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Abstract: The Hammerstein model identification technique based on swept sine excitation signals
proved in numerous applications to be particularly effective for the definition of a model for nonlinear
systems. In this paper we address the problem of the robustness of this model parameter estimation
procedure in the presence of noise in the measurement step. The relationship between the different
functions that enter the identification procedure is analyzed to assess how the presence of additive
noise affects model parameters estimation. This analysis allows us to propose an original technique to
mitigate the effects of additive noise in order to improve the accuracy of model parameters estimation.
The different aspects addressed in the paper and the technique for mitigating the effects of noise on the
accuracy of parameter estimation are verified on both synthetic and experimental data acquired with
an ultrasonic system. The results of both simulations and experiments on laboratory data confirm
the correctness of the assumptions made and the effectiveness of the proposed mitigation methodology.

Keywords: nonlinear systems; Hammerstein model; pulse compression; ultrasonic systems

1. Introduction

The behavior of physical systems is very often modeled using linear techniques. In
reality, only in very particular cases physical systems can behave as linear, so if we want to
obtain high quality results when mathematical models of physical systems are involved, it
becomes of remarkable importance to have models that can represent the behavior of the
system also in a non-linear regime.

The modeling of nonlinear dynamical systems is one of the most challenging research
areas in the field of system representation. Much of the research developed in recent years
has increasingly focused on predominantly data-driven approaches, including neural nets
or fuzzy logic [1], methodologies that assume the availability of large amounts of data. The
amount of available data is not always adequate to represent the complexity of the system
and the computing power is sufficient to handle them. For this reason, they continue to be
widely diffused in the white-box approaches and the gray-box approaches, which place
side by side to a number of data-driven only, black box methods: Such techniques integrate
in different measures the information derived from the knowledge of the physics of the
system and information extracted from the data produced by the nonlinear system.

The white-box approaches require an accurate knowledge of the system. These
techniques rely, for example, on wave digital filters [2,3] or differential equations [4] to
obtain an accurate model of the real system.

If one has detailed knowledge of the physical system, these models can be highly
accurate. If it is not possible to adequately represent the overall physical system by
equations, the gray and black-box approaches can be applied, as they require only partial
knowledge of the system or only the knowledge of input and output signals. A partial
knowledge of the physics of the system allows to fractionate it into connected subsystems,
each representable in a simpler way by adopting a gray-box approach [5,6]. Among the
black-box approaches, the methods derived from the Volterra series are in a prominent
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position, both in terms of accuracy and historically, having been defined long before the
neural network-based approaches. Modeling techniques based on this infinite series are
obtained by truncating them to a finite number of terms [7]. It is however important to
note that, even considering a truncation to a low order of the Volterra series, the number
of coefficients required to define the relevant model quickly becomes very large. This
is an important limitation, because it makes it possible in practice to define adequate
models by following this path only in the case where the system shows a degree of
nonlinearity of small entity. This has prompted the development of simplified expansion
models of the Volterra series [8]. Among these, the Hammerstein and Wiener models are
among the most popular. Having available accurate models and effective techniques for
their identification has allowed the successful application of these nonlinear modeling
techniques of physical systems in many engineering fields, notably including acoustics and
nondestructive testing [9–12].

Among the different types of black-box nonlinear models of physical structures, the
parallel Hammerstein model is particularly interesting as it can be shown that the problem
of identifying its parameters reduces to a linear problem, so classical least squares methods
can be used for their estimate [13]. An efficient technique was proposed in recent years
for the identification of the parallel Hammerstein model [14–16]: Its relative simplicity of
implementation, and the excellent results obtained both in laboratory experiments and in
practical applications, make it one among the most competitive techniques for the identi-
fication of the Hammerstein model: A swept sine signal is input to the nonlinear system
to be modelled and the corresponding output is acquired. Processing this output signal
allows to identify the parameters of the model, as will be detailed in the following sections.

An aspect of this technique, which is of great importance in practical applications,
but which has been only partially addressed in the technical literature, is the analysis of
the effects of noise that inevitably adds to the useful signal in the acquisition step of the
identification procedure. The problem has been addressed in some particular cases such as
in [17], where an iterative procedure for the identification of the Hammerstein model is
defined in the particular case in which the noise, added to the useful signal at the output
of the system to be identified, can be modeled as a correlated noise, assumed to be the
output of a digital filter with a zero mean random sequence as input. In [18], a protocol is
proposed to determine the location of the process noise in a Wiener–Hammerstein system
with respect to the static nonlinearity by using a periodic, nonstationary input test signal.
Hypothesizing the location of the process noise is addressed as a preliminary step in order
to improve the successive model identification. In [19], the hypothesis that damage causes
the structure to exhibit a nonlinear response is tested, and thus the use of Nonlinear Model
Based Features is shown to increase classification performance: although the study does
not directly analyze the effects of measurement noise in the model identification phase, it
evaluates the performance degradation of the classification procedure in the presence of
noise added to the measured signals at the output of the system under study. In [20], the
identification of the nonlinear model is considered in the presence of uncertainties: Under
the assumption of stationarity of the system to be modeled, the effect of uncertainties is
reduced by using repetitions of the input swept sine signal, which is repeated several times
in order to excite the system with a pseudo periodic signal; a period synchronized with the
duration of the swept sine signal is adopted to simplify the implementation. Rebillat and
Schoukens in [21] compare two methodologies of identification of the Hammerstein model
by evaluating, for both, specific performance indexes on systems defined as bench test, and
in the presence of noise.

