
applied  
sciences

Article

Strong Influence of Responses in Training Dialogue
Response Generator

So-Eon Kim, Yeon-Soo Lim and Seong-Bae Park *

����������
�������

Citation: Kim, S.-E.; Lim, Y.-S.; Park,

S.-B. Strong Influence of Responses in

Training Dialogue Response

Generator. Appl. Sci. 2021, 11, 7415.

https://doi.org/10.3390/app11167415

Academic Editor: Giancarlo Mauri

Received: 14 July 2021

Accepted: 11 August 2021

Published: 12 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Engineering, Kyung Hee University, Yongin 17104, Korea;
sekim0211@khu.ac.kr (S.-E.K.); dladustn95@khu.ac.kr (Y.-S.L.)
* Correspondence: sbpark71@khu.ac.kr

Abstract: The sequence-to-sequence model is a widely used model for dialogue response generators,
but it tends to generate safe responses for most input queries. Since safe responses are unattractive
and boring, a number of efforts have been made to make the generator produce diverse responses,
but generating diverse responses is yet an open problem. As a solution to this problem, this paper
proposes a novel response generator, Response Generator with Response Weight (RGRW). The
proposed response generator is a transformer-based sequence-to-sequence model of which the
encoder is a pre-trained Bidirectional Encoder Representations from Transformers (BERT) and the
decoder is a variant of Generative Pre-Training of a language model-2 (GPT-2). Since the attention
on the response is not reflected enough at the transformer-based sequence-to-sequence model, the
proposed generator enhances the influence of a response by the response weight, which determines
the importance of each token in a query with respect to the response. Then, the decoder of the
generator processes the response weight as well as a query encoding to generate a diverse response.
The effectiveness of RGRW is proven by showing that it generates more diverse and informative
responses than the baseline response generator by focusing more on the tokens that are important
for generating the response. Additionally, the proposed model overwhelms the Commonsense
Knowledge-Aware Dialogue generation model (ConKADI), which is a state-of-the-art model.

Keywords: natural language processing; chat-bot; open-domain dialogue; response generator;
keyword; response weight

1. Introduction

With the advent of sequence-to-sequence models [1,2], response generation in open
domain dialogues has made great progress. Nevertheless, most current response generators
often make very general and unattractive responses such as “I don’t know” or “What are
you talking about?” [3,4], since such responses are appropriate to any query. The same
response to any query harms the reliability of dialogue-based systems, and thus it is
regarded as one of the most critical problems in response generation.

Some previous studies noticed that the traditional loss functions, such as maximum
likelihood, assign a high probability to safe responses. One solution to avoid safe responses
is to inject external knowledge into response generator. Ghazvininejad et al. adopted
unstructured text knowledge [5] and Wu et al. chose structured graph knowledge [6]
as external knowledge. However, this approach takes a great amount of memory and
searching time during inference because appropriate external knowledge to a given query
should be extracted from a knowledge base.

Another approach to creating diverse responses is to define a special loss function. The
benefit of this approach is that it does not require any external knowledge. Li et al. showed
that the bidirectional influence between a query and its response leads to the generation
of more diverse and interesting responses [7]. Thus, they proposed the maximum mutual
information as a loss function to model the bidirectional influence. On the other hand,
Wu et al. found out that general responses overwhelm specific ones in most dialogue
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corpora and thus they are preferred by response generators [8]. As a solution to this
problem, they proposed the max-marginal ranking loss to highlight the impact of less
common but more relevant tokens in a query. However, since these loss functions focus
only on the relation among tokens, they fail in capturing the entire context of a response.

This paper proposes a novel response generator—Response Generator with Response
Weight (RGRW)—which reflects the importance of each token in a query with respect to the
whole response. The proposed generator is an encoder–decoder model of which the encoder
is pre-trained Bidirectional Encoder Representations from Transformers (BERT) [9] and the
decoder is a pre-trained Generative Pre-Training of a language model-2 (GPT-2) [10]. In
addition to them, it includes a response weight, which captures the importance of every query
token with respect to a response [11]. Even though the BERT-encoder is trained to reflect
a response, it fails in capturing whole key tokens of a query with respect to the response
because it focuses on encompassing the information within a query. Thus, the response
weight delivers the relevancy of each query token toward a response for the decoder, that
is, it identifies the key query tokens for generating a response. Then, the decoder reflects
the response weight in the response generation by paying more attention to the query
tokens relevant to the generating response.

