along the channel dimension to a 4 × 4 × 512 array. Next, it up-scales

the resulting arrays to 128 × 128 × 3 using a series of transposed convolutional layers with

batch normalization and ReLU layers.

The discriminator (D), as shown in Figure 5, contains 24 layers: an input layer (in),

an embedding layer (embed), a concatenation layer (concat), six convolutional layers

(tconv1–tcon6), six dropout layers (drop, drop1–drop5) [38], four batch normalization

layers (bnorm2–bnorm5), and five leaky rectified linear unit layers (lrelu1–lrelu5).

Figure 4. The proposed architecture of the CGAN generator. The generator takes a noise vector and image labels and
up-samples the generated images using five transposed convolutional layers.

In particular, the network converts a noise vector of 100 samples into 4 × 4 × 256
arrays using project and reshape and then up-scales the resulting arrays to 128 × 128 × 3
using a series of transposed convolution layers with batch normalization and ReLU layers.

Notably, the number of the transposed convolutional neural networks as well as the
filter number and sizes, i.e., 5, were chosen carefully so that the generated images were
128 × 128. If the desired size is different, then the number of the transposed convolutional
neural networks will differ as well. For example, if the desired size is 64 × 64, then there
will be four transposed convolutional neural networks instead of five.

The network converts a noise vector of 100 samples into 4 × 4 × 512 arrays using the
project and reshape layer. Then, it converts the categorical labels to embedding vectors and
reshapes them to a 4 × 4 array. After, the network concatenates the resulting images from
the two inputs along the channel dimension to a 4 × 4 × 512 array. Next, it up-scales the
resulting arrays to 128 × 128 × 3 using a series of transposed convolutional layers with
batch normalization and ReLU layers.

The discriminator (D), as shown in Figure 5, contains 24 layers: an input layer (in),
an embedding layer (embed), a concatenation layer (concat), six convolutional layers

Appl. Sci. 2021, 11, 7174 10 of 22

(tconv1–tcon6), six dropout layers (drop, drop1–drop5) [38], four batch normalization
layers (bnorm2–bnorm5), and five leaky rectified linear unit layers (lrelu1–lrelu5).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 23

The addition of the dropout layers in the discriminator networks helps to reduce the

capacity of the network during training and to avoid overfitting. The CGAN was trained

with the original dataset described in Section 3.2.2 using the configurations shown in

Table 2. The number of epochs was chosen based on the experiment so that we obtained

reasonable image quality. To increase the stability of the CGAN, the generator and

discriminator learning rates were not equal.

Figure 5. The proposed architecture of the CGAN discriminator. The discriminator learns from real

images as well as image labels and down-samples the images produced by the generator using six

convolutional layers to obtain the classification.

Table 2. Parameter configuration of the CGAN network.

Number of Epochs 2000

Mini Batch Size 64

Optimizer Adam [39]

Learning rate of Generator 0.0002

Learning rate of Discriminator 0.0001

To validate the images generated by the CGAN, the train on synthetic, test on real

(TSTR) method [40] was applied. In this method, the generated images are used to train a

deep learning model, VGG16, and then the model is tested on the real images. The training

dataset contains the CXR images of the three classes: COVID-19, pneumonia, and normal.

The training parameters’ configurations used in the training process are as follows:

Figure 5. The proposed architecture of the CGAN discriminator. The discriminator learns from real images as well as image
labels and down-samples the images produced by the generator using six convolutional layers to obtain the classification.

The addition of the dropout layers in the discriminator networks helps to reduce the
capacity of the network during training and to avoid overfitting. The CGAN was trained
with the original dataset described in Section 3.2.2 using the configurations shown in Table 2.
The number of epochs was chosen based on the experiment so that we obtained reasonable
image quality. To increase the stability of the CGAN, the generator and discriminator
learning rates were not equal.

Table 2. Parameter configuration of the CGAN network.

Number of Epochs 2000

Mini Batch Size 64

Optimizer Adam [39]

Learning rate of Generator 0.0002

Learning rate of Discriminator 0.0001

To validate the images generated by the CGAN, the train on synthetic, test on real
(TSTR) method [40] was applied. In this method, the generated images are used to train a

Appl. Sci. 2021, 11, 7174 11 of 22

deep learning model, VGG16, and then the model is tested on the real images. The training
dataset contains the CXR images of the three classes: COVID-19, pneumonia, and normal.
The training parameters’ configurations used in the training process are as follows:

• Number of epochs: 10;
• Optimizer: stochastic gradient descent model (SGDM);
• Batch size: 16;
• Learning rate: 0.001.

To measure the performance of the VGG16 model, recall, precision, and F1-score
metrics were used. The full descriptions of the model as well as the performance measures
are available in Sections 3.3.1 and 3.3.2, respectively.

To ensure that CGAN generated distinct images, the mean squared error (MSE) and
structural similarity index measure (SSIM) [41] were used. The two metrics were calculated
using the following two equations:

MSE =
1

MN

M

∑
n=1

N

∑
m=1

[ĝ(n, m)− g(n, m)]2 (2)

where ĝ(n, m) and g(n, m) represent image1 and image2, respectively.

