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Featured Application: This research describes the application of an instrumented sphere for
monitoring the vigorousness of its interactions as it is transported downstream a turbulent river.
The presented tool has the potential to offer, in a novel and relatively accessible and direct way,
information that links to the bed load transport rates in natural streams and built canals.

Abstract: Sediment transport at near threshold to low transport stages (below the continuous trans-
port) can still be affected by flow turbulence and its dynamics can benefit from further comprehensive
studies. This study uses an instrumented particle embedded with micro electromechanical sensors
(MEMS) to allow tracking the motions and forces acting on it, leading to and during its transport.
Instrumented particle transport experiments were carried out at laboratory flume under a range of
flow conditions. The probability distributions functions (PDFs) of bed load particle instantaneous
velocities, hop distances and associated travel times (measured from start to stop of transport) were
obtained for all the performed experiments with varying flow rates and particle density. The modelled
distributions are useful and enable a deeper understanding of bed load sediment transport dynamics
from a Lagrangian perspective. Furthermore, the results analyzed from the instrumented particle
(including the particle’s transport mode) were validated using visual particle tracking methods
(top and side cameras). The findings of this study demonstrate that for the range of turbulent flows
trialed herein, the instrumented particle can be a useful, accessible, and low-cost tool for obtaining
particle transport dynamics, having demonstrated satisfactory potential for field deployment in the
near future.

Keywords: sediment transport; turbulent flows; particle hopping; probability distribution
function (PDF); micro-electromechanical sensors (MEMS); river engineering

1. Introduction
1.1. Background to Bed Load Transport Processes

Sediment transport processes govern the stability of infrastructure near flowing water
bodies as well as the ecology and geomorphology of many freshwater habitats, thus being
important enough to have been studied for many decades [1,2]. Sediment transport is
typically classified into bed load and suspended load, with the former commonly char-
acterizing the transport of fine to coarse sediment traveling downstream with frequent
contact with the bed. In contrast, suspended load refers to very fine sediment (practically
comprising of finer particles such as silts, fine sands, and clays) transported above the bed
load layer. Several processes in fluvial hydraulics such as erosion, deposition, scour, and
the generation and disintegration of bed-forms are largely governed by bed load sediment
transport [3–8].

Sediments initially resting on the bed surface may jump, slide, and roll downstream,
when near-bed surface flow conditions exceed the threshold for particle entrainment.
Therefore, corresponding modes of transport, namely rolling, sliding, and saltation, have
been used to describe these distinct, highly dynamical processes and the reasons leading
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to their occurrence, as well as rate of occurrence (see Figure 1 for a visual description of
these processes). Whether a sediment particle is transported by one or another bed load
transport mode is controlled by the combination of flow and sediment particle properties,
greatly affecting their dynamical interactions. The mode of bed load transport has been
found to depend on the ratio of the settling velocity and the shear velocity [9], while other
research has shown the relevance of the particle Reynolds number as defining the saltation
processes [10], also irrespective of particle size.
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transport. Near (and just above) threshold flow conditions are capable of intermittently 
displacing a particle resting on the bed surface over a short downstream distance (typi-
cally an order of the particle’s diameter), depending on the frequency and magnitude of 
occurrence of sufficiently energetic flow events [14] (e.g., see green particle in Figure 1). 
The slide mode usually occurs for relatively platy particles, when the instantaneous drag 
forces overcome the resistance to friction at the contact points of particle and the bed sur-
face, making it slip over the top of the bed surface. The elongated or platy shape of the 
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size and lack of sufficient pressure forces mean that it will effectively be transported while 
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properties, leading to its downstream transport [14,18]. Consecutive particle jumps, typi-
cally termed as particle “hops”, move between adjacent bed surface contacts, exchanging 

Figure 1. Schematic demonstrating the main modes of bed load transport by rolling, sliding, and
saltation, shown in green, orange, and red colors, respectively. The initial resting position is shown
with a dark colored particle, while the transported particle position is illustrated with the lighter
respective colors. Note the variable hop distances traveled downstream by a saltating particle, as
governed by highly dynamical complex three-way (particle-turbulent flow-bed surface) interactions.

For example, the rolling mode occurs when a relatively more rounded particle trans-
lates over the ridge formed by the tops of the sediment particles forming the bed surface.
For flows very close and below the threshold of motion, only small but noticeable twitching
or vibrating motions may be observed, for both aeolian [11] and fluvial [12,13] bedload
transport. Near (and just above) threshold flow conditions are capable of intermittently dis-
placing a particle resting on the bed surface over a short downstream distance (typically an
order of the particle’s diameter), depending on the frequency and magnitude of occurrence
of sufficiently energetic flow events [14] (e.g., see green particle in Figure 1). The slide
mode usually occurs for relatively platy particles, when the instantaneous drag forces
overcome the resistance to friction at the contact points of particle and the bed surface,
making it slip over the top of the bed surface. The elongated or platy shape of the sediment
particle renders it difficult to rotate (and roll) around its axis, yet the particle’s size and
lack of sufficient pressure forces mean that it will effectively be transported while retaining
contact with the bed surface throughout its motion [15].

Saltating motions are the dominant (in terms of the percentage of material transported
or the portion of the mean transport time of individual particles being transported [3,16,17])
mode of transport for flows above the incipient motion threshold. Depending on the flow
(including the magnitude of mean flow and turbulence intensity) and particle characteris-
tics, saltating particles may move in small hops to larger ballistic-like motions, near the
bed surface. This process is largely happening without maintaining continuous contact
with the bed surface (as opposed with rolling or sliding modes of transport).

Transport in saltation mode typically occurs with a series of particle jumps, the charac-
teristics of which (e.g., height and downstream length) are governed by sediment particle
(including shape, density and size), bed surface (roughness, forms and slope), and flow
(mean shear stresses, turbulence intensity or occurrence of energetic flow events) properties,
leading to its downstream transport [14,18]. Consecutive particle jumps, typically termed
as particle “hops”, move between adjacent bed surface contacts, exchanging energy with
the flow (offering energy for transport) and solid interface (and abruptly dissipating trans-
port energy out due to collisions). These hops will naturally have a variable lengthscale
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governed by the instantaneous interactions of the particle with its surrounding flow field,
resulting in a range of hop distances per transport event (see saltation event shown in
Figure 1). As a result, an above-threshold flow will have a distribution of hop distances
characteristic of these interactions [19].