In the present paper we deal with the problem of the accuracy in the identification of
the Hammerstein model using the identification technique based on exponential swept
sine test signals. We consider the presence of noise that is added to the useful signal when
measuring the response of the nonlinear system. In the paper we propose an original
analysis of the link that exists between the environmental noise superimposed on the
measurement result and the uncertainty in the estimation of the kernels that identify the
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Hammerstein model in the case that the identification technique is based on exponential
swept sine signals. This original analysis, besides clarifying the connection between the
presence of measurement noise and the uncertainties in the estimation of the different
parameters characterizing the identification procedure, represents the basis to define a
novel technique, that we propose in the paper, to mitigate the effects of the superimposed
noise on the quality of the estimation of the parameters that identify the model. The
technique we propose is based on the use of lowpass filters, each designed to operate on
one of the kernels, characterizing the different branches of the Hammerstein model.

The different aspects of the uncertainty reduction procedure are verified both on
synthetic data and in an experimental case. The latter is an ultrasonic measurement setup
with transducers operating in air, chosen because the possible effects due to measurement
noise are particularly relevant: The limited impedance matching and the attenuation due
to air propagation make this an experimental setup where the signal-to-noise ratio can
degrade significantly.

The paper is organized as follows: In Section 2, the theoretical aspects of the procedure
are detailed. In Section 3, the experimental tests carried out on both synthetic and real
devices are described. Section 4 discusses the results obtained, draws conclusions, and
indicates possible evolutions of the work.

2. Theoretical Aspects

In this section we will briefly describe some concepts at the basis of the procedure
for reducing the effects of measurement noise in the identification of the Hammerstein
model based on swept sine signals: The procedure for model parameters identification is
first recalled, then the effect of noise on the assessment of model kernels hi(t) is evaluated.
Finally, the frequency bands characterizing the signals involved in the different steps of the
identification procedure are analyzed.

2.1. Model Identification by Swept Sine Excitation

If we assume that a valid representation of the nonlinear system is the Hammerstein
model, a schematic description of which is shown in Figure 1, the input–output relation of
the system will be:

yH(t) = x(t)⊗ h1(t) + x(t)2 ⊗ h2(t) + . . . + x(t)NH ⊗ hNH (t) (1)

where we indicated with the symbol ⊗ the convolution operation. The output yH(t) is the
sum of the powers up to order NH of the input signal x(t), convolved with appropriate
impulsive functions hi(t); such impulsive functions hi(t) are the kernels that identify the
Hammerstein model.

Figure 1. The Hammerstein model. The input x(t) and each of its powers up to order NH pass
through a different linear filter: (x(t))k is convolved with hk(t). The order NH and the kernels hk(t)
completely characterize the model.

Assume the input is a swept sine, i.e., an harmonic signal x(t) = R Cos(φ(t)) of
amplitude R, with instantaneous angular frequency ω(t) = dφ(t)/dt, which varies over



Appl. Sci. 2021, 11, 7273 4 of 16

time. If we represent vectors and matrices by square brackets, we can write for the output
of the Hammerstein model of order NH :

yH(t) =
[
[R Cos(φ(t))]k

]T
⊗ [h(t)] (2)

where [h(t)] is the vector of the different kernels hk(t), k = 1, . . . , NH , and
[
[R Cos(φ(t))]k

]T

is the transpose of the vector of powers of the input signal.
By means of the Chebyshev polynomials of the first kind, we can express the harmonics

Cos(k φ(t)) of the swept sine function Cos(φ(t)), as functions of the powers [R Cos(φ(t))]k

of the input signal [16]:

[Cos(k φ(t))] = [Ac][Cos(φ(t))]k = [Ac][Rc]
−1[R Cos(φ(t))]k (3)

The entries of matrix [Ac] are the coefficients of Chebyshev polynomials of the first
type, and [Rc] is the diagonal matrix in which the index term {i, i} is the i− th power of
the amplitude R. From expression (3), we can derive the expression of [R Cos(φ(t))]k as a
function of the harmonics Cos(k φ(t)) which, substituted in (2), gives:

yH(t) =
[
[Rc][Ac]

−1Cos(k φ(t))
]T
⊗ [h(t)] = [Cos(k φ(t))]T

[
[Rc][Ac]

−1
]T
⊗ [h(t)] =

= [Cos(k φ(t))]T ⊗
([

[Ac]
−1
]T

[Rc]

)
[h(t)] = [Cos(k φ(t))]T ⊗ [g(t)]