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (3)

where µ and σ denote the average and standard deviation of the original images X and the
test image Y, respectively; σxy is the covariance of X and Y; and C1 and C2 are constants
that prevent numerical instabilities.

3.3. Deep Learning Models for Detecting COVID-19 Based on CXR Images
3.3.1. The Deep Learning Models

To detect COVID-19 based on CXR images, five deep transfer learning models were
used: InceptionResNetV2, Xception, SqueezeNet, VGG16, and AlexNet. These models
were selected to range in size, i.e., the number of layers and size on disk. In the following,
we provide a brief description of each model.

• InceptionResNetV2 is a type of convolutional neural network that consists of 164
layers deep with image input size 299 × 299. The architecture of InceptionResNetV2
is formulated based on a combination of the Inception structure and a residual net-
work (ResNet) connection. The usage of a ResNet connection not only eliminates
degradation issues during deep structure but also reduces the training time. The
InceptionResNetV2 architecture consists of a stem block that contains three standard
convolutional layers and two 3 × 3 max-pooling layers. Multiple convolutional and
max-pooling layers follow stem blocks with different sizes and different orders using
ReLU and SoftMax functions [42]. The InceptionResNetV2 architecture is depicted in
Figure 6a.

• Xception is a convolutional neural network that was adapted from the Inception
network, where the Inception modules are replaced with depthwise separable con-
volutions. The network has an image input size of 299 × 299 and is 71 layers deep.
Figure 6b shows the architecture of Xception, which consists of multiple convolutions
with 1 × 1 size and depthwise separable convolutions with 3 × 3 size using the batch
normalization, ReLU, and SoftMax functions [43].

• SqueezeNet is a small convolutional neural network that is 18 layers deep. It was
designed to reduce the number of parameters to fit into computer memory or be easily
transmitted over computer networks. SqueezeNet begins with a standard convolu-
tional layer followed by eight fire modules, ending with a final convolutional layer and
the SoftMax function. It performs max-pooling after the first standard convolutional

Appl. Sci. 2021, 11, 7174 12 of 22

layer, Fire4, Fire8, and the last standard convolutional layer [44]. Figure 6c shows the
architecture of SqueezeNet.

• VGG16: The most straightforward method to improve deep neural networks’ perfor-
mance is by increasing the network’s size. For this reason, the visual geometry group
(VGG) was created with three fully connected layers, 13 convolutional layers, and
smaller size filters (2 × 2 and 3 × 3) using ReLU and SoftMax functions. It performs
max-pooling twice with size 2 × 2 [45]. The architecture of VGG16 is depicted in
Figure 6d.

• AlexNet is a convolutional neural network eight layers deep. It contains five convolu-
tion layers, three max-pooling layers, and three fully-connected layers using ReLU
and SoftMax functions. The input image size is 227 × 227 [46]. Figure 6e shows the
architecture of SqueezeNet.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 23

Figure 6. Deep transfer learning models used for detection: (a) Inception-ResNetV2 architecture; (b) Xception architecture;

(c) SqueezeNet architecture; (d) VGG16 architecture; (e) AlexNet architecture.

3.3.2. Performance Metrics

The most common metrics used for evaluating deep learning models are accuracy,

precision (specificity), recall (sensitivity), and F1-score [47]. In addition, macro-recall,

macro-precision, and macro-F are preferred for evaluating multi-label models [48]. The

kappa coefficient is used to determine the degree of agreement between the reference data

and the classified map. It is used to control only those instances that may have been

correctly classified by chance [49]. Accordingly, these metrics were chosen for use in this

study. All the metrics are based on the numbers of true positive (TP), true negative (TN),

false positive (FP), and false negative (FN) cases. In addition, the confusion matrix [50] is

used to present the multi-class classification. The formulas of the metrics mentioned above

are presented below:

Figure 6. Deep transfer learning models used for detection: (a) Inception-ResNetV2 architecture; (b) Xception architecture;
(c) SqueezeNet architecture; (d) VGG16 architecture; (e) AlexNet architecture.

Appl. Sci. 2021, 11, 7174 13 of 22

The five models were trained on the expanded dataset, which contains the real images
from the original dataset and the images generated by the proposed CGAN. To enable fair
comparison among the different models, all the models were trained with the same param-
eters’ configurations. Table 3 shows the parameter configurations of the training process.

Table 3. Parameter configurations used in the training process.

Name Batch Size Number of
Epochs Optimizer Learning Rate

InceptionResNetV2 16

10
Stochastic

gradient descent
model (SGDM)

0.001
Xception 16

SqueezeNet 64
Vgg16 16

AlexNet 128

3.3.2. Performance Metrics

The most common metrics used for evaluating deep learning models are accuracy,
precision (specificity), recall (sensitivity), and F1-score [47]. In addition, macro-recall,
macro-precision, and macro-F are preferred for evaluating multi-label models [48]. The
kappa coefficient is used to determine the degree of agreement between the reference
data and the classified map. It is used to control only those instances that may have been
correctly classified by chance [49]. Accordingly, these metrics were chosen for use in this
study. All the metrics are based on the numbers of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) cases. In addition, the confusion matrix [50] is
used to present the multi-class classification. The formulas of the metrics mentioned above
are presented below:

Accuracy = (TP + TN) / (TP + FN + TN + FP) (4)

Precision = TP / TP + FP (5)

Macro− Precision =
1
N

N

∑
i=0

(TP / TP + FP) (6)

Recall = TP / TP + FN (7)

Macro− Recall =
1
N

N

∑
i=0

(TP / TP + FN) (8)

F1score = 2× ((Precision× Recall)/ (Precision + Recall)) (9)

Macro− F =
1
N

N

∑
i=0

F1Scorei (10)

RandomAccuracy = ((TN + FP)× (TN + FN)
+(FN + TP)× (FP + TP))/(Total × Total)

(11)

Kappa = (Accuracy− RandomAccuracy)/ (1− RandomAccuracy) (12)

where N is the number of classes.