The effectiveness of the proposed response weight is proved with the short-text key-
word detection task [12]. For the experiment, the MAUI twitter data set, which consists of
data pairs with short sentences and keywords of sentences, is used. Even if the response
weight is not a direct keyword extractor, its performance on the MAUI twitter data set
is competitive against those of direct keyword extractors. Especially, it outperforms the
keyword extractor trained with non-MAUI twitter data. The performance of the response
generation by RGRW is verified with the Reddit data set, an open-domain singleton dia-
logue data set [13]. According to the experimental results, RGRW shows the highest score
among the baselines in Distinct-n and word-level Entropy, which implies that RGRW gener-
ates diverse and informative responses by focusing more on the tokens that are important
for generating the response. Additionally, RGRW outperforms the state-of-the-art models,
such as the Commonsense Knowledge-Aware Dialogue generation model (ConKADI).

The rest of this paper is organized as follows. Section 2 explains the previous studies
to generate diverse responses. Section 3 introduces the need for the response weight and
how to train it. Section 4 describes the proposed model, RGRW. Section 5 reports the
experimental results on the MAUI Twitter data set and Reddit data set. Finally, Section 6
draws conclusions.

2. Related Work

A number of efforts have been made to minimize the generation of general responses
since the sequence-to-sequence model was introduced to response generation. Xu et al.
tried to produce diverse responses by adopting a generative adversarial network (GAN) in
which a discriminative classifier distinguishes machine-generated responses from human-
made ones [14]. Zhoa et al. defined response generation as a one-to-many mapping at
the discourse level [15]. Thus, they applied a conditional variational autoencoder (CVAE)
in which a latent variable captures discourse-level variations. On the other hand, Li et al.
distilled dialogue data to control the response specificity [16]. They trained a sequence-to-
sequence model with dialogue data to respond a query. Then, they removed the training
examples from the data that are close to common responses, and then re-trained the model
with the remaining data. Since their method produces multiple sequence-to-sequence
models for different levels of specificity, they also trained a reinforcement learning system
for choosing a model with the best specificity.

One of the main reasons for the preference for safe responses is the lack of background
knowledge in a response generator. One representative approach to solve this problem
is to provide extra information to a response generator [17,18]. For instance, an unstruc-
tured text was used as external knowledge for a fully data-driven neural dialogue sys-
tem [5], and a knowledge graph was adopted to provide common knowledge as external
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information [6,13]. Another way to provide background knowledge is to use a dialogue
corpus with additional information [19]. Zhang et al. and Rashkin et al. used a cor-
pus with personal and empathetic information, respectively, to train their conversational
agents [20,21]. However, it is very expensive in memory usage and requires a much longer
inference time to use additional information. On the other hand, Jiang et al. noticed that
the cross-entropy loss prefers high-frequent tokens to low-frequent ones [22]. Thus, they
proposed the frequency-aware cross-entropy loss to balance the number of identical tokens
appearing in a response.

Some previous studies attempted to leverage the response quality by exploiting
keywords in a query [23]. Xing et al. obtained topic-related keywords from a pre-trained
LDA model, and increased the probability of topic-related keywords through a joint
attention mechanism [24]. However, since they focused only on a query to obtain keywords,
the keywords do not deliver any information residing on a response. Tang et al. extracted
a keyword from a query to control the intended content of a response [25]. Their method
predicts a keyword from an entire dialogue history. As a result, the direct meaning of a
current query is not reflected sufficiently. In addition, since their method extracts a single
keyword from a query, it often misses the whole context of the query.