(4)

where we considered that [Rc] is a diagonal matrix, and we defined the vector [g(t)]

containing the functions gi(t), i = 1, . . . NH , by means of [g(t)] =
[
[Ac]

−1
]T

[Rc] [h(t)].
A comparison between Equations (2) and (4) tells us that the output yH(t) of the

nonlinear system, obtained when the swept sine signal x(t) = R Cos(φ(t)) is input, can be
expressed either as the sum of the convolutions between the powers of the harmonic signal
itself and the functions in [h(t)], or, alternatively, as the sum of the convolutions between
the harmonics Cos(k φ(t)) of the signal Cos(φ(t)) and the impulsive functions [g(t)]. The
functions [g(t)] are related to the functions [h(t)] through a linear transformation; the

transformation matrix
[
[Ac]

−1
]T

[Rc] depends on the amplitude R of the input signal and
on the matrix [Ac], whose entries are the coefficients of the Chebyshev polynomials of the
first kind.

The identification procedure of the Hammerstein model, and therefore of the functions
[h(t)], is based on this correspondence between the [h(t)] and the [g(t)]: assume that the
harmonic function: x(t) = R Cos(φ(t)) at the input is such to modify its instantaneous
frequency by following an exponential law, i.e., assume that, if T0 is the duration of the
swept sine signal ranging between the frequencies fMIN and fMAX , the angular frequency
is defined by ω(t) = dφ(t)/dt = 2 π fMIN Exp(t/L), where the constant L is defined as
L = T0/ln( fMAX/ fMIN) and describes how quickly the frequency changes over time. It is
easy to verify that the k− th harmonic of the input signal corresponds to a simple shift of
the signal x(t) by the quantity ∆tk = L ln(k). In fact, we can write for the instantaneous
frequency f (t):

f (t + ∆tk) = fMIN Exp[(t + ∆tk)/L] = fMIN Exp[(t + L ln(k))/L] = k fMIN Exp[t/L] = k f (t) (5)

If, moreover, the input signal complies with specific constraints on its instantaneous
phase, as detailed in [15], we can process the output yH(t) with the matched filter, i.e., a
filter whose impulse response ψ(t) is such that its convolution with the exponential swept
sine signal x(t) = R Cos(φ(t)) produces δ̂(t), a band-limited approximation of Dirac’s
delta function δ(t). The output of the matched filter ψ(t) will then be given by:

u(t) = yH(t)⊗ ψ(t) = [cos[kφ(t)]c]
T ⊗ [g(t)]⊗ ψ(t) =

{[
δ̂(t + ∆tk)

]T
}
⊗ [g(t)] (6)
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where the k− th element of the vector
[
δ̂(t + ∆tk)

]
is the band-limited approximation of

the Dirac delta function shifted in time by the quantity ∆tk = L ln(k) defined above.
The output u(t) of the matched filter, when the signal yH(t) is input, consists therefore

of a sequence of impulsive functions gi(t) starting at the times identified by the shifts
∆tk = L ln(k) related only once the input swept sine signal is defined, to the order k of the
harmonic. If the parameter L is large enough to keep the different gi(t) apart, each of the
gi(t) functions can be obtained by simply extracting an appropriate section in time of the
output signal u(t), starting at a time instant identified by ∆ti. The duration of the time
window beginning at ∆tk depends on the length of the impulse responses hk(t) and can
only be established by trial and error.

Once the [g(t)] functions have been obtained by sectioning the output u(t) of the
matched filter, from the [g(t)] it is possible to derive the [h(t)] functions that identify the
Hammerstein model through a simple linear transformation:

[h(t)] = [Rc]
−1[Ac]

T [g(t)] (7)

Figure 2 shows graphically the processing procedure to obtain the functions [g(t)].

Figure 2. Description of the processing procedure for the identification of the Hammerstein model.

2.2. Noise Power on the Output yH(t) and on Functions g(t) and h(t)

We have seen that the swept sine identification procedure of the Hammerstein model
starts by considering the functions gi(t), obtained by time-windowing at appropriate
positions the response u(t) of the matched filter when its input is yH(t). The response
yH(t) is the one that we have at the output of the nonlinear system under consideration
when it has an exponential swept sine signal as input. From the functions gi(t) obtained
with this procedure, through an appropriate linear transformation we can derive the
functions hi(t) that characterize the Hammerstein model; the coefficients of this linear
transformation are the coefficients of Chebyshev polynomials of the first type. To obtain
the functions hi(t), a combination of the functions gi(t) is performed according to (7). The
combination is performed through coefficients given by matrix [Rc]

−1[Ac]
T . For example,

for a model of order 4, we will have:
h1(t)
h2(t)
h3(t)
h4(t)

 =


1
R 0 0 0
0 1

R2 0 0
0 0 1

R3 0
0 0 0 1

R4




1 0 −3 0
0 2 0 −8
0 0 4 0
0 0 0 8

 =


1
R 0 −3

R 0
0 2

R2 0 −8
R2

0 0 4
R3 0

0 0 0 8
R4

·


g1(t)
g2(t)
g3(t)
g4(t)

 (8)

Assume that additive noise, superimposed on the useful signal, affects the acquisition
of the output to the nonlinear system. The ideal output yH(t) of the nonlinear system will
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be superimposed by the noise sequence N(t), supposed to be white Gaussian with power
spectral density PN( f ) = N0/2. The noise-affected output will be yH N(t) = yH(t) + N(t).