4. Experimental Results

The experimental work for this study was implemented using the deep learning
toolbox in MATLAB 2020b. All the experiments were conducted using a computer device
with a GPU (NVIDIA GeForce RTX 2060 8GB). The values of the training time and the
accuracy may vary when different hardware and mini-batch sizes are used. The results of
the image generation and detection are presented in the following two subsections.

Appl. Sci. 2021, 11, 7174 14 of 22

4.1. Image Generation Results

The CGAN model was trained on the original dataset described in Section 3.2.2, which
contains three classes: COVID-19, pneumonia, and normal. Figure 7 shows the CGAN
training process in terms of the loss scores of the generator and the discriminator. The
training process required about 16 h. The number of epochs, i.e., 2000, was chosen based on
the quality of the generated images. We started with 500 epochs and increased the number
until we obtained good quality images.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 23

Figure 7. Generator and discriminator scores of the CGAN through the training process. The CGAN

is trained on the whole dataset containing the three classes and then generates images for a given

class (given label).

Figure 8. Sample of the generated images from the three classes by the CGAN.

Figure 7. Generator and discriminator scores of the CGAN through the training process. The CGAN
is trained on the whole dataset containing the three classes and then generates images for a given
class (given label).

The generator and discriminator are competing in an adversarial manner; the genera-
tor tries to reduce the loss function to fool the discriminator, and the discriminator tries
to increase the loss function to distinguish between real and fake images. Our proposed
CGAN generated 2790 images for all three classes, COVID-19, pneumonia, and normal,
producing 930 images for each. To obtain an overview of the images generated by the
CGAN, we present samples of the three classes in Figure 8.

Appl. Sci. 2021, 11, 7174 15 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 23

Figure 7. Generator and discriminator scores of the CGAN through the training process. The CGAN

is trained on the whole dataset containing the three classes and then generates images for a given

class (given label).

Figure 8. Sample of the generated images from the three classes by the CGAN. Figure 8. Sample of the generated images from the three classes by the CGAN.

To validate the images, the VGG16 model was trained on the generated images and
tested on the real images only, i.e., Train on Synthetic, Test on Real (TSTR) method. Table 4
shows the performance metrics of the VGG16 for the three classes in terms of recall,
precision, and F1-score. Also, the confusion matrix is shown in Figure 9. Focusing on the
COVID-19 class, which is the main target of this study. The high values of the VGG16
performance measures indicate that the quality of the generated model is good enough
and that the CGAN was able to produce images similar to an extent to the real images.
Thus, the generated images were combined with the real images in the training and testing
dataset in the following phase to perform COVID-19 detection.

An experiment was conducted: two measures were used to ensure that the generated
images were distinct: MSE and SSIM. To this end, 500 images were randomly selected to
calculate these two measures. A value of zero for MSE indicates perfect similarity. A value
greater than one implies less similarity and will continue to grow as the average difference
between pixel intensities increases as well. The SSIM value can vary between –1 and 1,
where the latter indicates perfect similarity.

Table 4. Performance metrics of image validation using VGG16.

Class Recall Precision F1-Score

COVID-19 92.4 99.1 95.63
Normal 98 87.5 92.45

Pneumonia 87 91.8 89.34

Appl. Sci. 2021, 11, 7174 16 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 23

To validate the images, the VGG16 model was trained on the generated images and

tested on the real images only, i.e., Train on Synthetic, Test on Real (TSTR) method. Table

4 shows the performance metrics of the VGG16 for the three classes in terms of recall,

precision, and F1-score. Also, the confusion matrix is shown in Figure 9. Focusing on the

COVID-19 class, which is the main target of this study. The high values of the VGG16

performance measures indicate that the quality of the generated model is good enough

and that the CGAN was able to produce images similar to an extent to the real images.

Thus, the generated images were combined with the real images in the training and testing

dataset in the following phase to perform COVID-19 detection.

Table 4. Performance metrics of image validation using VGG16.

Class Recall Precision F1-Score

COVID-19 92.4 99.1 95.63

Normal 98 87.5 92.45

Pneumonia 87 91.8 89.34

Figure 9. Confusion matrix of VGG16 based on TSTR.

An experiment was conducted: two measures were used to ensure that the generated

images were distinct: MSE and SSIM. To this end, 500 images were randomly selected to

calculate these two measures. A value of zero for MSE indicates perfect similarity. A value

greater than one implies less similarity and will continue to grow as the average difference

between pixel intensities increases as well. The SSIM value can vary between –1 and 1,

where the latter indicates perfect similarity.

