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Abstract: The continuous-space single- and multi-facility location problem has attracted much
attention in previous studies. This study focuses on determining the globally optimal facility locations
for two- and higher-dimensional continuous-space facility location problems when the Manhattan
distance is considered. Before we propose the exact method, we start with the continuous-space
single-facility location problem and obtain the global minimizer for the problem using a statistical
approach. Then, an exact method is developed to determine the globally optimal solution for
the two- and higher-dimensional continuous-space facility location problem, which is different from
the previous clustering algorithms. Based on the newly investigated properties of the minimizer, we
extend it to multi-facility problems and transfer the continuous-space facility location problem to
the discrete-space location problem. To illustrate the effectiveness and efficiency of the proposed
method, several instances from a benchmark are provided to compare the performances of different
methods, which illustrates the superiority of the proposed exact method in the decision-making of
the continuous-space facility location problems.

Keywords: facility location problem; mathematical programming; global optimization

1. Introduction

Over the last five decades, the facility location problem, also known as location analy-
sis, has attracted much attention in mathematical science [1]. A large number of researchers
have investigated both the formulations and the algorithms for diverse applications in
the private and public sectors [2–4]. Concerning the private sector, organizations have
to continuously search for new ways to reduce costs, improve customer satisfaction, and
increase profitability due to global competition. Logistics operations, especially facility
locations, such as industrial plants, bicycle-sharing stations, banks, distribution centers,
warehouses, and fourth-generation/fifth-generation (4G/5G) base stations, have tradi-
tionally been an opportune field for cost-saving. Similarly, for the public sector, choosing
appropriate locations for facilities, such as hospitals, ambulance stations, post stations,
transport terminals, medical service centers, and relief centers, enables them to improve
the service level and efficiency. Generally, a better option needs to be done to look for
compromises on behalf of different goals.

As the travel cost and time can be analyzed by discrete or continuous aspects in
the space, the facility location problem is commonly divided into two types, namely
(i) the discrete-space facility location problem and (ii) the continuous-space facility location
problem. Practically, for the discrete-space type, the locations of potential facilities can
just be located among the given specific points, whereas in the continuous-space facility
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location problem, the facilities are allowed to be located anywhere in the planning area [5].
As a consequence, different resolution strategies need to be adopted for different problems.

Since there is an infinite number of possible locations for the facilities in the continuous-
space facility location problem, it is impossible to determine the globally optimal facility
locations. Besides, most of the previous studies focused on two-dimensional multi-facility
location problems [6,7]. In practice, there are many three-dimensional facility location
problems [8,9], such as Wi-Fi stations or server rooms in a mansion building. However,
these three-dimensional multi-facility location problems have received insufficient attention
in previous studies. Accordingly, there is a need for a new strategy to determine the optimal
facility locations for the high-dimensional continuous-space multi-facility location problem.

To fill the above research gap, this study focuses on determining the globally optimal
facility locations for the continuous-space facility location problem. First of all, we start
with the continuous-space single-facility location problem and obtain the global minimizer
for the problem using a statistical approach. Secondly, although some studies [10–12]
also obtained the minimizer for the problem, the properties of the minimizer were not
fully investigated. Thirdly, based on the newly investigated properties of the minimizer,
we proposed an exact method to determine the globally optimal facility locations for
the continuous-space facility location problem. Finally, this study provides several illus-
trative instances from a benchmark to compare the performances of different methods,
which indicates the superiority of the proposed exact method in the decision-making for
the continuous-space multi-facility location problem.

The rest of this paper is organized as follows. Section 2 reviews the previous methods
to solve the continuous-space multi-facility location problem, where the research gaps are
identified. Section 3 provides the methodology to determine the globally optimal facility
locations for the continuous-space multi-facility location problem. The illustrative instances
from a benchmark are presented to compare the performances of different methods in
Section 4. At last, Section 5 concludes this study with contributions and future directions.

2. Literature Review

The facility location problem is an important issue in supporting physical distribu-
tion as it contributes significantly to the travel time or cost in logistics systems. Since
the facility location problem can be divided into two types, namely discrete-space and
continuous-space facility location problems, this study focuses on the continuous-space
facility location problem.

For the continuous-space facility location problem, anywhere in the plane can be con-
sidered as the facility location [5]. Thus, there is an infinite number of potential locations for
the facilities, thus making it quite difficult to solve [13]. Weber and Friedrich [14] have tried
to locate a single industry or firm to minimize the transportation cost in the plane, known
as the Weber problem, which has received much attention in the literature. Moreover, many
studies have been developed for locating the facilities in the continuous space to minimize
or maximize objective criteria from different perspectives [15–20]. However, due to an in-
finite number of possible locations for the facilities, it is a big challenge computationally,
unless some appropriate approaches or algorithms can be developed.

To solve the above problem, many approaches have been developed previously [21,22],
e.g., by Zhang [23]. The earliest approach is an iterative procedure that was offered
by Weiszfeld [24], which was followed by some other variants [25–27]. The geometry-
based approach is also used for solving continuous-space facility location problems [28].
Since the 1990s, the Voronoi diagram heuristic approach has been applied for solving
the p-center problem in a continuous space [29,30]. Rather than searching for the optimal
facility locations from an infinite number of possible locations, making a list of some good
places that are considered as potential facility candidates helps solve the problem. Instead
of large-scale computation to obtain the optimal solution, it is necessary to identify a finite
set that contains the optimal solution, which is also known as the finite dominating set. As
a consequence, search effort can be reduced dramatically so that large-scale computation
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is avoided. In this research area, the nodes of the network are identified as the finite
dominating set for the p-median problem [31,32]. However, when the finite dominating set
is very large, it is still computationally burdensome to find the optimal solution.