1.2. Conceptual Description of Transport Processes by Hopping

Laboratory experiments have not only been essential in developing empirical bed
load equations, but they have also been used to clarify some of the more detailed processes
and mechanics in sediment transport from near above-threshold to higher solids transport
flow conditions [16–18]. As mentioned before, the dominant mode of bed load transport
is saltation, characterized by particle hops or bounces along the bed surface. This is due
to the action of hydrodynamic forces exceeding the resisting component of its submerged
weight. A typical demonstration for particles laying in a bed surface of slope α, transported
by saltation a range of particle packings and local arrangements and hinderance from
surrounding particles, is given in Figure 2. Sediment motion is initially driven by almost
impulsive turbulent flow events (Ii), making the particle ascend for a certain distance (from
a fraction of its diameter to a lengthscale comparable to its diameter), and then descend
towards the bed surface, under the action of gravity, eventually ceasing its motion after one
or more collisions with the particles comprising the bed surface [12]. Sediment movement
(number of hops and individual hop characteristics) is controlled by the particle’s collisions
with the bed surface and driven by the resultant force, which comprises the component of
the submerged particle’s weight (Wsub), and hydrodynamic drag (FD) and lift (FL) force
components, orthogonal to the particle’s local coordinate system centered at its center of
mass [20,21]. The almost impulsive [22] kick offered by the turbulent flow event towards
pushing a particle out of its pocket by saltation is the temporal integral of the total force
acting on the particle, for the duration where the driving hydrodynamic (combination of
drag and lift) forces exceed the resisting forces (component of the submerged particle’s
weight), as shown in Figure 2. For the case of a fully exposed particle, the hydrodynamic
drag has a greater potential of resulting in an incipient entrainment (for a coarse particle,
see green colored particle in Figure 2). The applied drag force, FD, can be estimated by
the classical quadratic local flow velocity parameterization or as a function of the pres-
sure differential between the upstream and downstream face of the particle, FD = (∆Ph)
Aparticle, where Aparticle is the particle area projected on a plane perpendicular to the
streamwise flow direction and ∆Ph is the pressure difference between the particle’s up-
stream and downstream face [23]. For the fully exposed particle arrangement, Aparticle is
about 87% of the area of the particle’s cross-section, because of limited partial blockage by
the upstream base particles. For greater ranges of partial hinderance (e.g., orange colored
particle), this percentage will reduce all the way to zero for the case of fully buried particles
(red colored particle, Figure 2). For the latter case, the impulsively applied lift force (FL) is
the driving force to lift the particle above its pocket, whenever it exceeds the submerged
component of its weight. Hydrodynamic lift can be estimated as the pressure difference
between the bottom and the top of the particle (∆Pv) because of the velocity gradient
near the bed surface, as FL = (∆Pv − ρgD cosα) Aparticle, in which Aparticle = πD2/4 is
the particle area projected on a plane along the bed surface, and ρgD is the difference in
hydrostatic pressure between the top and bottom of the particle [24–27]. In the case of a
partially buried particle, which is the common case for loosely packed sediment particles
(e.g., shown in orange color, Figure 2), a combination of drag and lift forces may contribute
to the particle’s saltation.
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Figure 2. Demonstration of the dominant above-threshold hydrodynamic forcing modes for a particle
hopping out of its pocket, leading to transport by saltation. Hydrodynamic impulse is defined as the
temporal integral of the total force acting on the particle. This can primarily be the hydrodynamic
drag (FD), lift (FL), or a combination of both forces, for the cases of a particle fully exposed, partially
hidden, and buried in the bed surface (shown in green, orange, and red, respectively).

Transport of sediment particles by saltation has received extensive attention [28–31],
being a significant subject in the field of the hydraulic and river engineering, as it relates to
many hydraulic engineering challenges such as channel bed and bank destabilization [32],
as well as central for the stability of hydraulic infrastructure against scour (such as bridge
piers and abutments [33–36]). Understanding sediment hop dynamics can lead to insights
into the formation of more coherent morphological structures on the bed surface, such as
pebble clusters [37], ribs, and riffle pools [38].

Particle hop metrics are essential in describing bedload transport in saltation mode
and can be used to understand the complexity of sediment dynamics, by using a range of
derived variables such as hop length (∆x), hop travel time (∆t), and mean instantaneous
particle velocities (Vmean). Hop length (∆x) is defined as the stream-wise distance travelled
by one saltating particle, from the start of its motion to the end of its rebound. Hop travel
time (∆t) is the time of particle transport elapsed between the start of its motion and the
end of its rebound.

1.3. Lagrangian Observations of Transport Processes Facilitated via Novel Sensing Tools

Flow sensing and transport processes monitoring and instrumentation have gained
increasing attention following the relatively recent technological advancements in the field
of micro-electromechanical sensors (MEMS) that make it possible to record Lagrangian
observations of individual sediment particles [39–45] and shed light on the dynamics of
sediment transport processes at an extraordinary resolution and with high precision fused
inertial measurement units, IMUs (e.g., via the use of robust and accurate accelerometers,
gyroscopes, and magnetometers) [46–48]. Instrumented particles with a range of such
sensors can be placed on the riverbed surface to simulate the response of light natural
pebbles, exposed to a flow field that can set these into motion downstream a river. The main
data logged are the components of particle accelerations in the particle’s local coordinate
system as well as angular displacements around these. As with all electronics, limitations
of such devices revolve around the duration; they can be autonomously powered before a
need to recharge or change a power source. This has not been an issue for controlled lab
experiments, but it may become a constraint for long periods of field deployment, affecting
the useful logging durations that can be achieved or requiring a compromise in terms
of the number and frequency of data being logged. Novel miniaturized instrumented
particles equipped with high precision accelerometer and gyroscope sensors have also
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been developed, recording time series of acceleration and angular displacement, finding
application for the monitoring of bed surface destabilization [47,49], and monitoring low
mobility bedload transport conditions [48].

Given the highly dynamic and relatively intermittent character of saltating particles
inherited by turbulent flows just above the threshold of incipient motion and the random-
ness of particle properties (such as size and shape) and local microtopography properties
(bed surface particles’ arrangement and packing), as well as the complex particle/particle
and fluid/particle interactions during transport by hopping [37]. The statistical descrip-
tion of sediment transport by using probability distributions is useful due to extensive
temporal and spatial irregularity of the factors which control it, such as local grain geom-
etry, relative grain exposure, friction angle, and bed surface packing conditions [37,50].
Researchers [13,37,51–54] have studied sediment transport in a probabilistic context and
attempted to relate it to the hydrodynamic properties of turbulent flows, while consid-
ering sediment transport at the particle scale. As a universally accepted criterion that
robustly explains this dynamical process and stochasticity does not yet exist, the stochastic
description of sediment transport dynamics at a high resolution using MEMS appears to
be attractive [48].

1.4. Outlook for the Current Study

Herein, this research combines improved understanding of the saltating particle
processes with advances in the MEMS sensing capabilities to deploy an instrumented
particle monitors particle transport from a Lagrangian approach. This study focuses on
assessing the potential of advanced sensing technologies (e.g., instrumented particle) to
monitor individual sediment particle hop characteristics, through a series of controlled
flume experiments, towards better understanding and quantifying the dynamical processes
of sediment transport at the grain scale for above-threshold conditions. In this research, the
results obtained from the analysis of sensor data are linked to sediment transport processes
and validated using visual methods (particle tracking methods from video input from high-
speed cameras, similar to [18], offering top and side views). In practice, the instrumented
particle is used as a traditional stepper tracker (but for a sediment particle), and while
offering novel dynamical metrics in unprecedented detail. The size and resolution of
the sensor data sets presented in this work offer sufficient detail for robustly describing
the probability distributions of hopping processes and derived metrics. It is found that
the Lagrangian description of the instrumented particle hopping, using embedded IMU
sensors, with detailed and high-resolution information, can offer refined statistics for the
representation of dynamical sediment transport processes, as well as novel insights on the
effect of changes of particle densities and turbulent flow rates and bed surface roughness
on the characteristics of a particle’s saltation.

2. Experimental Methodology

A set of well-controlled laboratory flume experiments have been designed and carried
out using in-house developed instrumented particle devices (similar to [46–49]), to better
understand what controls coarse sediment transport hopping dynamics downstream
gravel-bed rivers. Below, the details of the experimental test section, equipment, and
matrix are offered.

2.1. Experimental Set Up

The experiments for this study were conducted under a range of well-controlled, fully
turbulent, and rough flow conditions to evaluate the performance of the instrumented
particle at a 7 m useful length Armfield flume in the Water Engineering Lab at the Uni-
versity of Glasgow. The purpose of these experiments was to assess the transport rates
and hopping characteristics of an instrumented particle of different solid densities, for a
range of flow rates above entrainment threshold conditions (just above the threshold of
motion and well below continuous transport). The flow rate through the test section was
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controlled by adjusting the frequency of the pump using a controller for the pump inverter.
The observations of this experiment were obtained from tests carried out using a flume
with the following channel specifications: 10 m full length, up to 0.4 m deep, and 0.9 m
wide. The flume walls comprise smooth transparent glass, which allows observing particle
transport from the side.

The bed surface is hydraulically roughened using gravel and glass beads of simi-
lar size, in a well-packed arrangement (Figure 3). Specifically, the flat bed surface was
roughened using two sets of well-packed glass beads, having a rectilinear (rhomboidal or
tetrahedral) arrangement to render the bed surface relatively uniform and avoid complex-
ities of bed formations affecting transport characteristics. Two bed surface roughnesses
have been simulated using two distinct particle sizes to compose each (see bed surfaces A
and B in Figure 3a,b, respectively). Bed surfaces A and B comprise unisize well-packed
particles having nominal diameters of 1.5 cm and 3.15 cm, respectively, resulting in distinct
macroscopic hydraulic roughness. The test section over which the instrumented particle is
transported by saltation has dimensions of at least 150 cm and 50 cm in length and width
(Figure 3), respectively, for each bed surface. At the downstream end of the flume, the test
section is located at 1.75 m from the tailgate of the flume. Figure 4 shows photographs taken
from video produced from the top cameras over each of the test sections, during actual
experimental runs. The instrumented particle being transported over each bed surface
roughness is also clearly shown (black sphere, with white marks to also help visually
validate the rate of instrumented particle rotations).
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illustrating the field of view captured during the experimental runs and covering the full extent of
the experimental test section, for bed surface: (a) A and (b) B.