In total, the comparison experiment required 124,750 comparisons between these

images. The average MSE and SSIM were 5593.47 and 0.22677, respectively. Since the

value of MSE is greater than one, and SSIM obtained a number near zero, this means that

the CGAN was able to generate distinct images. To obtain an overview of the results,

Figure 10 shows samples of the MSE and SSIM values between one image and the

remaining images.

Figure 9. Confusion matrix of VGG16 based on TSTR.

In total, the comparison experiment required 124,750 comparisons between these
images. The average MSE and SSIM were 5593.47 and 0.22677, respectively. Since the value
of MSE is greater than one, and SSIM obtained a number near zero, this means that the
CGAN was able to generate distinct images. To obtain an overview of the results, Figure 10
shows samples of the MSE and SSIM values between one image and the remaining images.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 23

Figure 10. Samples of MSE and SSIM values between three selected images and the other images.

4.2. COVID-19 Detection Results

For detection, the deep models mentioned in Section 3.3.1 were trained and tested

using the expanded datasets, which consist of 500 real images and 2790 generated images

for each class. The percentage of generated images in the whole expanded dataset is 84.8%,

as shown in Figure 11, which is more than five times the number of real images.

Figure 11. The percentage of real images and generated images.

Figure 12 shows the number of real and generated images in the training and testing

process. As shown in the figure, the training part was conducted on 77.81% of the dataset

(100 real images and 630 generated images), and the testing part was conducted on 22.19%

of the dataset (400 real images and 2160 generated images). To ensure that the expanded

dataset was still balanced, the same number of images was generated for each class, as

shown in Table 5.

Figure 10. Samples of MSE and SSIM values between three selected images and the other images.

4.2. COVID-19 Detection Results

For detection, the deep models mentioned in Section 3.3.1 were trained and tested
using the expanded datasets, which consist of 500 real images and 2790 generated images
for each class. The percentage of generated images in the whole expanded dataset is 84.8%,
as shown in Figure 11, which is more than five times the number of real images.

Appl. Sci. 2021, 11, 7174 17 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 23

Figure 10. Samples of MSE and SSIM values between three selected images and the other images.

4.2. COVID-19 Detection Results

For detection, the deep models mentioned in Section 3.3.1 were trained and tested

using the expanded datasets, which consist of 500 real images and 2790 generated images

for each class. The percentage of generated images in the whole expanded dataset is 84.8%,

as shown in Figure 11, which is more than five times the number of real images.

Figure 11. The percentage of real images and generated images.

Figure 12 shows the number of real and generated images in the training and testing

process. As shown in the figure, the training part was conducted on 77.81% of the dataset

(100 real images and 630 generated images), and the testing part was conducted on 22.19%

of the dataset (400 real images and 2160 generated images). To ensure that the expanded

dataset was still balanced, the same number of images was generated for each class, as

shown in Table 5.

Figure 11. The percentage of real images and generated images.

Figure 12 shows the number of real and generated images in the training and testing
process. As shown in the figure, the training part was conducted on 77.81% of the dataset
(100 real images and 630 generated images), and the testing part was conducted on 22.19%
of the dataset (400 real images and 2160 generated images). To ensure that the expanded
dataset was still balanced, the same number of images was generated for each class, as
shown in Table 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 23

Figure 12. The number of real images and generated images in the training and testing process.

Table 5. The number of images for the training and testing process for each class.

Class

Training Testing

No. of Real

Images

No. of

Generated

Images

No. of Real

Images

No. of Generated

Images

COVID-19 400 2160 100 630

Normal 400 2160 100 630

Pneumonia 400 2160 100 630

The kappa coefficient, which is one of the classifier’s performance metrics, was used

to measure the degree of agreement between the actual and predicted labels and to control

for instances where an image may have been correctly classified by chance [49]. The kappa

coefficient can be calculated using both the observed accuracy and the random accuracy

as in Equations (11) and (12). According to [51], the kappa coefficient, which is between

0.81 and 1, indicates an almost perfect agreement.

Figure 13 shows that all five models obtained an almost perfect agreement between

the actual labels and the predicted labels. Table 6 presents the performance of the five

detection models based on accuracy, macro-precision, macro-recall, and macro-average

F-score. As shown in the table, InceptionResNetV2 was the best-performing model for all

metrics, whereas SqueezeNet was the worst-performing model with no apparent

difference among all metrics. To obtain a better overview of the testing accuracy per class,

we present the confusion matrices of the five deep transfer learning models in Figure 14.

Figure 12. The number of real images and generated images in the training and testing process.

Table 5. The number of images for the training and testing process for each class.

Class

Training Testing

No. of Real
Images

No. of Generated
Images

No. of Real
Images

No. of Generated
Images

COVID-19 400 2160 100 630
Normal 400 2160 100 630

Pneumonia 400 2160 100 630

The kappa coefficient, which is one of the classifier’s performance metrics, was used
to measure the degree of agreement between the actual and predicted labels and to control
for instances where an image may have been correctly classified by chance [49]. The kappa
coefficient can be calculated using both the observed accuracy and the random accuracy as
in Equations (11) and (12). According to [51], the kappa coefficient, which is between 0.81
and 1, indicates an almost perfect agreement.