To overcome the above difficulty, more recently, the facility location problem is defined
as a special clustering problem, where the sets of customers served by the same facility are
considered as clusters [33]. The clustering-based algorithms, such as k-means clustering
and fuzzy C-means (FCM) clustering algorithms, have been widely applied in previous
studies. Although the clustering-based algorithms cannot guarantee the execution time and
solution quality, they have proven useful in practice. Žalik [34] applied the FCM clustering
algorithm to minimize the mean squared distance from each data point to its nearest
center. Sheu [35,36] developed different versions of hybrid fuzzy clustering algorithms to
group customer demands. Esnaf and Küçükdeniz [37] presented a fuzzy clustering-based
hybrid method for a multi-facility location problem where the capacity of each facility was
unlimited. Chen, Yeh [38] considered the Euclidean distance in searching for potential
locations of temporary emergency medical centers using a clustering-based algorithm.
Varghese and Gladston Raj [39] applied the k-means clustering algorithm so solve a multi-
facility location-allocation problem. Gao, Nayeem [40] also developed a clustering-based
genetic algorithm for a multi-facility location problem, where the Manhattan distance
was considered.

After clustering the customers or clients into several groups, the facility locations need
to be identified in each of the groups. In this sense, the center-of-gravity (CG) method is one
of the most widely used approaches in previous studies [41–43], which is also known as
the weighted mean. In the previous studies using the CG methods, the goals are usually to
minimize an objective function involving squared Euclidean distance, Euclidean distance,
or Manhattan distance from the facilities to the demand points. For instance, Ohsawa [44]
used the CG method so that the average squared Euclidean distance can be minimized from
the facility to the demand points. Esnaf and Küçükdeniz [37] and Nadizadeh, Sahraeian [45]
also applied the CG method to obtain the optimal facility location with the consideration
of Euclidean distance. Onnela [46] also applied the CG method to minimize the total
weighted Manhattan distance and squared Euclidean distance. However, the CG method
can only be applied to minimize the total weighted squared Euclidean distance rather than
the total weighted Manhattan distance. Accordingly, the CG method is invalid anymore to
minimize the total weighted Manhattan distance.

In addition to the above discussions, we also provide a comprehensive review in
Table 1, where relevant studies about this topic are summarized. The differences with
previous studies are summarized in three aspects. Particularly, many efforts have been ded-
icated to various continuous-space multi-facility problems considering Euclidean distance.
In this study, the Manhattan distance is considered and the optimal facility locations are de-
termined. Besides, most of the previous studies applied a variety of clustering algorithms to
obtain the facility locations, which can be considered as a generalized multi-Weber problem
and referred to as an uncapacitated multi-facility location-allocation problem as stated by
Copper [47]. Moreover, the problem can be interpreted as an enumeration of the Voronoi
partitions of the customer set, which has been proven to be an NP-hard problem [48,49] and
cannot guarantee the global optimum of the solutions. As a consequence, the importance
of obtaining the globally optimal solution remains an urgent problem, posing the question:
How do we find the set of facility locations in a continuous plane that is the global optimum
so that the objective function can be minimized?

However, determining the global optimum of the facility locations in a continuous
plane is quite difficult because of the infinite number of potential locations and continu-
ous distance. Furthermore, different weights at demand points make the multi-facility
determination challenging. Neither strategic approaches nor quantitative models to over-
come the pitiful clustering algorithms in handling the continuous-space facility location
problems have been investigated before. Therefore, we focus on determining the global
optimum of the solutions for the continuous-space multi-facility location problem, which
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is different from the previous studies. Therefore, we propose an exact method to transfer
the continuous-space multi-facility location problem to the discrete-space multi-facility
location problem when the Manhattan distance is considered, which has never been studied
to the best of our knowledge.

Table 1. Summary of the literature about the continuous-space location problems.

Article Distance Type Method Optimal Estimator

Ohsawa [44] Euclidean distance CG method No
Meira and Miyazawa [50] Squared Euclidean distance Clustering algorithm Yes

Liao and Guo [51] Euclidean distance Clustering algorithm No
Küçükdeniz and Büyüksaatçi [33] Euclidean distance Clustering algorithm No

Esnaf and Küçükdeniz [37] Euclidean distance Clustering algorithm No
Matisziw and Murray [52] Euclidean distance Select from potential locations No
Nadizadeh, Sahraeian [45] Euclidean distance Clustering algorithm No

Chen, Yeh [38] Euclidean distance Clustering algorithm No

Onnela [46] Manhattan distance and Euclidean
distance CG method No

Varghese and Gladston Raj [39] Euclidean distance Clustering algorithm No
Gao, Zhou [53] Euclidean distance Clustering algorithm No

Wang and Wu [54] Manhattan distance Voronoi-diagram-based
algorithm No

Lara, Trespalacios [22] Manhattan distance Bi-level decomposition
algorithm No

Gergin, Tunçbilek [55] Euclidean distance Artificial Bee Colony-based
Clustering algorithm No

Gao, Nayeem [40] Euclidean distance Clustering algorithm No
This paper Manhattan distance Exact method Yes

3. Location Estimation Based on the Manhattan Distance

In this section, we first illustrate the Manhattan distance and present the objective
function based on the Manhattan distance. Then, we apply a statistical approach to obtain
the global minimizer for the continuous-space single-facility location problem, where
several properties of the minimizer can be obtained. With these properties of the minimizer,
we can drive optimization procedures in searching for the globally optimal facility locations.

3.1. Objective Function Based on the Manhattan Distance

The Manhattan distance is usually applied in the urban area of interest due to the street
configuration [40,56]. For instance, the determination of the bicycle-sharing stations or
the ambulance stations needs to consider the Manhattan distance. For more details on
the Manhattan distance, please refer to Gao and Cui [7]. Based on the Manhattan dis-
tance, the general objective function (minimization of the total weighted distance) can be
formulated with the following notations.