2.2. Experimental Equipment and Instrumentation
2.2.1. Flow Velocimetry

Instantaneous flow records were taken using a 3D Acoustic Doppler Velocimeter
(Vectrino I © ADV, Nortek Inc., Providence, RI, USA), recording time series of local flow
measurements at 25 Hz. Records of the local flow velocity along the water column were
obtained to acquire mean flow velocity and turbulent intensity profiles. These allowed for
the derivation of mean flow velocity and shear stress u* (assuming logarithmic velocity
profiles [54,55]) estimates for each of the flow rates trialed herein. Shields shear stresses τ∗
are found using the bed shear stresses (τo = ρu2

∗), estimated from the shear velocity u*:

τ∗ =
τo

(ρs − ρw)gD
(1)

where ρs and ρw are the densities of solid particle and water, respectively, g is the gravita-
tional acceleration constant (g = 9.81 m/s2), while the flow (Re) and particle (Re∗) Reynolds
numbers are found using the particle’s diameter (D) as a lengthscale and the mean flow U
or shear velocity u*, respectively:

Re =
ρUD

µ
(2)

Re∗ =
ρu∗D

µ
(3)

Results of the above flow parameters are given in the sections below, including in a
tabulated form in Appendix A. The flow rates are fully developed hydraulically rough,
turbulent flows, referring to above-threshold flow conditions, for the range of solid particle
densities used here.

2.2.2. Particle Transport Tracking: Visual Methods

The video input from high-speed cameras placed on the top and side of the flume
allows for validation of the particle velocity estimated from the records taken from the
IMU sensor fitted in the instrumented particle. The former visual technique offers a
Eulerian-based description of the transport processes (i.e., [56]), where particle transport
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rates are based on the particle’s mean velocity estimated from direct video analysis. The test
section was fully captured from the top cameras, as shown in Figure 4, showing example
photographs of the particle in motion allowing to monitor sediment transport by saltation.

The video cameras were placed at a distance from the water surface to allow matching
the field of view to the extent of the test section. Water surface light reflections were
minimized by reducing ambient lighting and focusing strong light sources on the side of
the flume (Figure 5). A high-speed commercial camcorder (GoPro Black Hero 7 © camera,
Woodman Labs Inc., San Mateo, CA, USA) was used at high video resolution (HD) and
60 frames per second. The underwater side camera was fully submerged near the walls of
the flume and far from the test section, positioned in a way to maximize the useful field
of view as the particle is saltating downstream, and to avoid any direct flow interference
(see Figure 5; field of view of the side camera is shown in the insert of Figure 5). From the
top camera, video was recorded to cover the full length of the fake beds and to calculate
the particle velocity in the upstream direction, while the rate of particle hopping, and
modes of bedload transport were observed from the side camera. The rate of rotation of
the instrumented particle can be also assessed by the side camera, as shown in the insert of
Figure 5, which contains an illustration of the instrumented particle during its transport in
saltation mode.
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2.2.3. Particle Transport Tracking: IMU Embedded Instrumented Particle

Specifically, the MEMS sensor embedded in a purpose-built 3D-printed shell offers an
in-house designed instrumented device (similar to [46]) that is deployed herein (Figure 6)
to study sediment transport processes with a comprehensive set of flume experiments.
The MEMS sensors used are sensors logging data at a high frequency (200 Hz), encapsu-
lated in a spherical shell. The casing of the instrumented particle involves a 3D-printed
plastic shell with a diameter of 7.33 cm (Figure 6). The IMU sensor fitted in the instru-
mented particle yields a Lagrangian view of its transport by saltation, using sensor high
resolution data. This can be an off-the-self IMU (e.g., 3-SpaceTM Data Logger, Yost Labs
Inc., Portsmouth, OH, USA) or a custom-made sensor (as designed and developed by [46]).
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A magnetometer for orientation sensing relatively to the earth’s gravitational field, a triax-
ial accelerometer for measuring particle accelerations (±16 g), and gyroscopes recording the
rotations around the axis of the particle’s local coordinate system (at a range of ±2000◦/s)
comprise the IMU. All these data can be fused (as shown in [48]) and are recorded at 200 Hz.
A microcontroller is used to take data from the sensor and writes these to the external
memory (microSD) from where the data can be downloaded to a personal computer for
further analysis. The sensor benefits from accurate calibration routines, checking for the
orthogonality of the axes of the sensor and a full 360◦ rotation test.
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Figure 6 shows the used instrumented particle with its internal components, includ-
ing a 3D-printed holder, the IMU sensor, and the upper and lower half hemispheres.
The lightweight casing of the sensor as well as the IMU size, along with the relative size
of the casing (limited by the size of the IMU sensor), mean that the instrumented particle
casing and sensor are having a solid density lighter than that of water (specific density
<1). In order to achieve solid densities that will allow the instrumented particle to be
transported as bedload in saltation mode, rectangular stripes of lead sheet shaped to fit
the lower half casing (placed around the inner part of the lower half casing, like an O-ring,
in Figure 6) and inside the 3D-printed holder, which also fits the IMU sensor. By fitting
an appropriate number of stripes symmetrically (so as to balance the particle) within the
holder (within the narrow gaps), specific instrumented particle densities can be achieved,
in a repeatable fashion.

2.3. Experimental Matrix and Protocol

A range of parameters have been varied to assess and quantify their effect on the
instrumented particle transport processes. Specifically, two distinct bed surface rough-
nesses have been used (surface A and B, Figure 3), four above-threshold flow rates have
been tested for each bed surface, and four distinct solid densities have been used for the
instrumented particle. The lower bound of the range of selected flow rates is found empiri-
cally by performing pilot experiments to assess the flow conditions that would just set the
instrumented particle (with the higher solid density of instrumented particle) into motion.
The highest flow condition was selected so that the transport duration downstream the test
section for the fastest particle velocity (case with the lowest solid density of instrumented
particle) would still suffice (offer enough data points) for the stochastic analysis of the
obtained data. Ensuring that for all experimental runs, the shortest transport duration was
above 10 s, allowed us to capture at least 2000 data points per experiment. For each of these
32 combinations, the instrumented particle was transported in saltation mode for a total of
5 repeats, resulting in a total of 160 experimental runs. This allows for assessing that the
diversity of transport parameters is appropriately captured and stochastically well repre-
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sented, as seen by the probabilistic analysis of the data (Section 3). For each of the above
experiments, the appropriately weighted instrumented particles were manually placed
at the top of the flume’s bed surface along its centerline, at the start of an experimental
run. The instrumented particle was fully exposed to the free stream flow and was released
instantaneously to allow it being transported downstream.

3. Results

Instrumented particle accelerations and angular velocities for the range of flow and
bed surface conditions were obtained by sensor data that were statistically analyzed
to study the sediment transport dynamics. Instrumented particle velocities were also
calculated from the videos of the transported particle obtained for validation of the sensor
data. By using the time domain analysis of the sensor data (from a Lagrangian perspective),
it is possible to quantify metrics of particle movements during their transport, such as
hop lengths (∆x), hop travel time (∆t), mean particle velocity during transport (Vmean),
and number of particle hops per second from a Lagrangian perspective from sensor data,
whose reliable determination is not prevented by the size of the observation area as in the
case of the visual method.