Appl. Sci. 2021, 11, 7174 18 of 22

Figure 13 shows that all five models obtained an almost perfect agreement between
the actual labels and the predicted labels. Table 6 presents the performance of the five
detection models based on accuracy, macro-precision, macro-recall, and macro-average
F-score. As shown in the table, InceptionResNetV2 was the best-performing model for all
metrics, whereas SqueezeNet was the worst-performing model with no apparent difference
among all metrics. To obtain a better overview of the testing accuracy per class, we present
the confusion matrices of the five deep transfer learning models in Figure 14.

Choosing a suitable model is a tradeoff among different parameters such as speed,
size, and accuracy. Figure 15 shows the five selected models and their corresponding
parameters. The area of diamonds in the figure represents the model’s size on the disk,
meaning that VGG16 is the largest model with a size of 515 MB, whereas SqueezeNet is the
smallest at only 4.5 MB. All models achieved high accuracy between 98.86% and 99.72%,
but with different training times. The figure also shows that some models were faster or
smaller compared to others but could still achieve high accuracy. For instance, SqueezeNet,
which is a small network, required only three minutes and achieved comparable accuracy
to larger networks such as InceptionResNetV2, which needed more time (143 min) to run.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 23

Figure 12. The number of real images and generated images in the training and testing process.

Table 5. The number of images for the training and testing process for each class.

Class

Training Testing

No. of Real

Images

No. of

Generated

Images

No. of Real

Images

No. of Generated

Images

COVID-19 400 2160 100 630

Normal 400 2160 100 630

Pneumonia 400 2160 100 630

The kappa coefficient, which is one of the classifier’s performance metrics, was used

to measure the degree of agreement between the actual and predicted labels and to control

for instances where an image may have been correctly classified by chance [49]. The kappa

coefficient can be calculated using both the observed accuracy and the random accuracy

as in Equations (11) and (12). According to [51], the kappa coefficient, which is between

0.81 and 1, indicates an almost perfect agreement.

Figure 13 shows that all five models obtained an almost perfect agreement between

the actual labels and the predicted labels. Table 6 presents the performance of the five

detection models based on accuracy, macro-precision, macro-recall, and macro-average

F-score. As shown in the table, InceptionResNetV2 was the best-performing model for all

metrics, whereas SqueezeNet was the worst-performing model with no apparent

difference among all metrics. To obtain a better overview of the testing accuracy per class,

we present the confusion matrices of the five deep transfer learning models in Figure 14.

Figure 13. The number of real and generated images in the training and testing process.

Table 6. Performance metrics of the detection models.

Model Accuracy Macro Precision Macro Recall Macro F-Score

InceptionResNetV2 99.72 99.73 99.73 99.73

Xception 99.36 99.33 99.37 99.35

SqueezeNet 98.86 98.87 98.83 98.84

VGG16 99.4 99.40 99.40 99.40

AlexNet 99.32 99.23 99.23 99.23

Appl. Sci. 2021, 11, 7174 19 of 22Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 23

Figure 14. The confusion matrices of the deep transfer learning models.

Choosing a suitable model is a tradeoff among different parameters such as speed,

size, and accuracy. Figure 15 shows the five selected models and their corresponding

parameters. The area of diamonds in the figure represents the model’s size on the disk,

meaning that VGG16 is the largest model with a size of 515 MB, whereas SqueezeNet is

the smallest at only 4.5 MB. All models achieved high accuracy between 98.86% and

99.72%, but with different training times. The figure also shows that some models were

faster or smaller compared to others but could still achieve high accuracy. For instance,

SqueezeNet, which is a small network, required only three minutes and achieved

Figure 14. The confusion matrices of the deep transfer learning models.

Appl. Sci. 2021, 11, 7174 20 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 23

comparable accuracy to larger networks such as InceptionResNetV2, which needed more

time (143 min) to run.

Figure 15. Classification accuracy versus training time for the five deep transfer learning models.

InceptionResNetV2 achieved the highest accuracy but consumed the longest time. SqueezeNet and

AlexNet were faster and achieved comparable accuracies.

5. Conclusions and Future Work

COVID-19 remains a serious disease all around the world. To improve COVID-19

detection, we proposed COVID-CGAN, an approach to extend the existing small CXR

COVID-19 datasets using a CGAN and to detect the disease based on the extended

datasets. We proposed a customized design for the CGAN with 18 layers for the generator

and 24 layers for the discriminator.

Based on the results presented in the previous section, we derived the following

findings:

1. A CGAN has a simple and straightforward architecture, yet can produce images

similar to real ones. Compared to other GAN architectures that may produce better

quality images, such as the least-squares generative adversarial network (LSGAN)

[52] and information maximizing GAN (InfoGAN) [53], these architectures have

large computational budgets and generating images is time-consuming, whereas

CGANs are simpler and do not require long computation times. They can synthesize

good-quality images from the original dataset.

2. Some deep learning models are better than others in terms of detecting COVID-19

patients based on their CXR images. The experimental results showed that

InceptionResNetV2 outperformed other models in detecting COVID-19 based on

CXR images. This model can be investigated by other researchers to detect COVID-

19 based datasets other than CXR images.