Parameters:

• n, Number of demand points, (i = 1, 2, . . . , n);
• xi, x-coordinate of demand point i;
• yi, y-coordinate of demand point i;
• zi, z-coordinate of demand point i;
• wi, Weight (Priority level) of demand point i;

Decision variables:

• u, x-coordinate of the facility;
• v, y-coordinate of the facility;
• w, z-coordinate of the facility;
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Generally, the objective function needs to be minimized so that the total weighted
distance-related travel time or cost is optimized. Before the objectives are presented,
the weights need to be normalized using the following equation.

ωi =
wi

∑n
i=1 wi

(1)

where ωi is the normalized weight of demand point i.
Then, the objective function for the two-dimensional single-facility location problem

is given by
Ψ2 = ∑n

i=1 ωi(|xi − u|+ |yi − v|) (2)

where |xi − u|+ |yi − v| is the distance measured along the axis at right angles. Please note
that the normalized weight influences the objective function value, but it would not affect
its final solution. Similarly, the same situation happens in the other objective functions.

The objective function for the three-dimensional single-facility location problem is
given by

Ψ3 = ∑n
i=1 ωi(|xi − u|+ |yi − v|+ |zi − w|) (3)

where |xi − u| + |yi − v| + |zi − w| is the distance measured along the axis at right an-
gles, which is usually applied in the mansion building of interest and three-dimensional
facility cases.

3.2. Minimum Distance Approach

In this subsection, we provide the three-dimensional single-facility location meth-
ods for the Manhattan distance. With the objective function of Ψ3 in (3), let (ũ, ṽ, w̃) be
the optimal facility location. Then, we have

(ũ, ṽ, w̃) = argmin
(u,v,w)

(Ψ3) = argmin
(u,v,w)

[
∑n

i=1 ωi(|xi − u|+ |yi − v|+ |zi − w|)
]

(4)

The minimizer of Ψ3 in (3), denoted by (ũ, ṽ, w̃), can be obtained by the following
estimating equations that need to be solved for u, v, and w according to Section 1.3 of
Hettmansperger and McKean [57].

∂Obj3
∂u

= ∑n
i=1 ωisgn(xi − u) = 0 (5)

∂Obj3
∂v

= ∑n
i=1 ωisgn(yi − v) = 0 (6)

∂Obj3
∂w

= ∑n
i=1 ωisgn(zi − w) = 0 (7)

Then, the optimal values ũ, ṽ, and w̃ can be calculated separately. It is easily seen that
they are the weighted medians of the x-axis, y-axis, and z-axis observations, which will be
detailed later. Note that the weighted median was first suggested by Edgeworth [58] and
since then it has been widely used in many applications [59]. As an illustration, we briefly
introduce the conventional median first and then the weighted median. As the values ũ,
ṽ, and w̃ can be obtained separately, we only consider the weighted median for the x-axis
observations. Then, the weighted medians for the y-axis and z-axis observations are easily
obtained using the same method.

Definition 1. Given a set of observations x1,x2, . . . , xn, the empirical cumulative distribution
function Fn is defined as

Fn(x) =
1
n ∑n

i=1 I(xi ≤ x), x ∈ R (8)
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where I(A) represents the indicator function defined as

I(A) =

{
1 if A is satisfied
0 otherwise

(9)

Definition 2. Csorgo [60] defined the left sample quantile function (inverse cumulative distribution
function) as below.

Fn,L
−1(p) = inf {x : Fn(x) ≥ p} (10)

Using this, the conventional median Fn
−1(1/2) is obtained as:

Fn,L
−1
(

1
2

)
= inf

{
x : Fn(x) ≥ 1

2

}
= x(k) if

k− 1
n

<
1
2
≤ k

n
, k = 1, 2, . . . , n (11)

where x(1) ≤ x(2) ≤ . . . ≤ x(n).

Definition 3. Wasserman [61]defined the right sample quantile function (inverse cumulative
distribution function), which is given by

Fn,R
−1(p) = inf {x : Fn(x) > p} (12)

Note that the definition by Wasserman [61] is slightly different to that of Csorgo [61].
It is easily seen that

inf {x : Fn(x) ≥ p} ≤ inf {x : Fn(x) > p} (13)

Thus, the sample quantile by Csorgo [60] is called the left quantile, while the sample
quantile by Wasserman [61] is the right quantile. Rychlik [62] and Hosseini [63] showed that

Fn,R
−1(p) = inf {x : Fn(x) > p} = sup{x : Fn(x) ≤ p} (14)

Based on the quantile function by Wasserman [61], we have the corresponding median
Fn
−1(1/2), which is obtained as:

Fn,R
−1
(

1
2

)
= inf

{
x : Fn(x) >

1
2

}
= x(k+1) if

k− 1
n

<
1
2
≤ k

n
, k = 1, 2, . . . , n (15)

where x(1) ≤ x(2) ≤ . . . ≤ x(n).
It is obvious that the difference between (13) and (15) is the case when Fn(1/2) = 0.5

with even n. It is obvious that (13) takes the left bound value and (15) takes the right
bound value. Moreover, both of them are the minimizers (medians) to the total Manhattan
distance of the x-axis observations.

The above definitions on the empirical distribution and the sample quantile do not
consider the weights of the observations. Thus, the definitions with weights are given below.