3. Learning Response Weight

The response weight aims at providing a decoder with the relatedness between a
response and each token in a query. Table 1 shows that it enhances the quality of a response
to identify key tokens in a query under the response context and reflect them into response
generation. In this table, Q and R indicate a query and its response, respectively. The
bold words in the queries are the key tokens that are related highly with a response,
and the underlined words are the tokens highlighted by the attention of a transformer
encoder–decoder. In the first example, the encoder–decoder attention focuses only on
‘orange or gold’, but the response contains the word ‘choice’ due to the word ‘pick’ in the
query. All other examples also show a similar phenomenon. The expressions of ‘try’ and
‘still waiting’ appear at the responses because ‘shot’ and ‘haven’t received’ in the queries are
response-related. Therefore, it helps to generate diverse responses to identify such key
tokens in a query.

Table 1. The examples which show that the response context affects response generation in the
Reddit data set.

Q: Orange or gold, pick one
R: Orange. Easy choice

Q: I’d love if you gave it a shot!
R: All right. I’ll give it a try. Do you have it somewhere I can download it?

Q: I ordered march 11th and I haven’t received anything yet.
R: Ordered same day, still waiting on mine as well.

Figure 1 shows the overall architecture for computing the response weight. The
response weight is obtained while representing a query q into a query vector qa with
a transformer encoder so that qa can reflect a potential response of q. The transformer
encoder is trained with a bitext classification task whose goal is to predict whether a query
q entails a response r. In Figure 1, the bitext classification is solved by the bitext classifier
which is implemented as a bilinear function, that is, the bitext classifier fbt determines the
entailment between q and r by the following:

fbt(q
a, r) = qaWbtr, (1)
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where qa and r are vector representations of q and r, respectively, and Wbt is a trainable
weight matrix. This classifier is trained to maximize the log-likelihood by optimizing Wbt
and the parameters of the transformer encoder with the Adam optimizer [26].

Note that qa is encoded by the transformer encoder. Thus, the transformer encoder
is trained to express qa, similar to r when q and r are a conversation pair from a real
corpus. On the contrary, it encodes qa differently from r, when q and r are from negatively-
sampled data.

Figure 1. Overall structure for learning the response weight from a pair of a query and a response.

The representation of q into qa is done as follows. Denote q = 〈q1, q2, . . . , qn〉 as a
query composed of n tokens. A special token q0 is added at the beginning of q, and it plays
a similar role to the [cls] token of BERT. Thus, the output of the transformer encoder
becomes q = 〈q0, q1, q2 . . . , qn〉, where q0 aggregates the sequence representation of the
query. To obtain a richer representation, q0 is linearly transformed to s as follows:

s = Wsq0 + bs, (2)

where Ws and bs are trainable parameters. Since s is a summary of the query q, the
importance of each query token qi with respect to s is computed by ei = s · qi. Then,
the final weight a is obtained by applying the softmax to e = 〈e1, e2, . . . , en〉, that is,
the weight is the following:

a = 〈a1, a2, . . . , an〉, (3)

where

ai =
exp ei

∑n
j=1 exp ej

. (4)

The final query representation qa is computed by a weighted sum of a and qis, that is,
the following:

qa =
n

∑
i=1

ai · qi. (5)

The response r is encoded as a vector r by the BERT [9] finetuned with only the
responses of dialogue dataset. Then, the transformer encoder is trained to reflect the
classification result of the bitext classifier.

At the inference time, the response r is not available. Thus, only the transformer
encoder boxed with red dotted lines in Figure 1 is used to compute the response weight
a in Equation (3) from a query q. Since the transformer encoder is trained to reflect the
response into encoding q, the vector a is called the response weight.
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4. Response Generation with Response Weight

The proposed RGRW has a sequence-to-sequence architecture composed of a BERT
encoder and a GPT-2 decoder as shown in Figure 2. The key feature of the generator is
that the decoder is given a response weight a as well as the vector representation q̂ of
a query q̂. As a result, the generator can make a response that follows both query and
response contexts.

Figure 2. The structure of the proposed response generator, RGRW.