According to the identification procedure, the output signal yH N(t) is filtered through
the matched filter ψ(t): the noise sequence N(t) will thus be filtered giving rise, at the
output of the matched filter, to the noise sequence nu(t) superimposed on the signal u(t).
If we say Ψ( f ) is the Fourier transform of the impulse response of the matched filter:
Ψ( f ) = F{ψ(t)}, the power of noise signal nu(t) at the output of the matched filter can be
evaluated by the:

Pnu = σ2
nu =

∞∫
−∞

PN( f ) |Ψ( f )|2d f =
N0

2

∞∫
−∞

|Ψ( f )|2d f (9)

We denote with σ2
nu the variance of noise process nu(t) superimposed on u(t): all

functions gi(t), are extracted from u(t) at different positions, and will be thus affected by
superimposed noise signals ngi (t) whose variance will be σ2

nu for all of them: σ2
ngi

= σ2
nu .

This common variance will be denoted in the following as σ2
g; furthermore, the overall

noise sequence nu(t) has an impulsive-like correlation function; consequently, the noise
sequences ngi (t), extracted at different positions from nu(t), will be uncorrelated with each
other, as they refer to different portions of the overall noise sequence nu(t).

By following this reasoning, it is straightforward to evaluate the variance of noise
sequences nhi (t) superimposed on each one of the hi(t) kernels from the variance of the
noise sequences ngi (t) added to the gi(t): the noise sequences ngi (t) (uncorrelated, all with
zero mean and variance σ2

g) are combined with each other by using the same coefficients
as the gi(t); in the linear combination, the noise amplitudes ngi (t) will be altered according
to the coefficients [Rc]

−1[Ac]
T seen above. The noise sequences ngi (t) are not correlated

with each other, so the variances of noise sequences nhi (t), denoted as σ2
hi

, will then be
obtained by combining the variances σ2

g with coefficients equal to the square of those in

the matrix [Rc]
−1[Ac]

T . We define the matrix [Vc] =
{
[Rc]

−1[Ac]
T
}2

, where by {[.]}2 we
denote the matrix whose terms are the squares of the individual elements of the matrix [.].
If
[
σ2

h
]

and
[
σ2

g
]

are the vectors of σ2
hi

and σ2
g, we have:[

σ2
h

]
=
{
[Rc]

−1[Ac]
T
}2

.
[
σ2

g

]
(10)

In the example of model order NH = 4, remembering that the variances σ2
g are all

equal to each other, the variances σ2
hi

will be obtained via the linear combination:


σ2

h1
σ2

h2
σ2

h3
σ2

h4

 =



(
1
R

)2
0

(−3
R
)2

0

0
(

2
R2

)2
0

(
−8
R2

)2

0 0
(

4
R3

)2
0

0 0 0
(

8
R4

)2


·


σ2

g
σ2

g
σ2

g
σ2

g

 (11)

2.3. Frequency Band of Functions g(t) and h(t): Noise Reduction on h(t) by Lowpass Filtering

Equation (10) expresses the connection between the variance σ2
g of noise superim-

posed to each function gi(t) and the variance σ2
hk

of noise overlapping the functions hk(t)
in the case where the identification procedure is the one described in the previous sections.

We already mentioned that, under the assumption of stationarity of the system under
measurement [20], proposes to adopt repetitions of the input swept sine signal to reduce
the amount of uncertainties arising from the presence of superimposed noise. In the present
paper we propose a different way to achieve a mitigation of the effects of additive noise.
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The procedure we propose deserves some further consideration about the bandwidths
of the different signals involved. Equation (10) connects the variances of noise processes
superimposed on functions of different types, considered all full-band, i.e., with harmonic
components that can reach the Nyquist frequency. In reality, the different signals whose
variances are combined in (10) relate to different frequency bands: If the excitation signal
x(t) has harmonic components between fMIN and fMAX, the kernel hk(t) present on the
k− th branch of the Hammerstein model will be excited in the frequency band associated
with the k− th power of that signal, that is, in the frequency range between fMIN and k ∗
fMAX , having excluded the DC component, if any; it is, therefore, sufficient to characterize
the kernel hk(t) up to frequency k ∗ fMAX , since it will not be stressed for higher frequencies.
According to the swept sine identification procedure, the kernel hk(t) is obtained through
Equation (7), i.e., through a weighted combination of gi(t) functions, where the i − th
function gi(t) is associated with the i− th harmonic of the input signal, and thus with a
frequency range from i ∗ fMIN to i ∗ fMAX . The combination matrix present in Equation (7)
is an upper triangular matrix, and thus the functions gi(t) that contribute to build the
k− th kernel hk(t) are those with indices ranging from k itself to the value NH i.e., to the
maximum order of the Hammerstein model. Thus, according to Equation (7), to obtain
the functions hk(t) (that we know are defined in the frequency band limited to k ∗ fMAX),
we linearly combine the functions gi(t) whose frequency band is wider than that of the
hk(t) we are seeking. The frequency range of the combination of the gi(t) needed to obtain
hk(t) has an overall harmonic content ranging from k ∗ fMIN to NH ∗ fMAX , so it extends to
frequencies much higher than those we know characterize the hk(t) function we want to
identify. This implies that if we lowpass filter the linear combination of the gi(t) functions
contributing to hk(t), and limit the contributions to the useful band of each hk(t) , i.e., to
k ∗ fMAX, we can sensitively reduce the noise effects without altering the quality of the
identification result.