Definition 4. Given a set of observations x1,x2, . . . , xn with corresponding positive weights
ω1,ω2, . . . , ωn such that ∑n

i =1 ωi = 1, we have the empirical cumulative distribution function
Gn(x) with weights, which is defined as

Gn(x) = ∑n
i=1 ωiI(xi ≤ x) (16)

Note that the above Gn includes the conventional empirical cumulative distribution
function Fn in (8), as a special case when ωi = 1/n. Similar to the definition of the sample
quantile function in Csorgo [60], we define the sample quantile function with weights.
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Definition 5. Given a set of observations x1,x2, . . . , xn with corresponding positive weights
ω1,ω2, . . . , ωn such that ∑n

i =1 ωi = 1, the sample left and right quantiles with weights are
given by

Gn,L
−1(p) = inf {x : Gn(x) ≥ p} (17)

Gn,R
−1(p) = inf {x : Gn(x) > p} (18)

Next, our goal is to obtain the minimizer of the Ψ3 in (3). As the weighted medians
for the x-axis, y-axis, and z-axis observations can be calculated separately, we only focus
on the weighted median of x-axis observations, which are given by

Gn,L
−1
(

1
2

)
= inf

{
x : Gn(x) ≥ 1

2

}
= x(k) if

k−1

∑
j=1

ω(j) <
1
2
≤

k

∑
j=1

ω(j), k = 1, 2, . . . , n (19)

Gn,R
−1
(

1
2

)
= inf

{
x : Gn(x) >

1
2

}
= x(k+1) if

k−1

∑
j=1

ω(j) <
1
2
≤

k

∑
j=1

ω(j), k = 1, 2, . . . , n (20)

where ω(j) is the weight for x(j).
According to the equations in (14) and (20), we can deduce the following equation.

Then, we have

Gn,R
−1
(

1
2

)
= inf

{
x : Gn(x) >

1
2

}
= sup

{
x : Gn(x) ≤ 1

2

}
= x(k+1) (21)

It is obvious that the above x(k) minimizes the weighted Manhattan distance. However,
it is not a unique minimizer when there is a tied value at ∑k

j=1 ω(j) = 1/2. Thus, we have
two cases and both of them are the minimizers to the objective function:

(i) ∑k−1
j=1 ω(j) < 1/2 and 1/2 < ∑k

j=1 ω(j)

(ii) ∑k−1
j=1 ω(j) < 1/2 and 1/2 = ∑k

j=1 ω(j)

Because the minimizer of Ψ3, denoted by ũ, ṽ, and w̃ can be calculated separately.
Based on the weighted median obtained in this subsection, the globally optimal location of
the facility in a three-dimensional space is given by

ũ = weighted median (x1, x2, . . . , xn) (22)

ṽ = weighted median (y1, y2, . . . , yn) (23)

w̃ = weighted median (z1, z2, . . . , zn) (24)

In addition, the globally optimal location of the facility in a two-dimensional plane
is easily obtained by (22) and (23). For the higher-dimensional (d = 4, 5, . . . ,) globally
optimal facility location problem with Manhattan distance, the main task is to calculate
each of the weighted medians for all the axes. Then, the optimal facility location in
a higher-dimensional hyperspace can be obtained.

3.3. Properties of the Minimizer

Next, we derive the properties of the globally optimal locations for the continuous-
space multi-facility location problem. As obtained of the minimizer for Ψ3, the globally
optimal single-facility location is the weighted median of the axis observations. In the first
case, there is only one minimizer x(k), whereas the second case contains an infinite number
of minimizers between x(k) and x(k+1). Suppose that we choose only one minimizer among
x(k), x(k+1), (x(k) + x(k+1))/2 for the second case, we can construct the candidate facility
locations. To better observe the characteristic of the optimal single-facility location, we use
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four examples (i.e., Examples 1–4) to illustrate the property of the optimal facility location,
and the datasets are provided in Table 2.

Table 2. Summary of data in four examples.

ID Example 1 Example 2 Example 3 Example 4
xi yi ωi xi yi ωi xi yi ωi xi yi ωi

i = 1 1 2 0.1 1 2 0.1 1 6 0.1 1 6 0.1
i = 2 3 3 0.5 3 3 0.4 3 2 0.5 3 2 0.4
i = 3 5 6 0.4 5 6 0.5 5 3 0.4 5 3 0.5

3.3.1. Example 1

As shown in Figure 1, the black circles stand for the demand points and black hollow
squares represent the optimal facility locations. In Example 1 (see Figure 1a), the optimal
facility location is located at the second demand point due to its coordinate values and
weights, which are given by

ũ = weighted median (x1, x2, x3) = 3 (25)

ṽ = weighted median (y1, y2, y3) = 3 (26)
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3.3.2. Example 2

There are four optimal facility locations (black hollow squares) in Example 2 (see
Figure 1b) because of weight construction. Then, the weighted medians are given by

ũ = weighted median (x1, x2, x3) = 3, 5, or 4 (27)

ṽ = weighted median (y1, y2, y3) = 3, 6, or 4.5 (28)

It is easy to obtain the optimal facility locations through permutation and combination
of the weighted medians on different axes, which are (3, 3), (3, 6), (3, 4.5), (5, 3), (5, 6),
(5, 4.5), (4, 3), (4, 6), and (4, 4.5). It is obvious that two of them, i.e., (3, 3) and (5, 6), are
located at the demand points, but the others are not. As they have the same objective
function value, any one among them can be considered as the location for the facility.

3.3.3. Example 3

As shown in Figure 1c, there is only one specific location for the facility due to
the singular weighted median on each of the axis. The optimal facility location does not
locate at the demand point, which is given by

ũ = weighted median (x1, x2, x3) = 3 (29)

ṽ = weighted median (y1, y2, y3) = 3 (30)

3.3.4. Example 4

In this case, the weighted median on the axes are given by

ũ = weighted median (x1, x2, x3) = 3, 5, or 4 (31)

ṽ = weighted median (y1, y2, y3) = 3 (32)

Thus, there are three black hollow squares in Figure 1d, where any of them can be
considered as the optimal location for the facility.

As presented in Figure 1 for Examples 1–4, we can conclude that the globally optimal
facility location is based on the coordinate values of the observations on different axes.
After constructing the set of mesh points that are consist of the coordinate combinations, it
is obvious that the optimal single-facility location is an element from the set of mesh points.
Then, we have the following formula

(ũ, ṽ) ∈
{(

xi, yj
)

: i, j = 1, 2, . . . , n
}
∪
{(

xi + xi+1

2
,

yj + yj+1

2

)
: i, j = 1, 2, . . . , n− 1

}
(33)

Similarly, if we choose only one minimizer among x(k) and x(k+1) for the second case
in (39), the optimal single-facility location is also an element from the other set of mesh
points, which is given by

(ũ, ṽ) ∈
{(

xi, yj
)

: i, j = 1, 2, . . . , n
}

(34)

Note that the number of candidate locations in (34) is smaller than that in (33) but
the objective function obtained through (34) is the same as that through (33). In this sense,
the number of candidate locations in (34) is suggested in this study.