The encoder is a pre-trained BERT, and it takes a query q̂ as an input and then outputs
its vector representation q̂. The decoder has a transformer structure, but the main difference
between the decoder and the standard transformer is that it takes two kinds of inputs: q̂
and a. When a decoder has multiple encoding inputs, their concatenation is often used as a
single input [27,28]. However, the concatenation of q̂ and a makes it difficult to grasp the
key context of q̂ since the concatenation becomes just a lengthened representation of two
similar encodings. Therefore, the proposed decoder has two individual attention layers
that process q̂ and a sequentially.

The first encoder–decoder attention layer uses q̂ for both the key and value and the
output of the self-attention layer for query. On the other hand, the second encoder–decoder
attention layer uses a scalar multiple of q̂ by an element of a for both the key and value,
that is, when the length of a query q̂ is m, the key and value of the second encoder–decoder
attention layer is the following:

q̂a = 〈q̂a
1, q̂a

2, . . . , q̂a
m〉, (6)

where q̂a
i = ai · q̂i. The query of this layer is the output of the first encoder-decoder

attention layer. Therefore, the decoder grasps the overall context of q̂ in the first encoder–
decoder attention layer, and catches the response-related tokens of the query in the second
encoder–decoder attention layer.

RGRW has twelve decoder blocks as shown in Figure 2. Because the proposed struc-
ture is partially the same as that of GPT-2 [10], the parameters of the pre-trained GPT-2 are
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borrowed to avoid excessive resource consumption. That is, only the two encoder–decoder
attention layers boxed with red dotted lines in the figure are optimized during the training
time, while other layers are all fixed. The AdamW optimizer [29] is used for optimizing the
response generator with the cross entropy loss.

5. Experiments
5.1. Experimental Settings

In order to train the proposed response weight and bitext classifier, the pairs of a
query and a response are needed. Dailydialog [30] is used for this purpose, as this data set
contains open-domain multi-turn dialogue pairs. Since RGRW does not target multi-turn
dialogues, the dialogue pairs in Dailydialog are converted into single-turn dialogue pairs
by regarding the odd-numbered utterances and the even-numbered utterances as queries
and responses, respectively.

The performance of the response weight is verified through keyword detection. For this
task, the MAUI Twitter data set [31] is used, since the tweets are relatively short and the
keywords are labeled at the tweets of this set by crowd-sourcing. The average tweet length
is 78.55, and the average number of keywords per tweet is 3.92. Even if this data set has
its own training and validation sets, only the test set is used in the experiments since the
proposed response weight and bitext classifier are trained with Dailydialog.

The Reddit data set [13] is adopted for the experiments of the response generator. The
data set also consists of open-domain dialogues, but the dialogues are single-turn pairs.
The queries and the responses that are shorter than four words or longer than 20 words are
excluded from the data set following the study of Wu et al. [6]. Table 2 summarizes the
statistics on the data sets after pre-processing.

Table 2. Simple statistics on the data sets for response weight and response generation.

# Train # Valid # Test

Dailydialog 45,337 3851 -
MAUI Twitter - - 500
Reddit 1,352,961 40,000 40,000

The hyper-parameters for the transformer encoder of the response weight are equiva-
lent to those of the transformer base model. The dimension of embedding vector is 512,
and that of the inner-layers of feed-forward networks is 2048. The number of heads in
multi-head attention is eight, and the number of transformer encoder layers is six. The
batch size of training and validation sets is 32, and the learning rate is 0.0001. In addition,
label smoothing [32] of εls = 0.1 is used.

The encoder of the response generator is the pre-trained BERT base model, and the
transformer decoder setting for response generation is similar to GPT-2. The embedding
vector dimension is 768, and the inner-layers of feed-forward networks have 3072 dimen-
sions. The number of heads in the multi-head attention is 12, and the number of transformer
encoder layers is six. The batch size of training and validation sets is 32, and the learning
rate is 6.25 × 10−5.