A particle’s hop event can be identified from the sensor data as the difference between
two adjacent maximum (representative of the start of the ascending phase after a rebound
event with the bed surface) and minimum (representative of the instance of impact with
the bed surface and loss of particle’s mechanical energy) acceleration points. Thus, the
hop travel time can be estimated from the time difference between the adjacent maximum
and minimum acceleration points, while the hop length is the total distance travelled by a
particle during the duration of the hop. One way of estimating travel distances is as the
product of travel time with the mean particle velocity. The raw acceleration time series
were extracted from the sensor for each experimental run. These were postprocessed (using
a three-step window moving average) to remove signal errors. Then, a peak finding routine
was used to identify consecutive peaks in the smoothed acceleration time series. Figure 7
shows a characteristic example of the particle’s consecutive acceleration and deceleration
phases for one of the runs (particle density 1180 kg/m3).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 30 
 

 
Figure 7. Acceleration time series for one of the trials showing consecutive accelerations (due to 
hydrodynamic forcing—see portions of the time series adjacent to the green arrows) and decelerat-
ing (due to collisions with the bed surface—see portions of the time series adjacent to the red arrows) 
phases. 

The results for all of the instrumented particle transport experiments were checked 
from the top and side cameras to validate transport in saltation mode. As shown in Figure 
7, the time between two adjacent maximum and minimum peaks gives the duration of 
particle acceleration (hop travel time). The hop length can be found as the total distance 
travelled during that duration. The mean particle velocity can be obtained by calculating 
the average of the particle’s instantaneous velocity during transport. In the accelerating 
phase, particle velocity increases under the influence of hydrodynamic forces (function of 
the instantaneous flow velocity), which will show as an increasing acceleration (e.g., see 
segments of the time series next to the green arrows in Figure 7). The acceleration will 
cease suddenly when the particle hits one or more immobile bed surface particles and 
there will be a loss of some of the particle’s mechanical energy. This impact with the bed 
surface will be seen as a sudden deceleration, which is observed as a negative peak in the 
time series of particle’s acceleration (e.g., see segments of the time series next to the red 
arrows in Figure 7). The total number of hop events and their durations, throughout a 
particle’s transport, can be found for each experimental run.  

To assess how the instrumented particle’s saltation processes are changing for differ-
ent flow rates and particle densities, several metrics are estimated, including particle hop 
lengths, particle hop travel durations, mean particle velocity, and the frequency of particle 
hops (number of particle hops per second). The analysis of experimental results focuses 
on the statistical distributions of instrumented particle velocities, hop distances, and travel 
times, derived from sensor data. Stochastic predictive models of particle dynamics are 
described with these metrics along with their trends for a range of the flow conditions and 
instrumented particle and bed surface properties. 

  

Figure 7. Acceleration time series for one of the trials showing consecutive accelerations (due to hydrodynamic forcing—see
portions of the time series adjacent to the green arrows) and decelerating (due to collisions with the bed surface—see
portions of the time series adjacent to the red arrows) phases.



Appl. Sci. 2021, 11, 7306 11 of 29

The results for all of the instrumented particle transport experiments were checked
from the top and side cameras to validate transport in saltation mode. As shown in
Figure 7, the time between two adjacent maximum and minimum peaks gives the duration
of particle acceleration (hop travel time). The hop length can be found as the total distance
travelled during that duration. The mean particle velocity can be obtained by calculating
the average of the particle’s instantaneous velocity during transport. In the accelerating
phase, particle velocity increases under the influence of hydrodynamic forces (function
of the instantaneous flow velocity), which will show as an increasing acceleration (e.g.,
see segments of the time series next to the green arrows in Figure 7). The acceleration will
cease suddenly when the particle hits one or more immobile bed surface particles and there
will be a loss of some of the particle’s mechanical energy. This impact with the bed surface
will be seen as a sudden deceleration, which is observed as a negative peak in the time
series of particle’s acceleration (e.g., see segments of the time series next to the red arrows
in Figure 7). The total number of hop events and their durations, throughout a particle’s
transport, can be found for each experimental run.

To assess how the instrumented particle’s saltation processes are changing for different
flow rates and particle densities, several metrics are estimated, including particle hop
lengths, particle hop travel durations, mean particle velocity, and the frequency of particle
hops (number of particle hops per second). The analysis of experimental results focuses on
the statistical distributions of instrumented particle velocities, hop distances, and travel
times, derived from sensor data. Stochastic predictive models of particle dynamics are
described with these metrics along with their trends for a range of the flow conditions and
instrumented particle and bed surface properties.

3.1. Hop Length

After Einstein’s seminal work [51], sediment particle’s hop distances have received
a good amount of attention from several researchers such as [28–31], as it could be
used to quantify bedload transport rates, if the rate of transport was considered [17,57].
The instrumented particle is transported with continuous hops throughout its advection
downstream the test section and hop lengths were calculated from sensor data as the
stream-wise distance travelled by one particle from the start of its motion to the end of
its rebound. Numerous distribution fittings were assessed to obtain the best fit stochastic
distributions for the different experimental runs, including Weibull, Beta, Gamma, normal,
and exponential (Table 1). The Chi Square metric, describing how well each distribution
fits the set of experimental observations by determining whether a significant difference
between the observed values and measured values is expected under the model, was used
to determine the best distribution fitting. The goodness of fit metric was used as follows:

X2 = ∑
(Oi − Ei)2

Ei
(4)

where X = goodness of the fit, Oi = observed value, and Ei = expected value. Table 1
shows the goodness of fit results for different distributions of particle hop lengths for the
minimum and maximum flow rates used in the range of experiments.
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Table 1. Goodness of fit results and corresponding ranking for a range of distributions modelling
hop travel distances for the minimum and maximum flow rates used in the experiment.

Model Distribution
for Travel Distances

Goodness of Fit
(for Q = 56 L/s)

Goodness of Fit
(for Q = 42 L/s) Rank

Weibull 1.28 1.64 2

Beta 3.54 1.92 3

Gamma 0.34 0.58 1

Normal 3.7 5.2 4

Exponential 6.4 7.1 5

Considering the goodness of fit metrics, Gamma was found to be the optimal distribu-
tion for modeling particle hop distances. Hop length was fitted by the Gamma probability
distribution function model, as follows:

fx(x) =
1

Γ(ax + 1)βαx+1
x

xαxe
−x
βx (5)

where x is the hop distance, αx and βx are the shape and rate (inverse scale) parameters,
respectively, with αx > −1 and βx > 0, and Γ is the gamma function. Figure 8 shows
the probability density function (PDF) of measured hop lengths for the lowest flow rate
of 49 (L/s), particle density of 1180 (kg/m3), bed surface A, where the x-axis is the hop
lengths (m), the y-axis is the count of hop events, and the red curve represents the Gamma
distribution fit to the experimentally observed data.
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As shown in Figure 8, the hop lengths were not hugely varied, and the Gamma
function was the best fit for the measured hop lengths distributions, a similar finding
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to [58], which also suggests the same distribution. In addition, it is similar to past research
that has found exponential or Gamma (hop distance) distributions [57–62]. On the other
hand, some researchers found different results, such as [29,30], who reported best fit
for the Weibull distribution, as well as [63], who proposed the exponential distribution.
The difference in the fitting distributions could be attributed to different control parameter
settings used in this experimental study in comparison to the previous studies, as the used
particle in this study is lighter, bigger in size, has higher flow Reynolds number ranges,
and bed surface particles smaller to the saltating.

The research herein is the first to use an instrumented particle to assess hop distances,
compared to previous studies that are based on high-speed imaging for a range of controlled
flow conditions. In addition, the resolution of sensor data logging is quite high, set at
200 Hz, meaning that the instrumented particle is measuring every 5 ms, which allows
capturing very short hop distances, over the range of flow conditions assessed herein.

3.2. Hop Travel Time

Hop travel times were calculated from sensor data as the time interval of particle
movement from the start of its motion till the end of its rebound from the bed surface.
Various distribution models, such as Weibull, Beta, Gamma, normal, and exponential, were
applied to obtain the best fit for different hop travel times by using goodness of fit metrics.

Hop travel time (t) was fitted by an exponential function, as shown in the following:

ft(t) =
1
t

e−
t
t (6)

where t is the mean hop travel time. Table 2 shows the hop travel time goodness of fit
results for different distributions, for the minimum and maximum flow rates used in
experimental runs. By using goodness of fit metrics (such as Chi square), the exponential
was found to be the optimal fitting distribution for modeling the hop travel times, for both
assessed bed surfaces.