3.4. Identification of the Candidate Locations

As presented in (33), the globally optimal single-facility location is an element from
the set of mesh points. Then, we investigate the candidate locations for the multi-facility
location problem. In the multi-facility location problem, each demand point is assigned
to its closest facility. Suppose that we have obtained the optimal facility locations, then
the set of demand points served by the same facility is considered as a group, which is
independent of other groups. In this sense, the optimal facility location is still one of
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the mesh points within this group. After considering the optimal facility locations for all
groups, these optimal facility locations are from the mesh points that are constructed based
on the observation coordinates. Then, we have

(ũl , ṽl) ∈
{(

xi, yj
)

: i, j = 1, 2, . . . , n
}
∪
{(

xi + xi+1

2
,

yj + yj+1

2

)
: i, j = 1, 2, . . . , n− 1

}
l = 1, 2, . . . , m (35)

where m is the number of facilities, which is indexed by l.
As an illustration, we provide an example to show the candidate locations (i.e., mesh

points) for the facilities. In the example, we consider three demand points (see Table 3).
As shown in Figure 2, we construct the mesh points based on these three demand-point
coordinates. Accordingly, 25 mesh points are represented by black hollow rhombuses that
also contain three demand points. These 25 mesh points are considered as the candidate
facility locations. It is easy to conclude that the number of candidate facilities E is related
to the number of demand points n, where the relationship between them is given by

E = (n + n− 1)2 = 52 = 25 (36)

Table 3. Data for the example with three demand points.

i xi yi ωi

1 1 1 0.3
2 3 7 0.2
3 7 5 0.5
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When the demand points have the same coordinate value on one axis, the number of
candidate facilities E can be smaller. Suppose that there are p (p ≤ 2n− 1) different x-axis
values and q (q ≤ 2n− 1) different y-axis values, the number of candidate facilities E can
be smaller, which is given by

E = pq ≤ (2n− 1)2 (37)

Based on the conclusion about the number of the candidate locations for the two-
dimensional multi-facility location problem, it is easy to deduce the number of candidate
locations for the three-dimensional multi-facility location problem, which is given by

E ≤ (2n− 1)3 (38)
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If we consider the minimizer from x(k) and x(k+1) for the second case presented in
(39), the number of mesh points can be reduced and the number of candidate facilities E
for the two- and three-dimensional multi-facility location problems are given below

E ≤ (n− 1)2 (39)

E ≤ (n− 1)3 (40)

Finally, we construct the candidate facility locations and transfer the continuous-space
multi-facility location problem to the discrete-space multi-facility location problem. Next,
our goal is to select the optimal locations from the mesh points, which is the global optimum
solution to the problem.

3.5. Determination of the Globally Optimal Facility Locations

After the construction of the candidate locations for the facilities, what we need to do is
to select the optimal facility locations from the mesh points. We formulate the mathematical
model for the multi-facility location problem, which is also called the location-allocation
problem. Besides, the construction of the candidate locations for the facilities makes it
possible to determine the globally optimal locations for the capacitated facilities. Then, we
present the different models for different facility location problems.

3.5.1. Model for the Uncapacitated Multi-Facility Problem

With the number of demand points n, we have E candidate facility locations. Let
I be the set of demand points, which is indexed by i with i ∈ I. Let L be the set of
candidate facility locations, which is indexed by l with l ∈ L. Then, the distance from
the candidate facility location l to the demand point i is known, which is denoted by Dli.
Given the number of facilities m > 1, our goal is to select m locations among E candidate
facility locations and allocate the demand points to these facilities to minimize the total
cost. To formulate this problem, we need to define two more decision variables, which are
given by

gl

{
1 if candidate facility l is selected
0 otherwise

til

{
1 if demand point i assigned to candidate facility l
0 otherwise

Then, we have the following mathematical modelM1 for the general multi-facility
location-allocation problem:

M1:

Min Obj1 = c ∑E
l=1 ∑n

i=1 ωiDlitil (41)

subject to

∑E
l=1 gl = m (42)

∑E
l=1 til = 1 ∀ i ∈ I (43)

til ≤ gl ∀ i ∈ I and ∀ l ∈ L (44)

The objective function in (41) minimizes the total weighted travel cost. Constraint in
(42) means that we must locate exactly m facilities. Constraint (43) states that a demand
point can only be serviced by one facility. Constraint (44) indicates that the demand point
can only be assigned to the opened facility.

3.5.2. Model for the Uncapacitated Multi-Facility Problem with Fixed Cost

In the above mathematical model, the fixed cost of opening a facility is not considered.
However, in practice, the fixed cost of opening a facility is inevitable. Thus, the fixed cost,
denoted by F, needs to be considered in the multi-facility location-allocation problem. In
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this sense, the number of facilities is also a decision variable. Then, the mathematical model
M2 is given by

M2:

Min Obj2 = c ∑E
l=1 ∑n

i=1 ωiDlitil + F ∑E
l=1 gl (45)

subject to

∑E
l=1 gl ≤ n (46)

∑E
l=1 til = 1 ∀ i ∈ I (47)

til ≤ gl ∀ i ∈ I and ∀ l ∈ L (48)

The objective function in (45) minimizes the total cost including the weighted travel
cost and fixed cost. The first constraint in (46) means that the number of facilities cannot be
more than n. Constraints (47) and (48) are the same as the Constraints (43) and (44).