This filtering operation has to be carried out in a frequency band whose range depends
on the order of the function hk(t) to be identified, so for each kernel hk(t) an ad hoc lowpass
filter will have to be defined.

3. Experimental Results

The experiments reported in this section are aimed at verifying the different aspects
highlighted in the previous section of the paper. A first aspect is the relationship between
the noise superimposed on the gi(t) functions and the noise superimposed on the kernel
hk(t) that identify the Hammerstein model: This aspect is tested in the following Section 3.1.
The subsequent sections are instead aimed at verifying the effectiveness of the technique
of lowpass filtering to mitigate uncertainty in the identification of kernels hk(t) due to the
effects of noise superimposed in the measurement phase: Section 3.2 reports the results
of noise effects mitigation obtained in a simulated experiment, while Section 3.3 reports
the results obtained when measuring real data collected in a measurement bench with
ultrasonic probes operating in air.

3.1. Noise on the gi(t) Versus Noise on the hk(t)
In this section, we verify expression (10), which we have shown is the functional

link between the power of noise superimposed on functions gi(t) and the corresponding
power of noise superimposed on the hk(t) estimated by combining the gi(t). We start with
the simulation of the noise sequence superimposed on functions gi(t) and estimate their
variances; we then operate the linear transformation (7) and obtain the corresponding noise
sequences affecting the hk(t) kernels; in this case too we estimate the variance vector

[
σ2

h
]

characterizing these noise sequences. We thus compare the latter estimates
[
σ2

h
]

with
those obtained by means of Equation (10).

Figure 3 plots the noise sequences: The first line of Figure 3 reports an example of the
noise sequences obtained by truncating at different ∆tk the function u(t), in the absence of
input excitations: The value of the noise powers in the four segments, estimated by aver-



Appl. Sci. 2021, 11, 7273 8 of 16

aging over 50 trials, is
[
σ2

g
]
=
[

0.0098 0.0090 0.0101 0.0099
]T . The second row

of Figure 3 shows the noise sequences obtained by the transformation (7). Noise powers,
estimated from the sequences, are

[
σ̂2

h
]
=
[

0.0157 0.0048 0.0006 0.0002
]T .

Figure 3. Correspondence between noise sequences superimposed on g(t) and h(t). Plots (A–D): noise sequences on
g1(t), g2(t), g3(t), g4(t), respectively. Plots (E–H): noise sequences on h1(t), h2(t), h3(t), h4(t), respectively.

We then compare these estimates with the corresponding variance values predicted
by using equation (10), which gives the estimates of the same

[
σ2

h(t)

]
starting from the[

σ2
g
]
: we obtain from (10):

[
ˆ̂σ2

h

]
=
[

0.0154 0.0047 0.0006 0.0002
]T .

The percentage estimate error made adopting (10), evaluated by means of σ2
i_ERR% =

100
(

ˆ̂σ2
hk
− σ̂2

hk

)
/σ̂2

hk
, in the case of the above example gives:[

σ2
ERR%

]
=
[
−1.54% −1.87% 0.0% 0.0%

]T

The low error values confirm that the variance
[
σ2

h
]

of the noise superimposed on
the kernels [h(t)] can be accurately obtained from an estimate of the power of the noise[
σ2

g
]

superimposed on the functions [g(t)] by adopting Equation (10).

3.2. Mitigation of Noise Effects: Simulation Tests

We begin testing the effectiveness of the procedure proposed for mitigating the effects
of noise in a simulation experiment: The importance of performing simulation tests is to
have a complete feedback of the improvement we achieve in the estimation of the kernels
hi(t): Their reference trends are known, since they have been analytically defined to be
included in the synthetic system. Consequently, a direct comparison with the result of
the identification procedure in the presence of noise is possible, and we can quantify the
benefits arising from the proposed mitigation procedure.

We have generated a synthetic nonlinear system of the fourth order, defined according
to the Hammerstein model. In the different branches of the model we adopted as kernels
hi(t), the four functions are represented in Figure 4. They all have typical behavior of the
impulsive response of a filter of the second order and differ for the central frequency and
for the attack delay time, which both increase as the order increases. The values adopted
in our simulations to characterize the four kernels of the synthetic model are reported in
Table 1.