Table 2. Goodness of fit results and corresponding ranking for a range of distributions modelling
hop travel times for the minimum and maximum flow rates used in the experiment.

Model Distribution
for Travel Times

Goodness of Fit
(for Q = 56 L/s)

Goodness of Fit
(for Q = 42 L/s) Rank

Weibull 4.1 4.6 4

Beta 3.2 2.8 3

Gamma 6.4 7.1 5

Normal 1.4 1.8 2

Exponential 0.4 0.6 1

Figure 9 shows the empirical hop time intervals data and best fit probability density
function (PDF) for the flow rate of 52.5 (L/s), particle density 1180 (kg/m3), surface B,
where the x-axis is the hop travel time (in seconds), the y-axis is the event counts, and the
red curve represents the exponential distribution best fitting the data.
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As shown in Figure 9, the exponential function was the best fitting for the measured
hop travel times distributions, which is the same best fit PDF found by [29,30,63,64].

3.3. Particle Velocity

A range of models have been trialed to obtain the best distribution fittings for the
streamwise instantaneous particle velocities including Beta, exponential, Gamma, normal,
and Weibull. Table 3 shows the mean particle velocity goodness of fit results for different
distributions, for the minimum and maximum flow rates used in the experiment.

Table 3. Particle velocity goodness of fit results for minimum and maximum flow rates used in
the experiment.

Model Distribution for
Particle Velocities

Goodness of Fit
(for Q = 56 L/s)

Goodness of Fit
(for Q = 42 L/s) Rank

Weibull 4.4 4.7 4

Beta 2.9 3.1 3

Gamma 5.6 6.2 5

Normal 1.7 2.1 2

Exponential 0.6 0.7 1

Using the goodness of fit metrics, the exponential distribution is found to offer the
best fit to the particle velocities data. Instantaneous streamwise particle velocity (v) was
fitted by the exponential function, as follows:

fv(v) =
1

Vmean
e

Vmean
v , v >= 0 (7)

where Vmean is the average particle velocity.
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Figure 10 shows the instantaneous particle streamwise velocities modeled probability
density function (PDF) for the flow rate of 49 (L/s), particle density of 1132 (kg/m3) and
bed surface A, where the x-axis is the magnitude of instantaneous particle velocities, the
y-axis shows the event counts, and the red line represents the exponential distribution best
fitting the experimentally observed data.
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As shown in Figure 10, the exponential function was the best fitting of measured
streamwise particle velocities distributions. The findings are consistent with those reported
by [30,31,58], which also identified the exponential probability distribution models for the
streamwise instantaneous velocities as the best fitting. In contrast, other studies [64–67]
found that the Gaussian distribution offered the closest match to the empirical data of
streamwise particle velocities. The differences in these findings are probably best attributed
to the different range of particle mobility assessed in these studies: herein, the lowest
particle mobility conditions are found to be best fit by exponential particle velocity models,
while for flow conditions near the continuous or bulk bedload transport rates, the normal
model may yield a better predictive value.

4. Discussion
4.1. Dependence of Hop Travel Distance on Particle and Flow Features

The research herein is the first to use an instrumented particle to assess hop distances.
Particle hop lengths can be obtained from the Gamma distribution fittings of different
particle densities and channel flow rates to assess and quantify any interesting trends.
Greater magnitudes of hop lengths imply that the particle will transverse a distance along
the channel with a smaller number of interactions with the bed surface. Figure 9 shows
the comparison of the modelled hop lengths distributions (using the Gamma PDF) for the
range of assessed particle densities and flows (defined with flow Reynolds number).

From Figure 11a,c, the extent and extrema of particle hop length distributions are seen
to increase with increasing flow Reynolds number for both surfaces (A and B). For example,
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as seen in Figure 11c (also Table 4, offered in Appendix A), for the bed surface B, the
instrumented particle with density of 1132 kg/m3 will travel a maximum hop distance
160% greater (from 0.0009 to 0.00235 m), for a 15% increase in flow Reynolds number
(from 41,841 to 47,379). In addition, a similar trend is observed as the particle density
decreases (Figure 11b,d), with the range of hop lengths increasing with solid particle
densities, for both surfaces. For example, as seen in Figure 11b (bed surface A and Reynolds
number of 50,789—also Table 5, offered in Appendix A), when particle density decreased
by 10% from 1180 to 1085, the peak hop length increased about 70% (from 0.0019 to
0.0032 m). The effects of different particle densities and flow Reynolds number on the
Gamma distribution parameters modelling hop lengths are also tabulated in Tables 4 and 5,
offered in Appendix A, along with further discussion, to allow for a clearer representation
of the variations in the body and specifically the tail of the distribution (that may be hard
to discern in Figure 11).
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Figure 12 shows the effect of flow Reynolds numbers and Shields numbers on its
average hop length (modelled from the Gamma distributions fittings), for bed surfaces A
and B, and the assessed particle densities.
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Figure 12 displays that the average hop length in general increases with lower particle
density. For the example of bed surface A, with fixed flow Reynolds number of 50,789
(Figure 12c), the average hop length increases by 80% from 0.018 to 0.032 m, when particle
density decreases by about 15% (from 1224 to 1085 kg/m3). The average hop length
increases with higher flow Reynolds (Figure 12a,b) and Shields (Figure 12c,d) numbers.
For the example shown in Figure 12a, mean hop travel distance increases from 0.015 to
0.028 m (90%) with only about 15% increase in flow Reynolds number (from 43,353 to
50,789). The same increase is seen in Figure 12c, for increasing the Shields number from
0.074 to 0.099 (35%), for fixed particle density of 1180 kg/m3 and bed surface A. With a
higher Shields number and lower density, there is a higher hopping (saltation) length on
average, as the particle interacts with the bed fewer times, while covering the same distance
downstream. These results are significant as they demonstrate that for this still relatively
low transport regime (above threshold), relatively slight increases in flow rates cause big
increases in mean hop lengths.

For bed surface B, when the flow Reynolds number increases by 25% (from 41,337 to
51,488), the average hop length increases about fourfold (from 0.013 to 0.067 m) for fixed
particle density of 1085 kg/m3 (Figure 12b). Likewise, for a particle density decrease of
about 15% from 1224 to 1085 kg/m3, the average hop length increases from 0.015 to 0.067 m
(350%), which shows how the lighter particle density multiples mean hop lengths for fixed
flow Reynolds number of 51,488 (Figure 12b). With a higher Shields number, the particle
has a higher hop length. For the example shown in Figure 12c (with fixed flow Reynolds
number of 44,060), for a Shields number that doubles from 0.099 to 0.210, the particle’s
mean hop length increases by 150% (from 0.012 to 0.03 m).

In conclusion, hop lengths increases primarily with higher flow velocity, and are
inversely dependent on particle’s specific density, similar to the trends found by [58,60].
When there is increase in tractive bed shear stresses (e.g., Shields number), the total distance
travelled will increase. Figure 12a,b, illustrates that with increasing channel flow Reynolds
number or decreasing particle density, the particle interacts with the bed surface in fewer
instances, and will therefore achieve greater hop lengths. As a result, the sensor data
validate the expected outcomes. The bed surface with greater particle roughness size (bed
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surface B) offers macroscopically a greater resistance to bedload transport, resulting in
greater transport times for the two cases of lighter particles.

4.2. Dependence of Hop Travel Time on Particle and Flow Features

The mean hop travel times for particle motion can be obtained from exponential
distribution fittings. Here, these are compared for different particle densities, flow Reynolds
numbers, and bed surfaces. The mean particle hop travel times can be considered as an
important characteristic for particle transport, as it gives an indication about the particle
instantaneous velocities, as well as changes in the number of particles hop events. For high
particle travel times, the same transport distances are transversed over a longer period and
particles’ instantaneous velocities are lower. Figure 13 shows comparisons of exponential
distribution fittings for measured particle travel times, for different particle densities and
the flow Reynolds numbers assessed herein.