3.5.3. Model for the Capacitated Multi-Facility Problem with Fixed Cost

Generally, the clustering-based method is applied to solve the uncapacitated conti-
nuous-space multi-facility location problem. Even though some studies have applied
the adjusted clustering-based algorithms to solve the capacitated multi-facility prob-
lem [30,31], it is still impossible to guarantee the global optimum of the solution. In this
sense, obtaining the globally optimal locations for the facilities is warranted when the prac-
tical factor of the limited capacities is considered. Based on the constructed candidate
locations for the facilities, the globally optimal locations for the capacitated facilities also
can be selected from the mesh points. Let ri be the quantity of demand at demand point
i and Capl be the capacity of the facility l. Note that ri can be considered as the weight
of demand point i. Then, the capacitated continuous-space multi-facility problem can be
formulated as the following mathematical modelM3.

M3:

Min Obj3 = c ∑E
l=1 ∑n

i=1 riDlitil + F ∑E
l=1 gl (49)

subject to

∑E
l=1 gl ≤ n (50)

∑E
l=1 til = 1 ∀ i ∈ I (51)

til ≤ gl ∀ i ∈ I, l ∈ L (52)

∑n
i=1 ritil ≤ Capl ∀ l ∈ L (53)

The objective function in (49) minimizes the total cost including the travel cost and
fixed cost. The first constraint in (50) guarantees the maximum number of facilities. Con-
straints (51) and (52) are the same as the Constraints (43) and (44). Constraint (53) restricts
the facility capacity.

4. Numerical Examples

In this section, several illustrative instances from a benchmark composed of 27 in-
stances (http://neo.lcc.uma.es/vrp/, accessed on 1 May 2020) referred to Augerat, Be-
lenguer [64] are provided to evaluate the performance of the proposed method. Each
instance provides customers’ (demand point) geographical coordinates and quantities
of demand. The proposed exact approach is used to determine the globally optimal fa-
cility locations under different numbers of facilities for four instances (see Table 4) from
the benchmark (i.e., Instances 24–27).

http://neo.lcc.uma.es/vrp/
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Table 4. Summary of the benchmark Instances 24–27.

No. 1 2 3 4

Instance ID 24 25 26 27
Problem size 64 65 69 80

Given the parameter values, the proposed models (i.e.,M1,M2,M3) are imple-
mented in the IBM ILOG CPLEX Optimization Studio (Version: 12.6). All the experiments
are run on a computer with an Intel(R) Core(TM) i7-7700 CPU@3.6 GHz and 8 GB memory
under the Windows 10 Pro system. In what follows, the numerical results are provided
to validate the effectiveness of the proposed method. Then, the proposed method is com-
pared with the previous clustering-based methods, where the comparison results are also
provided to illustrate the advantages of the proposed method.

4.1. Numerical Results

First of all, the model M1 is applied and the facility locations are presented in
Figures 3–6 for Instances 24–27. As shown in Figures 3–6, different numbers of the fa-
cilities (i.e., 3, 4, 5, and 6) are tested for each of the instances, where the black hollow
triangle stands for the demand point and the solid square is represented as the facility.
It is obvious that the facility locations are well scattered in the planning area. Since
the difference between the modelsM1 andM2 is subject to whether the fixed cost is
considered, the same results but with different objective function values are obtained
based on the modelsM1 andM2.
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Similarly, the globally optimal facility locations can also be obtained when the facility
capacities are considered in modelM3. As shown in Figure 7, the facility locations are
determined for Instance 24 when different numbers of facilities are considered, which
verifies the effectiveness of the proposed approach in obtaining the globally optimal facility
locations, even though the facility capacities are involved. Note that similar results can be
obtained when Instances 25–27 are considered. It is also obvious that the globally optimal
facility locations obtained from modelM3 are different from those in modelsM1 and
M2, which indicates that the facility capacities have a great influence on the multi-facility
location determination problem.
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Next, the influence of different numbers of facilities and fixed costs on the objective
function values are tested for modelsM 1,M 2, andM 3. Regarding modelM 1, the objec-
tive function value is only affected by the number of facilities. In this sense, the relationship
between the number of facilities and the objective function value is presented in Figure 8
given different shipping costs. It is obvious that the increase in the number of facilities
always decreases the total cost, no matter how the shipping cost changes.
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When the fixed cost is considered at facilities, in addition to the number of facilities,
the fixed cost also has a great influence on the objective function value. To further provide
a visual illustration of the influence of the parameters m and F on the total cost, a cross-
validation experiment is carried out when the number of facilities m goes from 2 to 18
and fixed cost F goes from 60 to 360. Then, the results under different shipping costs
are presented in Figures 9–13. Specifically, as shown in Figure 9, the growth in the fixed
cost from 60 to 360 increases the total cost. However, when the number of facilities
m goes from 2 to 18, the total cost decreases first, since more facilities lead to lower
transportation costs, and then the total cost increases because too many facilities contribute
to marginally lower transportation costs, but result in higher fixed costs. Similar results are
obtained in Figures 10–13. As a consequence, an appropriate number of facilities needs to
be determined so that the globally minimum total cost can be obtained.

To investigate the influence of the capacitated facilities on the optimal facility loca-
tions and objective function values, the proposed three modelsM1,M2, andM3 are
compared in terms of Instance 24 and the corresponding comparison results are provided
in Table 5. Regarding the modelsM1 andM2, the same facility locations are obtained
because the fixed cost does not influence the determination of the facility locations. When
the facility capacities are considered, the globally optimal facility locations in modelM3
can still be obtained, which is different from that in modelM2. Besides, a higher total
cost is obtained in modelM3 compared with modelM2, which verifies that the facility
capacities affect the determination of facility locations.
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Table 5. Comparison of optimal solutions and objective function values among three models.