Appl. Sci. 2021, 11, 7273 9 of 16

Figure 4. Kernels hi(t) adopted in the synthetic Hammerstein model of the fourth order. Plots (A–D): reference functions
h1(t), h2(t), h3(t), h4(t), respectively.

Table 1. Values that characterize the four kernels of the synthetic model.

h1(t) h2(t) h3(t) h4(t)

f0 [kHz] 200 400 600 800
Delay [µs] 0.0 2.5 5.0 7.5

For the purpose of verifying the accuracy in model identification, the system is
elicited with an exponential swept sine signal of amplitude R = 1 whose frequency range
fMIN = 40 [kHz] to fMAX = 1600 [kHz] contains the frequency bands that characterize all
the hi(t) kernels.

A Gaussian white noise is added to the response yH(t); the value of its standard
deviation is such that the signal-to-noise ratio (SNR) is brought to the desired level: The
values SNR1 = 10 [dB] and SNR2 = 5 [dB] were considered. Let us say yH N(t) is the noisy
response. It is convolved with the filter matched to the input signal to obtain the output
signal u(t). The functions gi(t) are obtained by taking portions of u(t) at the time instants
∆ti. From gi(t), the estimates of the kernels hk(t) are obtained. To verify the effectiveness of
the noise reduction technique, we report both the results of the estimates in the absence of
lowpass filtering and the results obtained after the additional lowpass filtering step of each
of the estimated hk(t) kernels. The impulse response of the FIR (Finite Impulse Response)
filter is defined using a frequency sampling method, starting with the amplitude values
that define the required low-pass amplitude response in the frequency domain.

Figures 5 and 6 show the superposition between the estimated hk(t) kernels and the
corresponding reference trends, respectively, for the case SNR1 = 10 [dB], and for the case
SNR2 = 5 [dB]: The upper row of each figure refers to the estimate without filtering and
the lower row shows the trend of the estimated hk(t) after the additional lowpass filtering
step. The figures clearly show that the lowpass filters defined ad hoc for each order of
the kernel greatly reduce the effects of superimposed noise without deteriorating the time
course of the function we want to estimate.

Figure 5. Cont.
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Figure 5. Estimated hk(t) kernels in the case SNR1 = 10 [dB] (blue lines) and reference kernels (red lines). Plots (A–D):
h1(t), h2(t), h3(t), h4(t) estimates before lowpass filtering and reference. Plots (E–H): h1(t), h2(t), h3(t), h4(t) estimates
after lowpass filtering and reference.

Figure 6. Estimated hk(t) kernels in the case SNR1 = 5 [dB] (blue lines) and reference kernels (red lines). Plots (A–D):
h1(t), h2(t), h3(t), h4(t) estimates before lowpass filtering and reference. Plots (E–H): h1(t), h2(t), h3(t), h4(t) estimates
after lowpass filtering and reference.

In order to give a quantitative evaluation of the improvement effect allowed by the
filtering technique proposed in this paper, we adopted the performance index proposed
in [21]:

PIhk
=

∑Ns
j=0[ĥk [j]−hk [j]]

2

∑Ns
j=0[hk [j]]

2 k = 1, . . . , NH

PI3 = 1
NH

NH
∑

k=1

(
PIhk

)
= 1

NH

NH
∑

k=1

(
∑Ns

j=0[ĥk [j]−hk [j]]
2

∑Ns
j=0[hk [j]]

2

) (12)

where hk[j] is the k− th reference kernel and ĥk[j] is its estimate, Ns is the number of samples
of both the actual and estimated kernels, and NH is the order of the Hammerstein model.

The values of the indices calculated both before and after filtering for the two cases of
signal to noise ratio equal to 10 [dB] and 5 [dB] are shown in Tables 2 and 3.

Table 2. Values [dB] of the performance indexes defined by (12): case of SNR = 10 [dB].

SNR = 10 dB PIh1 PIh2 PIh3 PIh4 PI3

pre filter −7.37 −0.61 −0.58 2.92 −0.12
filtered −14.74 −8.91 −10.76 −4.13 −8.00
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Table 3. Values [dB] of the performance indexes defined by (12): case of SNR = 5 [dB].

SNR = 5 dB PIh1 PIh2 PIh3 PIh4 PI3

pre filter −0.99 2.02 2.80 4.07 2.33
filtered −8.88 −2.78 −4.58 0.10 −2.95

It is evident from the values shown in Tables 2 and 3 that both in the less noisy case
and in the noisier one, the action of filtering is such as to significantly reduce the index
value, and, therefore, improve the signal to noise ratio obtained.