1 

 

 

Figure 13. Hop time modelled by the exponential distribution: (a) for different flow Reynolds numbers, bed surface A, and
fixed instrumented particle density of 1132 kg/m3, (b) for different instrumented particle densities, bed surface A, and fixed
Reynolds number of 50,789, (c) for different flow Reynolds numbers, bed surface B, and fixed instrumented particle density
of 1132 kg/m3, and (d) for different instrumented particle densities, bed surface B, and fixed Reynolds number of 51,488.

From Figure 13a,c, it is seen that with increasing flow Reynolds number, the probability
of occurrence of higher particle travel times increases for both bed surfaces, and even more
for the rougher bed surface (B). For example, in bed surface A (Figure 13a), when flow
Reynolds number increased by about 15% (from 43,353 to 50,789), the probability of
occurrence increased by 45% (from 0.426 to 0.624) for the same particle hop travel time of
0.09 s. In addition, the probability of occurrence of higher particle hop travel times increases
for both bed surfaces as the particle density decreases (Figure 13b,d). For example, for bed
surface B, when particle density decreased by about 15% (from 1224 to 1085 kg/m3), the
probability of occurrence increased from 0.38 to 1.01 (165%) for the same particle hop travel
time of 0.14 s. The effects of different particle densities and flow Reynolds number on the
fitted exponential distribution parameters modelling hop travel times are also tabulated
in Tables 6 and 7 in Appendix A, along with further discussion to allow for a clearer
representation of the variations in the body and specifically the tail of the distribution (that
may be hard to discern in Figure 13). Figure 14 shows the effect of different flow Reynolds
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and Shields numbers and test particle densities on the average hop travel time modeled
with the fit exponential distributions for bed surfaces A and B.
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Figure 14 shows that for bed surface A, when there is an increase in flow Reynolds
number from 38,190 to 50,789, which is about 35%, or an increase in the Shields number by
50% from 0.091 to 0.135, with fixed particle density 1132 kg/m3, the particle will interact
with the bed less and remain for longer durations and there will be an increase in the mean
time interval of particle hop, as it increases by 40% from 0.0264 to 0.0370 s.

When the particle density decreases by about 10% from 1180 to 1085 kg/m3, the
mean particle hop travel time will increase by 40% from 0.0246 to 0.0348 s, with fixed flow
Reynolds number of 43,353. In addition, particle velocities are low on average, so the net
time travel of particle hops are short on average.

For bed surface B, Figure 14 shows clearly that when there is an increase in flow
Reynolds number from 44,060 to 51,488, which is about 15%, or an increase in the Shields
number of about 10% from 0.099 to 0.111, with fixed particle density 1180 kg/m3 in bed
surface B, the particle will interact with the bed less and remain for longer durations and
there will be an increase in the mean time interval of particle hop, which will increase
by about 15% from 0.028 to 0.032 s, so there will be higher hopping (saltation length)
with lower saltation movements and the average number of hops per second for particle
movement decreases.

According to Figure 14c, for a fixed Shields number (assume 0.1), mean hop time
increases along with particle density increase (e.g., from density of 1132 to 1180 kg/m3.
Heavier particles respond slower to the same mean driving flow force (e.g., same mean
bed shear stresses), leading to the particle having increased times between hop events.

When particle density decreases by about 15% from 1224 to 1085 kg/m3, the mean
particle hop travel time will increase from 0.029 to 0.037 s, which is about 30% with a fixed
flow Reynolds number of 47,379 surface B, which shows that the decrease in particle density
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results in big changes in particle hop travel time. The travel time of particle movement is
short as the particle velocity is short and it increases as particle velocity increases.

In conclusion, Figure 14 shows that the mean time interval of particle hops increases
with higher flow velocity or particle velocity and decreases with higher specific density.
Thus, with increasing channel flow Reynolds number or decreasing particle density, the
particle will interact with the bed less and remain for longer durations and therefore achieve
greater hop travel time. With increasing shear velocity, the total duration of the particle in
motion will also increase.

4.3. Dependence of Particle Velocity on Particle and Flow Features

Mean streamwise particle velocities can be modelled from fitting exponential distribu-
tions of different particle densities and channel flow rates. Below, their interdependence
is quantified, and any trends are assessed. Figure 15 shows a comparison of the particle
velocity exponential distributions fit to empirical data obtained experimentally from the
instrumented particle, for different particle densities and flow Reynolds numbers.
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Figure 15. Instrumented particle velocity modelled by the exponential distribution: (a) for different flow Reynolds numbers,
bed surface A and fixed instrumented particle density of 1132 kg/m3, (b) for different instrumented particle densities,
bed surface A and fixed Reynolds number of 50,789, (c) for different flow Reynolds numbers, bed surface B and fixed
instrumented particle density of 1132 kg/m3, and (d) for different instrumented particle densities, bed surface B and fixed
Reynolds number of 51,488.

From Figure 15a,c, it is observed that with increasing flow Reynolds numbers, the
probability of occurrence of higher streamwise particle velocity increases for both surfaces.
For example, in bed surface A (Figure 15a), when flow Reynolds number increased by
15% from 43,353 to 50,789 the probability of occurrence increased from 3.6 to 3.95, which
is about 15% for the same streamwise particle velocity of 0.12 m/s. In addition, as the
particle density decreases, transport for the same flow becomes easier and the probabil-
ity of occurrence of the higher streamwise particle velocity increases for both surfaces.
For example, in bed surface B (Figure 15c), when particle density decreased by 15% from
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1224 to 1085 kg/m3, the probability of occurrence increased from 3.81 to 4.25 (50%) for the
same streamwise particle velocity of 0.09 m/s.

The point where individual probability distributions meet (each having a different
rate of change for particle velocities) indicates the streamwise particle velocity where the
distributions are having the same probability of occurrence. This crossing is not clearly
distinguishable for many cases, and it is prone to uncertainties in fitting the modelled
probability distributions. More distinct are peaks (showing the most commonly occurring
particle velocity) and mean of the individual distributions, as well as the extent of their tail
(illustrating the magnitude of extreme particle velocities).

The effects of different particle densities and flow Reynolds number on the fitted
exponential distribution parameters, modelling instrumented particle velocities, are also
tabulated in Tables 6 and 7, offered in Appendix A, along with further discussion, to allow
for a clearer representation of the variations in the body and specifically the tail of the
distribution (that may be hard to discern in Figure 15).

Figure 16 shows the plot of the effect of different channel flow conditions (i.e.,
Reynolds and Shields numbers) and test particle densities kg/m3, from the exponen-
tial distribution fittings on the streamwise particle velocity m/s, for bed surfaces A and B.
The Shields numbers are used to generalize the results for different combinations of flow
and particle conditions.
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For bed surface A and fixed particle density 1132 kg/m3 (Figure 16a), with a ~35%
increase in flow Reynolds number (from 38,190 to 50,789, or an equivalent 50% increase
in the Shields number, from 0.09 to 0.135—Figure 16c), the particle will interact with
the bed surface less and move for longer hop lengths (consistent to what is shown in
Figure 12a,c, and Figure 14a,c, respectively), resulting in a ~140% increase in mean particle
velocity (from 0.038 to 0.092 m/s). For a 10% decrease in particle density (from 1180 to
1085 kg/m3), mean particle velocity will increase by 30% (from 0.054 to 0.07 m/s) with
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fixed flow Reynolds number of 43,353, and the net time travel of particle hops will increase
on average. Similarly, for bed surface B and fixed particle density 1180 kg/m3 (Figure 16b),
with a ~15% increase in flow Reynolds number from 44,060 to 51,488, (or an increase of
10% in the Shields number from 0.099 to 0.111, Figure 16d), for bed surface B, there will be
increase in the mean particle velocity from 0.043 to 0.075 m/s (75%). There will be higher
hopping (saltation) length and the average number of hops per second decreases, and with
an increase in shear velocity, the mean particle velocity m/s will also increase. For fixed
flow Reynolds number of 47,379 and bed surface B (Figure 16c), with a particle density that
decreases by about 15% (from 1224 to 1085 kg/m3), mean particle velocity will increase by
115% (from 0.044 to 0.095 m/s), which shows how lighter particles are transported faster.