Number of
Facilities

ID
M1 M2 M3

Facility
Locations Obj1 Facility

Locations Obj2 Facility
Capacities

Facility
Locations Obj3

3
1 (55, 43)

2932
(55, 43)

3292 350
(49, 43)

33322 (21, 39) (21, 39) (63, 79)
3 (63, 81) (63, 81) (21, 39)

4

1 (21, 37)

2480

(21, 37)

2960 250

(21, 37)

2993
2 (51, 43) (51, 43) (51, 43)
3 (63, 83) (63, 83) (81, 43)
4 (83, 51) (83, 51) (63, 81)

5

1 (51, 43)

2156

(51, 43)

2756 220

(45, 9)

2774
2 (45, 9) (45, 9) (21, 39)
3 (83, 51) (83, 51) (83, 51)
4 (59, 83) (59, 83) (63, 83)
5 (21, 39) (21, 39) (51, 45)

6

1 (51, 43)

1872

(51, 43)

2592 150

(45, 7)

2635

2 (51, 9) (51, 9) (83, 43)
3 (17, 63) (17, 63) (17, 63)
4 (63, 81) (63, 81) (21, 35)
5 (21, 33) (21, 33) (63, 81)
6 (83, 51) (83, 51) (51, 47)
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(c) Instance 26; (d) Instance 27.

4.2. Comparison with Previous Methods

When the potential facility candidates are not given, the general strategy to determine
the set of facility locations is the application of clustering-based algorithms. Among them,
the K-means clustering algorithm is one of the most popular methods in handling con-
tinuous multi-facility location problems. However, the minimizer of the total weighted
Manhattan distance is the weighted median rather than the weighted mean in each cluster.
In this sense, the weighted median is used to update the cluster center in each of the itera-
tions in the clustering-based algorithms [18]. In addition, Gao, Nayeem [40] also developed
a clustering-based genetic algorithm for the continuous multi-facility location problem
considering the Manhattan distance.

To illustrate the outperformance of the proposed approach, different methods are
compared for Instances 24–27 in handling the continuous multi-facility location problems.
Given different numbers of facilities, the comparison results including objective function
values and the facility locations are presented in Figure 13 and Tables 6–9, respectively.
Since different randomly generated initial solutions result in different clustering results,
we repeat each simulation five times and pick up the best one among them. As shown in
Figure 13, the performance of minimizing the total transportation cost using different meth-
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ods is presented. The proposed method outperforms other clustering-based algorithms.
Besides, given any number of facilities from 2 to 12, the method proposed by Gao [65]
demonstrates better performance in reducing the total transportation cost compared with
the k-means method and clustering-based genetic algorithm, since the weighted median is
used to update the cluster center. Besides, from Tables 6–9, the facility locations obtained
using the method proposed by Gao [65] are closer to the globally optimal solution com-
pared with the other two existing methods. In this sense, the method proposed by Gao [65]
is more appropriate to determine the optimal solution when the problem size is quite large.
As a consequence, regarding the Manhattan distance, there is definitely strong evidence
that the proposed exact method can determine the globally optimal facility locations for
the continuous multi-facility location problems. Moreover, the application of the weighted
median in the clustering-based methods is also reasonable when the Manhattan distance
is considered.

Table 6. Comparison of facility locations using different methods for Instance 24.

Number of Facilities ID K-Means Clustering Algorithm Gao, Nayeem [40] Gao [65] The Proposed Method

3
1 (51.7, 13.0) (20.6, 42.6) (55, 43) (55, 43)
2 (30.6, 48.6) (68.3, 74.4) (21, 39) (21, 39)
3 (69.5, 66.1) (58.8, 35.8) (63, 79) (63, 81)

4

1 (56.9, 13.4) (30.3, 73.3) (21, 37) (21, 37)
2 (73.7, 66.1) (71.3, 79.0) (51, 43) (51, 43)
3 (16.2, 43.1) (60.1, 38.2) (63, 81) (63, 83)
4 (44.7, 54.5) (17.7, 33.0) (83, 43) (83, 51)

5

1 (36.9, 8.8) (19.6, 65.6) (51, 49) (51, 43)
2 (18.0, 48.6) (18.5, 27.8) (51, 9) (45, 9)
3 (75.7, 38.0) (66.6, 81.2) (71, 43) (83, 51)
4 (48.6, 47.5) (77.4, 38.5) (63, 81) (59, 83)
5 (48.6, 47.5) (49.2, 39.7) (21, 39) (21, 39)

6

1 (62.6, 84.5) (47.2, 45.7) (51, 47) (51, 43)
2 (83.5, 20.2) (63.9, 52.2) (45, 7) (51, 9)
3 (17.9, 47.7) (86.6, 45.0) (17, 63) (17, 63)
4 (35.3, 7.5) (17.5, 44.8) (63, 81) (63, 81)
5 (50.0, 43.4) (55.1, 9.5) (21, 35) (21, 33)
6 (71.8, 55.6) (64.9, 85.0) (83, 15) (83, 51)

Table 7. Comparison of facility locations using different methods for Instance 25.

Number of Facilities ID K-Means Clustering Algorithm Gao, Nayeem [40] Gao [65] The Proposed Method

3
1 (31.9, 77.1) (74.5, 21.8) (15, 69) (39, 67)
2 (81.0, 32.1) (40.1, 76.9) (75, 75) (63, 79)
3 (30.0, 19.5) (23.6, 19.0) (49, 19) (69, 17)

4

1 (70.5, 77.8) (16.1, 74.5) (25, 19) (25, 19)
2 (16.1, 74.5) (69.5, 80.2) (15, 69) (15, 69)
3 (24.3, 17.0) (47.8, 17.5) (63, 77) (63, 77)
4 (74.1, 21.2) (90.6, 40.9) (77, 17) (77, 17)

5

1 (26.8, 18.4) (14.8, 21.1) (77, 17) (75, 17)
2 (27.2, 83.6) (49.7, 17.7) (63, 77) (63, 77)
3 (76.2, 20.3) (71.4, 78.9) (15, 69) (15, 69)
4 (70.5, 77.8) (80.0, 22.2) (47, 21) (91, 41)
5 (7.1, 67.0) (16.3, 75.2) (15, 19) (25, 19)

6

1 (15.1, 19.8) (89.4, 36.3) (15, 69) (15, 69)
2 (7.1, 67.0) (71.5, 14.7) (47, 21) (47, 21)
3 (71.4, 78.9) (16.1, 74.5) (77, 17) (77, 17)
4 (78. 7, 20.1) (89.6, 72.5) (63, 77) (77, 77)
5 (27.2, 83.6) (26.8, 18.4) (93, 41) (15, 41)
6 (46.7, 20.5) (61.2, 80.4) (9, 19) (25, 19)
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Table 8. Comparison of facility locations using different methods for Instance 26.