3.3. Mitigation of Noise Effects: Ultrasonic System with in-Air Propagation

A verification of the proposed procedures was also carried out in the case of laboratory-
acquired data. The measurements were performed on an ultrasonic acquisition system
designed for in-air propagation, as shown in Figure 7. The measurement setup consists, in
sequence, of a personal computer (PC) for management and supervision; an HS5 TiePie
handyscope used as a generator of arbitrary waveforms; a Falco-System power amplifier;
a pair of identical non-contact point focused ultrasonic transducers by Ultran, used in
transmission and reception; again the TiePie, used this time as a data logger; and the PC
for data storage. The ultrasonic probes operate at a center frequency of 200 KHz, and
the emitted beam is focused at a single point (F = 10 cm). The probes allow a maximum
input voltage of 150 V. The Falco-System power amplifier was used with an amplification
factor of 50×. The probes, a pair of ULTRAN NCG 200-D25 P100 focused probes, were
mounted in a through-transmission configuration (through air alone) on precision mounts
and placed at a distance of approximately 21 cm, the distance at which the received signal
was maximized.

Figure 7. Schematic representation (A) and image (B) of the Ultrasonic non-contact bench.

The identification step was performed using an exponential swept sine signal of
amplitude R = 1. It was assumed that the system could be usefully characterized by a
swept sine signal of duration 9.3 [ms] operating in the range between 50 kHz and 400 kHz,
sampled at 5 Ms/s. The order adopted for the Hammerstein model was NH = 4. Several
measurements were carried out by slightly modifying the distance of the probes in order
to change the level of useful signal received, and therefore the SNR ratio through slight
defocusing. We report in the following the results of two experiments, which differ only in
the value of the SNR ratio that characterizes them.

Figure 8 shows, in an expanded scale, the trend of the gi(t) functions for the four
orders considered in the case of the lower SNR value (estimated Peak Signal to Noise ratio
on yH N(t) = 20 [dB]).
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Figure 8. Non-contact point focused ultrasonic probes experiment: gi(t) functions for the four orders considered (expanded
representation scale) in the case of the lower SNR value (20 [dB]). Plots (A–D): functions g1(t), g2(t), g3(t), g4(t), respectively.

They were obtained by taking the appropriate sections of the signal at the output to
the matched filter. A first observation concerns the fact that even in the real data case, the
hypothesis seems to be verified—the noise power on the function gi(t) is independent of
the order of the function. The variance of the noise superimposed on the gi(t) functions,
estimated in segments of the output signal u(t) preceding the instants ∆tk and averaged
over 50 trials, gives the following values:[

σ2
g

]
=
[

0.47 0.49 0.43 0.44
]T

The corresponding functions hk(t) are shown in Figure 9: In analogy with Figures 6 and 7,
the first line of Figure 9 shows the trend of the functions hk(t) before the lowpass filtering
operation. The second line shows the trends of the same functions after they have been
lowpass filtered: Even at visual inspection, the improvement of the signal on the first three
functions clearly appears, while it is also evident from h4(t), that if the noise level exceeds
the useful signal, the filtering procedure can remove part of the noise, but cannot fully
highlight the trend of the desired function, where present. We observe also in this real data
case, that the filtering operation has not altered the temporal trend of the hk(t) functions,
as far as it is possible to appreciate in cases where the noise level is not excessively high.
The variance of the noise superimposed on the hk(t) functions in the case of the lower
SNR value, estimated in the initial portion of the sequences and averaged over 50 trials,
gives the values reported in Table 4: The positive effect of filtering is evident in all four
orders. Improvements of different magnitudes are apparent for different orders: this will
be discussed in the following section.

Figure 9. Estimated hk(t) kernels in the case of the ultrasonic acquisition system designed for in-air propagation in the
case of the lower SNR value (20 [dB]). Plots (A–D): h1(t), h2(t), h3(t), h4(t) estimates before lowpass filtering. Plots
(E–H): h1(t), h2(t), h3(t), h4(t) estimates after lowpass filtering.
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Table 4. Noise variance estimates on the hk(t) in the absence and presence of low-pass filtering in the
case of the lower SNR value.

h1(t) h2(t) h3(t) h4(t)

No filter 4.69 29.15 5.25 25.95
Low pass filter 3.70 5.31 1.22 11.91

Figure 10 shows, in an expanded scale, the trend of the gi(t) functions for the four
orders considered in the case of the higher SNR value (estimated Peak Signal To Noise
ratio on yH N(t) = 31 [dB]).

Figure 10. Non-contact point focused ultrasonic probes experiment: gi(t) functions for the four orders con-
sidered (expanded representation scale) in the case of the higher SNR value (31 [dB]). Plots (A–D): functions
g1(t), g2(t), g3(t), g4(t), respectively.

The corresponding functions hk(t) are shown in Figure 11, which is organized as in
the case of Figure 9.

Figure 11. Estimated hk(t) kernels in the case of the ultrasonic acquisition system designed for in-air propagation in the
case of the higher SNR value (31 [dB]). Plots (A–D): h1(t), h2(t), h3(t), h4(t) estimates before lowpass filtering. Plots (E–H):
h1(t), h2(t), h3(t), h4(t) estimates after lowpass filtering.