5.2. Response Weight

Since the response weight aims at finding the importance of each query token, its
performance is verified with a keyword detection task. The proposed response weight is
compared with five variations of MAUI [31,33], a strong keyword detection system trained
with various features. MAUI-df is a default MAUI model trained with a decision tree and
tf-idf, while MAUI-wv and MAUI-br use the structured skip-n-gram [34] and the Brown
cluster feature [35] as well as the features of MAUI-df. MAUI-brwv uses all features stated
above, and MAUI-out has the same structure as MAUI-brwv but is trained with the news
articles used in the work of Marujo et al. [36]. Note that MAUI-out is the only variant that
is not trained with the MAUI Twitter data.
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Table 3 summarizes the evaluation results. RW in this table is the proposed response
weight. Since the proposed response weight is not a direct keyword detector, the words
in a query are chosen as keywords when their ai in Equation (4) is greater than 0.3. All
performances are measured for four extracted keywords. While MAUI-brwv shows the
highest performance on F1-score, the proposed model ranks third. Note that RW is trained
with Dailydialog, not with MAUI twitter data. Thus, it is difficult to compare the perfor-
mance of RW directly with those of MAUI variants. Nevertheless, it outperforms MAUI-df,
MAUI-wv, and MAUI-out. In particular, the fact that RW achieves higher performance than
MAUI-out, another model trained with non-MAUI twitter data, proves the effectiveness of
RW to identify keywords from a query.

Table 3. Precision, recall and F1-score on MAUI Twitter data set. Scores in bold stand for the
leadership among the models

Model P R F1

MAUI-df 53.97 53.15 53.56
MAUI-wv 55.80 54.45 55.12
MAUI-br 71.95 75.01 73.45
MAUI-brwv 72.05 75.16 73.57
MAUI-out 55.54 48.74 51.92
RW 55.75 55.57 55.66

Figure 3 depicts the change of the response weight a during its training when the
query is “Orange or gold, pick one” and the response is “Orange. Easy choice.” RW-1 and
RW-10 in this figure are the response weights after one epoch and ten epochs, respectively,
and Enc-Dec is the average attention of all heads in the encoder–decoder attention layer
of a standard transformer. When the training of the proposed response weight is at one
epoch, the meaningless or general tokens in the query such as ‘or’ and ‘,’ have high weight.
This is because neither the query nor the response is reflected enough to the weight. On
the other hand, ‘orange’ and ‘pick’ have high attention after 10 epochs, since they are deeply
related to ‘orange’ and ‘choice’ in the response.

Figure 3. The distributions of the attentions for an example query and response. The distributions
are obtained from the proposed response weight and the standard transformer.

The most important finding in this figure is that RW-10 shows a different weight
distribution from Enc-Dec. Enc-Dec pays high attention to ‘gold’, ‘pick’, and ‘one’. Though
the transformer reflects responses during its training, Enc-Dec is affected much more by
the self-attention of the query. Thus, the word like ‘one’ that is not strongly related with the
response is also spotlighted. In addition, the attention difference in Enc-Dec is insignificant.
To sum up all these results, better responses can be generated by enhancing the influence
of the response through the response weight.
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5.3. Response Generator

The performance of RGRW is compared with those of five baselines, which are TS2S,
COPY, GenDS, CCM and ConKADI. TS2S is a transformer with six blocks of an encoder
and a decoder. COPY is an LSTM-based sequence-to-sequence model with the copy
mechanism [37] and GenDS generates responses from the candidate facts retrieved from
a knowledge base [38]. CCM [13] and ConKADI [6] are commonsense knowledge-aware
response generators. The responses in the training set are used as posterior knowledge
when training ConKADI, but they are not used in CCM.

The performance of the models is measured with eight automatic metrics. Embavg [39]
is the similarity between the average embedding vector of a ground-truth response and
that of the generated response, while Embex measures the similarity between embedding
vectors using vector extrema. Bleu-2 and Bleu-3 are the ratio of bi-gram and tri-gram
overlaps, respectively [40], and Dist-1 and Dist-2 are the ratio of distinct uni-grams and
bi-grams in all generated responses [7]. Entropy is the average word-level entropy [41].
The Ra is the relative score of a model when the arithmetic mean of metric scores of all
other comparison models is set to 1.00 [6].