Number of Facilities ID K-Means Clustering Algorithm Gao, Nayeem [40] Gao [65] The Proposed Method

3
1 (78.2, 39.2) (24.1, 22.5) (38, 73) (9, 67)
2 (20.7, 25.5) (26.9, 72.0) (14, 25) (63, 79)
3 (29.4, 74.4) (79.3, 40.3) (87, 29) (69, 17)

4

1 (20.8, 71.1) (47.3, 70.6) (40, 89) (50, 74)
2 (61.8, 70.2) (27.1, 18.6) (11, 54) (11, 54)
3 (22.5, 22.7) (9.9, 62.1) (33, 18) (33, 18)
4 (81.5, 29.6) (83.9, 35.0) (80, 39) (87, 30)

5

1 (84.4, 32.0) (41.2, 70.6) (87, 36) (87, 36)
2 (26.1, 76.1) (83.9, 58.4) (33, 18) (33, 18)
3 (9.0, 34.7) (23.3, 17.3) (50, 64) (50, 64)
4 (64.8, 74.5) (75.8, 21.7) (4, 51) (11, 51)
5 (39.5, 21.3) (9.1, 60.8) (23, 91) (32, 91)

6

1 (35.7, 84.8) (46.0, 74.0) (80, 18) (87, 36)
2 (29.0, 9.0) (11.3, 64.6) (88, 54) (14, 22)
3 (11.5, 54.3) (21.1, 29.8) (48, 54) (50, 59)
4 (84.3, 41.2) (85.6, 56.2) (32, 91) (32, 91)
5 (45.1, 37.6) (75.8, 21.7) (9, 51) (4, 57)
6 (11.1, 22.7) (26.2, 9.3) (25, 16) (37, 18)

Table 9. Comparison of facility locations using different methods for Instance 27.

Number of Facilities ID K-Means Clustering Algorithm Gao, Nayeem [40] Gao [65] The Proposed Method

3
1 (83.4, 35.3) (47.7, 77.0) (88, 35) (87, 25)
2 (13.7, 63.7) (79.7, 28.3) (39, 22) (39, 38)
3 (48.9, 45.3) (29.6, 28.5) (49, 82) (52, 83)

4

1 (70.4, 62.2) (27.4, 27.3) (14, 85) (17, 85)
2 (79.6, 19.4) (37.4, 86.8) (34, 26) (32, 25)
3 (23.0, 81.9) (69.4, 53.5) (83, 17) (83, 17)
4 (32.3, 25.9) (80.5, 16.7) (69, 58) (68, 54)

5

1 (27.3, 22.3) (79.6, 19.4) (50, 42) (57, 42)
2 (80.6, 71.2) (82.8, 70.9) (14, 85) (14, 85)
3 (57.2, 44.0) (53.9, 50.9) (88, 30) (83, 17)
4 (81.6, 16.3) (28.9, 20.1) (39, 10) (31, 19)
5 (23.0, 82.1) (19.0, 78.8) (63, 76) (79, 74)

6

1 (53.9, 45.9) (16.1, 41.9) (57, 42) (57, 42)
2 (80.6, 71.2) (26.4, 87.0) (69, 80) (69, 80)
3 (78.5, 28.5) (57.8, 43.8) (31, 19) (31, 43)
4 (22.3, 28.3) (82.5, 16.9) (80, 11) (87, 11)
5 (75.7, 5.1) (80.6, 71.2) (14, 85) (14, 85)
6 (26.2, 86.7) (35.2, 11.7) (91, 52) (91, 58)

5. Conclusions

This study focused on determining the globally optimal facility locations for conti-
nuous-space multi-facility location problems when the Manhattan distance is considered.
Before the exact method was proposed, we started with the continuous-space single-
facility location problem and found the global minimizer for the problem using a statistical
approach. More specifically, in terms of Manhattan distance with weights, the weighted
median is the global minimizer to the total weighted Manhattan distance. Thus, we
investigated and defined the weighted median more clearly compared to the existing
methods. Based on the newly observed properties from the weighted median, we extended
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it to high-dimension multi-facility problems and transferred the continuous-space location
problem to the discrete-space location problem. As a consequence, three mathematical
models were proposed to formulate different types of continuous-space multi-facility
location problem and the corresponding globally optimal solutions are obtained, which is
different from the previous clustering-based methods. To illustrate the effectiveness and
efficiency of the proposed exact method, several illustrative instances from a benchmark
were used to compare the performances of different methods. The comparison results show
the superiority of the proposed exact method in the decision-making of the continuous-
space multi-facility location problems.

Despite the above contributions and insights, this work still has several limitations.
This study only investigated a continuous-space multi-facility location problem based on
the Manhattan distance. Moreover, it is difficult to determine the global optimum when
the problem size is quite large. Accordingly, some meaningful problems of interest can
be explored in more depth in future. It is important to find the candidate locations of
the facilities for the Euclidean distance. Besides, we also need to develop a heuristic
algorithm to determine the facility locations based on all of the candidate locations when
the problem size is large. Furthermore, the maximum distance (i.e., blast radius) from
the facility to the demand point will be considered in the continuous-space multi-facility
location problem.
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