4.4. Considerations around the Instrumented Particle’s Design

The instrumented particle presented herein is a novel sensing equipment for the
study of bedload transport of particles. The results of this study and derived distribution
models are accurate and can be used directly for parameterizing the transport of solid
particles that are lighter than sediment. This can find a host of modern direct eco-hydraulic
and engineering applications, including habitat assessment and monitoring [68] as well
as transport of plastics through the fluvial vector, which are emerging research fields.
These results are also directly applicable in helping further identify, also for the first time,
trends in the dynamics of particle transport and their interaction with the bed surface,
for a range of assessed parameters, including (a) solid particle density, (b) bed surface
roughness, and (c) flow conditions, above threshold. These are of great importance for
computational fluid dynamics and discrete element modelers (CFD-DEM, e.g., [21]), which
can use such stochastic models to match any coefficients behind their constitutive or particle
micromechanical models and validate them.

The size and shape of the instrumented particle are selected so that for the range
of flow conditions trialed herein, a range of solid transport rates above threshold can be
achieved. A fully spherical particle allows for a relatively higher transport rate for the
same flow conditions. The particle size is miniaturized to scales comparable to natural
sediment particles (of diameter <80 mm, e.g., large, rounded pebbles). Future research
may focus on particle shapes to study the dependence of particle transport dynamics on
different shapes, following the same design of experiments and framework of analysis
as shown here. Typically, the instrumented particle’s casing size is limited by the IMU
sensor’s size, but this can be further miniaturized with custom designed electronics and
sensor calibration routines, as shown recently [48], enabling assessing trends for a wider
range of transported particle properties. Despite these differences to natural sediment
particles, the mode of transport by saltation as well as the modeling of distributions of a
range of metrics used to assess it are found to be comparable to what other researchers
have found for natural sediment particles.

The instrumented particle used in this study addresses limitations of active or passive
tracer methods [69–72] such as inaccessibility, high initial purchase and deployment costs,
low recovery rates (due to different deployment methods), as well as requirements for
professional labor to apply the technique. It is a robust, stepper-like device that can offer
advanced insights for the dynamics of bedload transport. An improved understanding
of sediment transport dynamics can be obtained by analyzing the flow forces acting on
individual sediment particles near the channel bed surface, under certain hydraulic and
hydrodynamic conditions towards enabling more robust assessment of the geomorphic
processes and allowing for adopting improved sediment management strategies and water
resources planning [38,73].

5. Conclusions

It is shown that the instrumented particles can be a useful tool in providing a better
understanding of how local hydrodynamic conditions may instantaneously induce different
particle interactions with the bed surface, affecting its transport features, and enable a
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deeper understanding of the diversity of complex bed load sediment transport dynamics,
especially at above-threshold transport conditions. In general, the assessed trends are
in accordance with literature findings, and the results obtained from the instrumented
particle for a range of experimental parameters demonstrate a novel robust tool as well as
framework for using it and analyzing its data towards a probabilistic modeling of bedload
processes that has a significant potential for offering new insights for the dynamics of these
processes for physical and numerical modelers.

The mean hop length, hop travel time, and streamwise particle velocities values were
obtained by using the goodness of fit for different probabilistic distributions for all the
performed experiments with varying flow rates and particle density under equilibrium
transport conditions. It was found that hop travel times, hop length, and mean streamwise
particle velocities are best modelled with the exponential, Gamma, and exponential distri-
butions, respectively. By increasing hydrodynamic forcing near the bed surface (assessed
with Reynolds and Shields numbers) or decreasing instrumented particle density, the
particle will have fewer occurrences of interacting with the bed surface (number of hops)
and will transverse the same distance along the channel’s bed surface in a shorter time,
and with higher instantaneous particle velocities.
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Appendix A

Appendix A.1 Dependence of Hop Distances on Particle and Flow Features

From Table 1, the probability of occurrence of the longest hop lengths increases with
decreasing particle density. For example, for bed surface A with fixed Reynolds number of
50,789, the probability of occurrence for high lengths (>0.01 m) increased from 0.4% to 4.1%
when the particle density decreased from 1224 to 1085 kg/m3. Inversely, the probability of
occurrence of low hop lengths (0–0.0025 m increased from 43.4% to 65.7% when the particle
density increased from 1085 to 1180 kg/m3 for bed surface B with fixed Reynolds number
of 51,488.
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Table A1. The effect of different particle densities on the hop distance Gamma distribution model parameters, for bed
surface A (and Reynolds number of 50,789), and bed surface B (and Reynolds number of 51,488). These tabulated data
correspond to the results plotted in Figure 11b,d.

Surface A Surface B

Particle Density (kg/m3) Particle Density (kg/m3)

1085 1132 1180 1224 1085 1132 1180 1224

Hop Length (m) Probability of Occurrence (%)

0–0.0025 47.1 65.79 67.4 67.6 43.4 65.84 65.7 69.1

0.0025–0.005 28.8 22.55 22.6 23.4 30.1 22.56 25.4 21.9

0.005–0.0075 13.9 7.69 7.0 6.9 15.2 7.57 6.4 6.9

0.0075–0.01 6.1 2.62 2.1 1.6 6.7 2.60 1.8 1.6

>0.01 4.1 1.34 0.9 0.4 4.5 1.32 0.7 0.4

From Table 2, the probability of occurrence of high hop lengths increases with increas-
ing flow Reynolds number, while for low hop lengths, it decreases with an increase in flow
Reynolds number for fixed particle density of 1132 kg/m3. For example, the probability of
occurrence of low hop lengths 0–0.0025 m decreased from 66.6% to 65.8% when the flow
Reynolds number increased from 41,337 to 46,133 (for bed surface A with fixed particle
density of 1132 kg/m3). The probability of occurrence for high hop distances 0.0075–0.01 m
increased from 1.4% to 8% when the flow Reynolds number increased from 41,841 to 51,488,
for the case of fixed particle density of 1132 kg/m3 and bed surface B.

Table A2. The effect of different flow Reynolds numbers on the hop distance Gamma distribution model parameters, for
bed surfaces A and B, for fixed particle density of 1132 kg/m3. These tabulated data correspond to the results plotted in
Figure 11a,c.

Surface A Surface B

Flow Reynolds Number Flow Reynolds Number

41,337 43,353 46,133 50,789 41,841 44,060 47,379 51,488

Hop Length (m) Probability of Occurrence (%)

0–0.0025 66.6 66.3 65.8 57.4 64.8 65.3 65.8 37.0

0.0025–0.005 25.4 25.1 22.9 27.7 25.8 25.1 22.6 32.1

0.005–0.0075 6.4 6.7 7.5 10.1 7.6 7.3 7.7 17.6

0.0075–0.01 1.4 1.5 2.6 3.4 1.4 1.6 2.6 8.0

>0.01 0.3 0.4 1.3 1.3 0.4 0.6 1.3 5.3

Appendix A.2 Dependence of Hop Travel Time on Particle and Flow Features

From Table 3 with fixed flow Reynolds numbers, the probability of occurrence of
high hop travel times increases with a decrease in the particle density. For example,
the probability of occurrence of high hop travel time 0.08–0.09 s increased from 1.3% to
1.9% when the particle density decreased from 1180 to 1085 kg/m3, Reynolds number
of 50,789, for bed surface A. The probability of occurrence for low hop travel times (e.g.,
0.01–0.02 s) increased from 20.2% to 23.1%, when the particle’s density increased from 1085
to 1224 kg/m3, for bed surface B and a fixed Reynolds number of 51,488.
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Table A3. The effect of different particle densities on the travel time exponential distribution model parameters, for bed
surface A (and Reynolds number of 50,789), and bed surface B (and Reynolds number of 51,488). These tabulated data
correspond to the results plotted in Figure 13b,d.