The results on these metrics are shown at Table 4. RGRW achieves the highest scores
for all metrics, except Bleu and Embavg. For both Bleu-2 and Bleu-3, RGRW shows the
second lowest performance. The generated responses are often acceptable, even if they are
different from the ground-truth responses. Thus, the sole measurement with Bleu has a
limit to evaluate the quality of responses.

Table 4. The empirical comparison of RGRW against its baselines. Scores in bold stand for the
leadership among the response generators.

Metric
Embedding Overlap Diversity Inform R

Embavg Embex Bleu-2 Bleu-3 Dist-1 Dist-2 Entropy Ra

TS2S 0.764 0.845 1.50 0.44 1.47 14.17 8.47 0.87
COPY 0.868 0.841 5.43 2.26 1.73 8.33 7.87 1.09
GenDS 0.876 0.851 4.68 1.79 0.74 3.97 7.73 0.89
CCM 0.871 0.841 5.18 2.01 1.05 5.29 7.73 0.96

ConKADI 0.867 0.852 3.53 1.27 2.77 18.78 8.10 1.19
RGRW 0.794 0.870 1.70 0.49 3.24 25.04 11.42 1.26

The embedding metric is one of the metrics that solve the limitation of Bleu. It
compares the contexts of the generated responses and the ground-truth responses. GenDS
shows the highest performance in Embavg, while RGRW achieves the best performance in
Embex. In general, the embedding vectors of general words are located close to the origin
and the vectors of contextually important words are far from the origin. Thus, Embex
focuses more on contextually important words than general words [39]. In other words,
the responses generated by RGRW are more similar to the key topics of ground-truth
responses than those by other baselines.

Dist-1, Dist-2, and entropy measure how diverse and informative the generated
responses are. RGRW shows the best performance for these metrics. One thing to note is
that the higher the Bleu score that a model shows, the lower the diversity and informative
scores that it achieves. This is because focusing on lexical coincidence with the ground-truth
response affects the generation of diverse responses negatively. Finally, RGRW outperforms
all baselines in Ra. In particular, it shows 0.07 higher Ra than ConKADI, the best baseline.

Summarizing all the results, RGRW generates a response that is not only lexically
similar, but also contextually similar to a ground-truth response. In addition, RGRW
generates more diverse and informative responses by adopting the response weight. All
these results prove that the response generation through response weight is effective in
producing diverse and context-preserving responses.
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The effectiveness of the structure with two attention layers is shown by an ablation
study with the encoder–decoder attention (EDA) and the response weight (RW). Table 5
shows the results of the ablation study on the Reddit data set. Without EDA, RGRW is
influenced only by RW. As a result, the Dist-2 and entropy of ‘- EDA’ are rather higher than
those of RGRW, but its Bleu-2 and Ra become lower than those of RGRW. This is because
the information in a query is not delivered enough to the decoder. Without RW, RGRW is
equivalent to a sequence-to-sequence model with a BERT encoder and a GPT-2 decoder.
Since the decoder of ‘- RW’ does not receive the response weight, Dist-2 and the entropy
of the model are much lower than those of RGRW. One thing to note in this table is that
RGRW shows higher Ra than both ‘- EDA’ and ‘- RW’, which implies that the response
weight does not contribute only to the generation of diverse responses, but also helps
generate the responses similar to the ground-truth ones.

Table 5. Ablation study on two attention layers. Scores in bold are the highest score for each metric.

Model Bleu-2 Dist-2 Entropy Ra

RGRW 1.70 25.04 11.42 1.26
- EDA 1.59 25.60 11.45 1.23
- RW 1.52 20.45 8.96 1.08

5.4. Case Study

Table 6 shows two examples that compare the responses generated with the response
weight and those without the attention. If the response weight is removed from RGRW,
RGRW becomes equivalent to a sequence-to-sequence model with a BERT-encoder and
a GPT-2 decoder. Thus, the responses in ‘Without RW’ in this table are the outputs of
the GPT-2 decoder, while those in ‘With RW’ are the outputs of RGRW. In each example,
the attention by the BERT-encoder (blue line) and the proposed response weight (red line)
are depicted as graphs. In these graphs, the attention weights are expressed per a word
unit for easy interpretation, where the attention weight of a word is obtained as an average
of the attention weights for the subwords of the word. Note that the values for the response
weight are ais in Equation (4).