3. Some deep learning models are small in size and thus provide fast predictions, yet

can achieve good results in detecting COVID-19. As shown in Figure 15, SqueezeNet,

which is a small network, required only three minutes to achieve accuracy

comparable to that of larger networks.

Based on the present study, we suggest the following directions for future research:

 Design generative model architectures other than CGANs and compare them in

terms of their ability to synthesize high-quality images that are similar to real images.

 Include patient information related to COVID-19 other than CXR, such as symptom

datasets, in the diagnostic process.

Author Contributions: Conceptualization, A.A.A.-S. and J.F.A.; methodology, A.A.A.-S.; software,

A.A.A.-S. and J.F.A.; validation, A.A.A.-S. and J.F.A.; investigation, A.A.; resources, J.F.A.; data

curation, N.A.; writing—original draft preparation, A.A.A.-S. and J.F.A.; writing—review and

Figure 15. Classification accuracy versus training time for the five deep transfer learning models. InceptionResNetV2
achieved the highest accuracy but consumed the longest time. SqueezeNet and AlexNet were faster and achieved comparable
accuracies.

5. Conclusions and Future Work

COVID-19 remains a serious disease all around the world. To improve COVID-19
detection, we proposed COVID-CGAN, an approach to extend the existing small CXR
COVID-19 datasets using a CGAN and to detect the disease based on the extended datasets.
We proposed a customized design for the CGAN with 18 layers for the generator and
24 layers for the discriminator.

Based on the results presented in the previous section, we derived the following
findings:

1. A CGAN has a simple and straightforward architecture, yet can produce images
similar to real ones. Compared to other GAN architectures that may produce better
quality images, such as the least-squares generative adversarial network (LSGAN) [52]
and information maximizing GAN (InfoGAN) [53], these architectures have large
computational budgets and generating images is time-consuming, whereas CGANs
are simpler and do not require long computation times. They can synthesize good-
quality images from the original dataset.

2. Some deep learning models are better than others in terms of detecting COVID-19
patients based on their CXR images. The experimental results showed that Incep-
tionResNetV2 outperformed other models in detecting COVID-19 based on CXR
images. This model can be investigated by other researchers to detect COVID-19
based datasets other than CXR images.

3. Some deep learning models are small in size and thus provide fast predictions, yet
can achieve good results in detecting COVID-19. As shown in Figure 15, SqueezeNet,
which is a small network, required only three minutes to achieve accuracy comparable
to that of larger networks.

Based on the present study, we suggest the following directions for future research:

• Design generative model architectures other than CGANs and compare them in terms
of their ability to synthesize high-quality images that are similar to real images.

• Include patient information related to COVID-19 other than CXR, such as symptom
datasets, in the diagnostic process.

Author Contributions: Conceptualization, A.A.A.-S. and J.F.A.; methodology, A.A.A.-S.; software,
A.A.A.-S. and J.F.A.; validation, A.A.A.-S. and J.F.A.; investigation, A.A.; resources, J.F.A.; data
curation, N.A.; writing—original draft preparation, A.A.A.-S. and J.F.A.; writing—review and editing,
A.A.; visualization, J.F.A.; project administration, A.A.A.-S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research and the APC were funded by Qassim University, Saudi Arabia.

Appl. Sci. 2021, 11, 7174 21 of 22

Informed Consent Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge Qassim University, represented by the
Deanship of Scientific Research, for the financial support for this research under the number (coc-
2020-1-1-L-10051) during the academic year 1441 AH/2020 AD.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO COVID-19 Dashboard. Available online: https://covid19.who.int/ (accessed on 21 April 2020).
2. Gozes, O.; Frid-Adar, M.; Greenspan, H.; Browning, P.D.; Zhang, H.; Ji, W.; Bernheim, A.; Siegel, E. Rapid AI Development Cycle

for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring Using Deep Learning
CT Image Analysis. arXiv preprint 2020, arXiv:2003.05037.

3. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Proc. Syst. 2014, 27, 2672–2680.

4. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv preprint 2014, arXiv:1411.1784.
5. Jiang, Y.; Chen, H.; Loew, M.; Ko, H. COVID-19 CT Image Synthesis with a Conditional Generative Adversarial Network. IEEE J.

Biomed. Health Inform. 2020, 25, 441–452. [CrossRef]
6. Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Al-Turjman, F.; Pinheiro, P.R. CovidGAN: Data Augmentation Using Auxiliary

Classifier GAN for Improved Covid-19 Detection. IEEE Access 2020, 8, 91916–91923. [CrossRef]
7. Loey, M.; Smarandache, F.; Khalifa, N.E.M. Within the lack of chest COVID-19 X-ray dataset: A novel detection model based on

GAN and deep transfer learning. Symmetry 2020, 12, 651. [CrossRef]
8. Albahli, S. Efficient GAN-based Chest Radiographs (CXR) augmentation to diagnose coronavirus disease pneumonia. Int. J. Med.