Surface A Surface B

Particle Density (kg/m3) Particle Density (kg/m3)

1085 1132 1180 1224 1085 1132 1180 1224

Hop Travel Time (s) Probability of Occurrence (%)

0–0.01 30.8 31.9 34.8 35.1 27.4 32.9 35.2 36.0

0.01–0.02 21.5 21.9 22.8 22.9 20.2 22.0 22.5 23.1

0.02–0.03 15.0 15.0 14.9 14.9 14.8 15.0 15.0 14.9

0.03–0.04 10.5 10.3 9.8 9.7 10.9 10.1 9.7 9.6

0.04–0.05 7.3 7.1 6.4 6.4 8.0 6.8 6.3 6.2

0.05–0.06 5.1 4.9 4.2 4.2 5.9 4.6 4.2 4.0

0.06–0.07 3.8 3.5 2.9 2.8 4.6 3.5 2.9 2.7

0.07–0.08 2.7 2.5 1.9 1.9 3.5 2.3 2.0 1.8

0.08–0.09 1.9 1.7 1.3 1.3 2.6 1.6 1.3 1.2

0.09–0.10 1.4 1.3 0.9 0.9 2.0 1.1 0.9 0.8

From Table 4, the probability of occurrence of high hop travel times increases with in-
creasing flow Reynolds number while the probability for low hop travel time decreases with
increasing flow Reynolds numbers, for a fixed particle density of 1132 kg/m3. For example,
the probability of occurrence for relatively shorter hop travel times (0–0.01 s) decreased
from 35.3% to 31.9% when the flow Reynolds number increased from 41,841 to 51,488, for
bed surface B with fixed particle density of 1132 kg/m3. The probability of occurrence of
longer hop travel time (0.08–0.09 s) increased from 1.2% to 1.5% when the flow Reynolds
number increased from 41,337 to 46,133 with fixed particle density of 1132 kg/m3 for bed
surface A.

Table A4. The effect of different flow Reynolds numbers on the travel time exponential distribution model parameters, for
bed surfaces A and B, for fixed particle density of 1132 kg/m3. These tabulated data correspond to the results plotted in
Figure 13a,c.

Surface A Surface B

Flow Reynolds Number Flow Reynolds Number

41,337 43,353 46,133 50,789 41,841 44,060 47,379 51,488

Hop Travel Time (s) Probability of Occurrence (%)

0–0.01 35.6 34.2 33.4 32.9 35.3 35.1 33.7 31.9

0.01–0.02 23.0 22.6 22.4 22.0 23.0 22.9 22.5 21.9

0.02–0.03 14.9 15.0 15.0 15.0 14.9 14.9 15.0 15.0

0.03–0.04 9.6 9.9 10.0 10.1 9.7 9.7 10.0 10.3

0.04–0.05 6.2 6.6 6.7 6.8 6.3 6.4 6.7 7.1

0.05–0.06 4.0 4.3 4.5 4.6 4.1 4.1 4.5 4.9

0.06–0.07 2.7 3.0 3.2 3.5 2.8 2.8 3.1 3.5

0.07–0.08 1.8 2.0 2.2 2.3 1.8 1.9 2.1 2.5

0.08–0.09 1.2 1.4 1.5 1.6 1.2 1.3 1.5 1.7

0.09–0.10 0.8 1.0 1.1 1.1 0.8 0.9 1.0 1.3
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Appendix A.3 Dependence of Particle Velocity on Particle and Flow Features

From Table 5 with fixed flow rates (Reynolds number), the probability of occurrence
of high particle velocities increases with decrease in the particle density. For example, the
probability of occurrence for high particle velocities (0.15–0.165 m/s) increased from 1.8%
to 2.6% when the particle density decreased from 1224 to 1132 kg/m3 with fixed Reynolds
number of 50,789 for bed surface A. Meanwhile, the probability of occurrence for low
particle velocities (0–0.015 m/s) increased from 17.3% to 25.1% when the particle density
increased from 1085 to 1224 kg/m3 for bed surface B with fixed Reynolds number of 51,499.

Table A5. The effect of different particle densities on the particle velocity exponential distribution model parameters, for
bed surface A (and Reynolds number of 50,789), and bed surface B (and Reynolds number of 51,488). These tabulated data
correspond to the results plotted in Figure 15b,d.

Surface A Surface B

Particle Density (kg/m3) Particle Density (kg/m3)

1085 1132 1180 1224 1085 1132 1180 1224

Hop Velocity (m/s) Probability of Occurrence (%)

0–0.015 20.3 21.1 23.0 24.4 17.3 19.3 20.6 25.1

0.015–0.03 16.7 17.1 18.1 18.8 15.5 16.1 16.8 19.1

0.03–0.045 13.7 13.8 14.2 14.5 13.3 13.4 13.7 14.6

0.045–0.06 11.2 11.2 11.2 11.1 11.4 11.1 11.2 11.1

0.06–0.075 9.2 9.1 8.8 8.6 9.9 9.3 9.1 8.5

0.075–0.09 7.5 7.3 6.9 6.6 8.3 7.7 7.5 6.4

0.09–0.105 6.2 5.9 5.4 5.1 6.9 6.4 6.1 4.9

0.105–0.12 5.0 4.8 4.3 3.9 5.7 5.3 5.0 3.7

0.12–0.135 4.1 3.9 3.4 3.0 4.7 4.5 4.0 2.8

0.135–0.15 3.4 3.2 2.7 2.3 3.8 3.7 3.3 2.2

0.15–0.165 2.8 2.6 2.1 1.8 3.1 3.1 2.7 1.7

From Table 6, the probability of occurrence for high particle velocities increases with
increase in the flow Reynolds number while for low particle velocities it increases with
decrease in flow Reynolds number for fixed particle density of 1132 kg/m3. For example,
the probability of occurrence for low particle velocities (0–0.015 m/s) decreased from 27.4%
to 21.7% when the flow Reynolds number increased from 43,353 to 50,789 for bed surface A
with fixed particle density of 1132 kg/m3. While the probability of occurrence for high
particle velocities (0.15–0.165 m/s) increased from 2.7% to 3.3% when the flow Reynolds
number increased from 41,841 to 51,488 with fixed particle density of 1132 kg/m3 for bed
surface B.

In Table 7, the flow conditions tested herein are also reported in terms of the particle
Reynolds number for enabling further comparisons with the literature. This is important
to assess, as sometimes a change in the near bed surface hydrodynamic forcing, may
not be reflected in the change in flow Reynolds number (for example if the tailgate was
raised while keeping the flow rate constant). In this case the Re number may be almost
fixed while the particle Reynolds number may decrease, with a potential to also affect the
transport rates.
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Table A6. The effect of different flow Reynolds numbers on the particle velocity exponential distribution model parameters,
for bed surfaces A and B, for fixed particle density of 1132 kg/m3. These tabulated data correspond to the results plotted in
Figure 15a,c.

Surface A Surface B

Flow Reynolds Number Flow Reynolds Number

41,337 43,353 46,133 50,789 41,841 44,060 47,379 51,488

Hop Velocity (m/s) Probability of Occurrence (%)

0–0.015 27.6 27.4 24.4 21.7 20.6 19.8 18.3 17.9

0.015–0.03 20.2 20.1 18.8 17.4 16.8 16.6 16.0 15.7

0.03–0.045 14.8 14.8 14.5 14.0 13.7 13.8 13.7 13.6

0.045–0.06 10.9 10.9 11.1 11.2 11.2 11.2 11.1 11.1

0.06–0.075 8.0 8.0 8.6 9.0 9.1 9.3 9.4 9.5

0.075–0.09 5.8 5.9 6.6 7.2 7.5 7.7 7.8 7.9

0.09–0.105 4.3 4.3 5.1 5.8 6.1 6.1 6.5 6.6

0.105–0.12 3.1 3.2 3.9 4.6 5.0 5.0 5.4 5.5

0.12–0.135 2.3 2.3 3.0 3.7 4.0 4.2 4.5 4.6

0.135–0.15 1.7 1.7 2.3 3.0 3.3 3.5 4.1 4.2

0.15–0.165 1.2 1.3 1.8 2.4 2.7 2.8 3.2 3.3

Table A7. Relevance of flow and particle Reynolds numbers.

Surface A Surface B

Flow Reynolds number (Re) 41,337 43,353 46,133 50,789 41,841 44,060 47,379 51,488

Particle Reynolds number (Re*) 6149 6417 6337 7433 6995 7420 7552 7142
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