Table 6. The examples that show the effectiveness of the response weight in RGRW.

Query &
Attentions

Golden
Response All right. I’ll give it a try. Do you have it somewhere I can download it?

W/o RW It would be nice to have them.
W/RW I’ll give it a shot and see what happen!

Query &
Attentions

Golden
Response Too bad. They taste awful.

W/o RW I think it’s a good idea.
W/RW Oh yeah! I’ve always wanted to try them! They taste great!
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According to the table, ‘With RW’ generates responses more similar to the ground-
truth ones and less general than the ‘Without RW’ ones. In the first example, ‘love’ and
‘gave’ have high BERT attention weights. As a result, the GPT-2 decoder generates the word
‘have’ in the response of ‘Without RW’, and the response is semantically unrelated with the
ground-truth one. On the other hand, all words in the phrase of ‘gave it a shot’ have high ai
values. Since RGRW pays high response weight to ‘gave it a shot’, the response in ‘With
RW’ follows the ground-truth one more semantically.

In the second example, ‘them’ and ‘salt’ are stressed on in the BERT attention, which
leads to the generation of a very general answer in the response of ‘Without RW’. On the
other hand, RGRW focuses on the words ‘cucumber’, ‘them’, and ‘munch’ with high response
weight. In particular, the focus on ‘munch’ results in the generation of ‘try’ and ‘taste’ in
the response of ‘With RW’. In addition, the generated answer is much less general and
semantically similar to the ground-truth response, though the sentiment polarity of the
answer is opposite to that of the ground-truth one.

6. Conclusions and Future Work

This paper proposes RGRW, a novel response generator in which the effect of a poten-
tial response is reflected strongly through response weight. By adopting the response weight,
RGRW is able to reduce generating safe responses and make a response in accordance
with a query. In order to obtain an optimal response weight, the bitext classifier is trained
to distinguish whether a pair of a query and a response is real or not. Training of the
bitext classifier leads to adaptation of the response weight and the transformer encoder to
a response. As a result, the response weight is able to reflect a potential response into a
query attention.

The proposed generator, RGRW consists of a BERT-encoder and a GPT-2-like decoder,
where the decoder has two additional encoder–decoder attention layers to GPT-2. The first
attention layer processes the overall context of a query given by the BERT-encoder, and the
second attention layer catches the response-related tokens of the query using the response
weight. To avoid excessive resource consumption, the parameters of the layers equivalent
to GPT-2 are borrowed from the original GPT-2 and fixed, while those of the two attention
layers are optimized newly.

The proposed response weight was verified through the short-text keyword detection
on the MAUI Twitter data. Even if the response weight is trained on Dailydialog data,
it shows competitive keyword extraction performance on the MAUI Twitter data. In
particular, it outperforms other keyword extractors trained with non-MAUI data. It was
also shown empirically for RGRW to generate more diverse and informative responses
than the current state-of-the-art methods on the Reddit data set. RGRW achieves the
best Embex, according to the experimental results, which implies that the responses of
RGRW are semantically similar to ground-truth ones. In addition, through an ablation
study, the effectiveness of the proposed structure of RGRW with two attention layers was
proved. Unlike ConKADI, RGRW does not use external knowledge, so it does not require
knowledge retrieving time during inference. Therefore, the inference speed is relatively
faster than ConKADI. In addition, it takes less training time than a general transformer
sequence-to-sequence model because it does not train all parameters of the model.

The RGRW approach has certain limitations. RGRW freezes some layers for efficient
transfer learning when fine-tuning. Recently, a transfer learning method in which only
low-level filters are transferred and frozen was proposed in the image generation task [42].
This study is based on research showing that low-level filters capture generality well. On
the other hand, RGRW performs the transfer and freezing of all blocks equally without
understanding the characteristics of each decoder block. Therefore, as part of future work,
we will study how to differentiate the transfer learning by understanding the role of each
decoder block.
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