Sci. 2020, 17, 1439–1448. [CrossRef] [PubMed]
9. Maghdid, H.S.; Asaad, A.T.; Ghafoor, K.Z.; Sadiq, A.S.; Khurram Khan, M. Diagnosing COVID-19 Pneumonia from X-Ray and

CT Images Using Deep Learning and Transfer Learning Algorithms. arXiv preprint 2020, arXiv:2004.00038.
10. Gunraj, H.; Wang, L.; Wong, A. COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for Detection of

COVID-19 Cases From Chest CT Images. pFront. Front. Med. 2020, 7, 608525. [CrossRef]
11. Narin, A.; Kaya, C.; Pamuk, Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional

neural networks. Pattern Anal. Appl. 2021, 1–14. [CrossRef]
12. Zhang, J.; Xie, Y.; Pang, G.; Liao, Z.; Verjans, J.; Li, W.; Sun, Z.; He, J.; Li, Y.; Shen, C.; et al. Viral Pneumonia Screening on Chest

X-Rays Using Confidence-Aware Anomaly Detection. IEEE Trans. Med. Imaging 2021, 40, 879–890. [CrossRef] [PubMed]
13. Hall, L.; Goldgof, D.; Paul, R.; Goldgof, G.M. Finding COVID-19 from Chest X-rays Using Deep Learning on a Small Dataset.

arXiv preprint 2020, arXiv:2004.02060.
14. Farooq, M.; Hafeez, A. COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from Radiographs. arXiv preprint

2020, arXiv:2003.14395.
15. Eldeen, N.; Khalifa, M. Detection of Coronavirus (COVID-19) Associated Pneumonia Based on Generative Adversarial Networks

and a Fine-Tuned Deep Transfer Learning Model Using Chest X-ray Dataset. arXiv preprint 2020, arXiv:2004.01184.
16. Hammoudi, K.; Benhabiles, H.; Melkemi, M.; Dornaika, F.; Arganda-Carreras, I.; Collard, D.; Scherpereel, A. Deep Learning on

Chest X-ray Images to Detect and Evaluate Pneumonia Cases at the Era of COVID-19. J. Med. Syst. 2021, 45, 1–10. [CrossRef]
[PubMed]

17. Nour, M.; Cömert, Z.; Polat, K. A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and
Bayesian Optimization. Appl. Soft Comput. J. 2020, 97, 106580. [CrossRef]

18. Martínez, F.; Martínez, F.; Jacinto, E. Performance evaluation of the NASnet convolutional network in the automatic identification
of COVID-19. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 662–667. [CrossRef]

19. Alazab, M.; Awajan, A.; Mesleh, A.; Abraham, A.; Jatana, V.; Alhyari, S. COVID-19 prediction and detection using deep learning.
Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2020, 12, 168–181.

20. Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.;
Emadi, N.A.; et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]

21. Sethy, P.K.; Behera, S.K.; Ratha, P.K.; Biswas, P. Detection of coronavirus disease (COVID-19) based on deep features and support
vector machine. Int. J. Math. Eng. Manag. Sci. 2020, 5, 643–651. [CrossRef]

22. Toğaçar, M.; Ergen, B.; Cömert, Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and
structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 2020, 121. [CrossRef] [PubMed]

23. Brunese, L.; Mercaldo, F.; Reginelli, A.; Santone, A. Explainable Deep Learning for Pulmonary Disease and Coronavirus COVID-19
Detection from X-rays. Comput. Methods Programs Biomed. 2020, 196, 105608. [CrossRef]

24. Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Jamalipour Soufi, G. Deep-COVID: Predicting COVID-19 from chest X-ray images
using deep transfer learning. Med. Image Anal. 2020, 65, 101794. [CrossRef]

25. Khan, A.I.; Shah, J.L.; Bhat, M.M. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray
images. Comput. Methods Programs Biomed. 2020, 196, 105581. [CrossRef]

https://covid19.who.int/
http://doi.org/10.1109/JBHI.2020.3042523
http://doi.org/10.1109/ACCESS.2020.2994762
http://doi.org/10.3390/sym12040651
http://doi.org/10.7150/ijms.46684
http://www.ncbi.nlm.nih.gov/pubmed/32624700
http://doi.org/10.3389/fmed.2020.608525
http://doi.org/10.1007/s10044-021-00984-y
http://doi.org/10.1109/TMI.2020.3040950
http://www.ncbi.nlm.nih.gov/pubmed/33245693
http://doi.org/10.1007/s10916-021-01745-4
http://www.ncbi.nlm.nih.gov/pubmed/34101042
http://doi.org/10.1016/j.asoc.2020.106580
http://doi.org/10.18517/ijaseit.10.2.11446
http://doi.org/10.1109/ACCESS.2020.3010287
http://doi.org/10.33889/IJMEMS.2020.5.4.052
http://doi.org/10.1016/j.compbiomed.2020.103805
http://www.ncbi.nlm.nih.gov/pubmed/32568679
http://doi.org/10.1016/j.cmpb.2020.105608
http://doi.org/10.1016/j.media.2020.101794
http://doi.org/10.1016/j.cmpb.2020.105581

Appl. Sci. 2021, 11, 7174 22 of 22

26. Pereira, R.M.; Bertolini, D.; Teixeira, L.O.; Silla, C.N.; Costa, Y.M.G. COVID-19 identification in chest X-ray images on flat and
hierarchical classification scenarios. Comput. Methods Programs Biomed. 2020, 194, 105532. [CrossRef]

27. Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Rajendra, A.U. Automated detection of COVID-19 cases using
deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [CrossRef]