The variance of the noise superimposed on the gi(t) functions in the case of the higher
SNR value, estimated in segments of the output signal u(t) preceding the instants ∆tk and
averaged over 50 trials, gives the following values:[

σ2
g

]
=
[

1.28 1.14 1.65 3.81
]T

The variance of the noise superimposed on the hk(t) functions in the case of the higher
SNR value, estimated in the initial portion of the sequences and averaged over 50 trials,
gives the values reported in Table 5: The positive effect of filtering is evident in all four
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orders. Improvements of different magnitude are apparent for different orders: This will
be discussed in the following section.

Table 5. Noise variance estimates on the hk(t) in the absence and presence of low-pass filtering in the
case of the higher SNR value (31 [dB]).

h1(t) h2(t) h3(t) h4(t)

No filter 8.05 68.60 12.21 63.62
Low pass filter 5.84 35.59 7.20 45.04

It can be interesting to compare the results obtained using the method we propose in
the present paper with those obtained using the method proposed in [20]. Table 6 shows
the results obtained by applying, on the same experimental setup, the noise reduction
technique proposed in [20] in the case of 20 repetitions. We first observe that the comparison
assumes the applicability of the method proposed in [20], and thus, that the nonlinear
system is stationary, at least for the duration of the repetitions.

Table 6. Noise variance estimates on the hk(t) in the absence of processing and averaging the
estimates over 20 repetitions; case of the higher SNR value (31 [dB]).

h1(t) h2(t) h3(t) h4(t)

No processing 8.05 68.60 12.21 63.62
20 repetitions 6.05 54.28 8.72 51.36

Table 6 shows that in the cases of the estimation of h1(t) and h3(t), the results obtained
are comparable with those of the method proposed in this paper, but considerably lower
than what should be theoretically expected in the presence of Gaussian white noise.

In the cases of h2(t) and h4(t) estimation, the improvement obtained with the averag-
ing technique is in line with theoretical expectations. This can be explained by analyzing
the trends over time, for example in Figure 11: The residual variability is related to an
oscillation and not to white noise; as shown in [22], this variability of the signal results
directly from the limited bandwidth of δ̂(t), the approximated delta function, and thus
from limitations of the identification technique, and is not associated with random noise;
therefore, it cannot be removed either with filtering techniques such as those proposed
in this paper or by averaging over repetitions of the experiment. If we want to draw
conclusions about the comparison between the two methods, we can say that, where the
noise level is very low, the two methods are equivalent; the method proposed in this work,
in addition to not assuming characteristics of stationarity of the system, allows to obtain
better results in the presence of high noise variance compared to the signal level.

4. Discussion and Conclusions

The various experiments we made were aimed at verifying the different aspects that
had been highlighted theoretically in the paper. The correspondence between the noise
superimposed on the gi(t) functions and the noise superimposed on the hk(t) functions,
estimated from the gi(t) functions, was verified through the tests performed in Section 3.1:
The estimates made on the noise sequences superimposed on the gi(t) functions and the
hk(t) functions showed to be in line with what could be theoretically predicted using
relation (10), confirming the validity of the proposed technique.

The subsequent Sections 3.2 and 3.3 had instead the purpose of verifying the theoretical
hypotheses made on a possible improvement in the estimation of the hk(t) parameters, in
the presence of noise, through a low-pass filtering operation. As a preliminary remark,
since we wanted to consider the time behavior of the hk(t) functions, we chose to perform
low-pass filtering through linear phase FIR filters, each with a specifically defined cutoff
frequency related to the kernel order k, in order to preserve, as far as possible, the time
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course of the hk(t) functions linked to the harmonic contents present in the pass band of
each low-pass filter. Both in the case of synthetic data and in the case of real data it was
possible to find that the filtering operations significantly improve the quality of the estimate
and do not significantly alter the hk(t) functions.

The results in Tables 4 and 5 deserve specific comment. The variance of the noise
superimposed on the functions hk(t), estimated in the initial portion of the sequences and
averaged over 50 trials, gives the values reported in the table: The positive effect of filtering
is evident in all four cases and for both SNR levels, but especially in the cases of order
2 and 4. This effect, so different among the different orders, can be easily explained: In
the calculation of h2(t) and h4(t), the transformation (7) implies a strong emphasis (with
coefficient |8|) of the function g4(t) (the one of highest order NH = 4) and therefore of
the noise associated with it: The high variance value of the noise on h2(t) and h4(t) before
filtering can be ascribed to this aspect. The same function g4(t) is the one associated to
the fourth harmonic, so the corresponding noise components have an harmonic content
that includes high frequencies: They can be easily removed by the low pass filtering
operation. This also explains the strong reduction, as a consequence of filtering, of the
estimated variance.

The very good results we presented encourage us to work on further extensions of the
research activity; we plan to use the techniques proposed in this paper in new experimental
setups for further verifications. In addition, we want to test how these techniques combine
with the filtering techniques proposed in [22] for the elimination of oscillations due to
the band-limited swept sine excitation signal. Extending those techniques to the case of
nonlinear device identification in the presence of noise could bring further improvements
in the Hammerstein model identification step of a nonlinear system.
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