28. Civit-Masot, J.; Luna-Perejón, F.; Morales, M.D.; Civit, A. Deep learning system for COVID-19 diagnosis aid using X-ray
pulmonary images. Appl. Sci. 2020, 10, 4640. [CrossRef]

29. Oh, Y.; Park, S.; Ye, J.C. Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Trans. Med. Imaging
2020, 39, 2688–2700. [CrossRef]

30. Mohammed, M.A.; Abdulkareem, K.H.; Al-Waisy, A.S.; Mostafa, S.A.; Al-Fahdawi, S.; Dinar, A.M.; Alhakami, W.; Baz, A.;
Al-Mhiqani, M.N.; Alhakami, H.; et al. Benchmarking Methodology for Selection of Optimal COVID-19 Diagnostic Model Based
on Entropy and TOPSIS Methods. IEEE Access 2020, 8, 99115–99131. [CrossRef]

31. Rajaraman, S.; Siegelman, J.; Alderson, P.O.; Folio, L.S.; Folio, L.R.; Antani, S.K. Iteratively Pruned Deep Learning Ensembles for
COVID-19 Detection in Chest X-Rays. IEEE Access 2020, 8, 115041–115050. [CrossRef]

32. Loey, M.; Smarandache, F.; Eldeen, N.; Khalifa, M. A Deep Transfer Learning Model with Classical Data Augmentation and
CGAN to Detect COVID-19 from Chest CT Radiography Digital Images. Neural Comput. Appl. 2020, 2, 1–17. [CrossRef] [PubMed]

33. Rahman, T.; Chowdhury, M.; Khandakar, A. COVID-19 Radiography Database; Kaggle: San Francisco, CA, USA, 2020.
34. Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. Covid-19 image data collection: Prospective predictions

are the future. arXiv 2020, arXiv:2006.11988.
35. Chung, A.; Wang, L.; Wong, A.; Lin, Z.Q.; McInnis, P.; Chung, A. Actualmed COVID-19 Chest X-Ray Dataset Initiative; GitHub: San

Francisco, CA, USA, 2020.
36. Mooney, P. Chest X-Ray Images (Pneumonia); Kaggle: San Francisco, CA, USA, 2018.
37. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int. Conf.

Mach. Learn. 2015, 37, 448–456.
38. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning

Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
40. Esteban, C.; Hyland, S.L.; Rätsch, G. Real-valued (medical) time series generation with recurrent conditional gans. arXiv 2017,

arXiv:1706.02633.
41. Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. J. Comput.

Commun. 2019, 7, 8–18. [CrossRef]
42. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on

learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017.

43. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, Piscataway, NJ, USA, 21–26 July 2017; pp. 1800–1807.

44. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

45. Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very deep convolutional neural networks for complex
land cover mapping using multispectral remote sensing imagery. Remote Sens. 2018, 10, 1119. [CrossRef]

46. Gonzalez, T.F. Handb. Approx. Algorithms Metaheuristics. In Handbook of Approximation Algorithms and Metaheuristics; CRC
Press: Boca Raton, FL, USA, 2007; pp. 1–1432.

47. Goutte, C.; Gaussier, É. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In
Proceedings of the 27th European Conference on {IR} Research; {ECIR} 2005, Proceedings, Santiago de Compostela, Spain, 21–23
March 2005; Losada, D.E., Fernández-Luna, J.M., Eds.; Advances in Information Retrieval. Springer: Berlin/Heidelberg, Germany,
2005; Volume 3408, pp. 345–359.

48. Van Asch, V. Macro-And Micro-Averaged Evaluation Measures; CLiPS, University of Antwerp: Antwerp, Belgium, 2013; pp. 1–27.
49. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 1–48. [CrossRef]
50. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [CrossRef]
51. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [CrossRef]

[PubMed]
52. Zhang, S.; Cheng, D.; Jiang, D.; Kou, Q. Least Squares Relativistic Generative Adversarial Network for Perceptual Super-

Resolution Imaging. IEEE Access 2020, 8, 185198–185208. [CrossRef]
53. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. InfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2180–2188.

http://doi.org/10.1016/j.cmpb.2020.105532
http://doi.org/10.1016/j.compbiomed.2020.103792
http://doi.org/10.3390/app10134640
http://doi.org/10.1109/TMI.2020.2993291
http://doi.org/10.1109/ACCESS.2020.2995597
http://doi.org/10.1109/ACCESS.2020.3003810
http://doi.org/10.1007/s00521-020-05437-x
http://www.ncbi.nlm.nih.gov/pubmed/33132536
http://doi.org/10.4236/jcc.2019.73002
http://doi.org/10.3390/rs10071119
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1016/j.aci.2018.08.003
http://doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571
http://doi.org/10.1109/ACCESS.2020.3030044

	Introduction
	Related Work
	Materials and Methods
	Overview of COVID-CGAN
	CGAN for COVID-19 CXR Image Generation
	Conditional Generative Adversarial Networks (CGANs)
	The Original Dataset
	The Proposed CGAN Architecture

	Deep Learning Models for Detecting COVID-19 Based on CXR Images
	The Deep Learning Models
	Performance Metrics

	Experimental Results
	Image Generation Results
	COVID-19 Detection Results

	Conclusions and Future Work
	References

