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Abstract: Automatic computer security inspection of X-ray scanned images has an irresistible trend in
modern life. Aiming to address the inconvenience of recognizing small-sized prohibited item objects,
and the potential class imbalance within multi-label object classification of X-ray scanned images,
this paper proposes a deep feature fusion model-based dual branch network architecture. Firstly,
deep feature fusion is a method to fuse features extracted from several model layers. Specifically, it
operates these features by upsampling and dimension reduction to match identical sizes, then fuses
them by element-wise sum. In addition, this paper introduces focal loss to handle class imbalance.
For balancing importance on samples of minority and majority class, it assigns weights to class
predictions. Additionally, for distinguishing difficult samples from easy samples, it introduces
modulating factor. Dual branch network adopts the two components above and integrates them in
final loss calculation through the weighted sum. Experimental results illustrate that the proposed
method outperforms baseline and state-of-art by a large margin on various positive/negative ratios of
datasets. These demonstrate the competitivity of the proposed method in classification performance
and its potential application under actual circumstances.

Keywords: multi-label object classification; convolutional neural network; deep feature fusion; dual
branch network; X-ray security inspection image

1. Introduction

Security issues in public places have always aroused general interest in the whole
community. By taking advantage of X-ray penetration, X-ray security inspection devices
can inspect the interior of baggage on the premise of ensuring the privacy of personnel.
Additionally, they can mark various types of objects in different colors [1], leading them to
be the broadest application until now. Traditional manual inspection is highly dependent
on the judgment of security personnel, which mainly reflects the following drawbacks:

• The perplexing background of scanned images will affect the detection speed of
security personnel;

• The rare occurrence of problematic baggage and the fatigue of security personnel are
most likely to cause mistakes and misses;

• Long-term repetitive work is not conducive to the physical and mental health of
security personnel.

In the face of increasing crowd density in public places, traditional manual detection
is beginning to struggle to cope. Due to this phenomenon, researchers have diverted their
attention to machine detection [2] while they facilitate related research. In recent years, the
high-speed evolution of deep learning [3], especially convolutional neural networks, has
made it a leader in image processing and visual understanding. Nowadays, deep learning
is the dominant tool in many scenarios, including recognizing and detecting prohibited
objects in X-ray scanned images.
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A convolutional neural network (CNN) model mainly stacks multiple convolutional
and pooling layers. It follows the fully connected layer, which gives prediction information
about image class. The convolutional layer and the pooling layer provide feature extraction
and selection operations in the network [4]. With the deepening of the network, the
generated features have distinct characteristics. To improve the classification and detection
performance of the network, one can take advantage of the information of features from
various layers through fusing them. On this basis, to settle prohibited item recognition
problems on small-sized objects in X-ray images, enlightened by [5], this paper proposes a
CNN architecture based on deep feature fusion.

In addition, in practical applications, security inspection images with prohibited items
(henceforth referred to as positive samples) are far less than those without prohibited items
(henceforth referred to as negative samples). This means the classification task is a class
imbalance problem. Under the consideration of loss function improvement, this paper
introduces focal loss [6] to alleviate the class imbalance problem. This loss function can
effectively deal with the class imbalance problem.

With the deep feature fusion model and focal loss function, adverse effects brought by
difficult-to-classify objects and class imbalance can be dropped to a lower level, thereby
improving the classification accuracy of the network. This paper proposes a dual branch
network architecture to integrate them effectively. As focal loss is incompatible with the
fused feature generated by the model, intuitively adopting focal loss function on deep
feature fusion model will not be that effective. Hence, we separate these two modules into
a dual branch network, and integrate them in the final loss calculation. For fused features
and focal loss, it will avoid incompatibility between them. In addition, taking advantage of
their merits as the update of final loss brings mutual supervision in the training stage.

The main work and innovation mechanism of this paper are as follows:

1. Proposes a CNN model based on deep feature fusion. Ablation experiments show its
effectiveness on classification performance versus backbone;

2. Introduces focal loss, which can alleviate the class imbalance of the dataset, thereby
improving the classification performance of the network;

3. Through integrating the deep feature fusion model and focal loss function, proposes
a dual branch convolutional neural network architecture. It further improves the
classification performance of the network by the supervision of the training process
of one branch on the other.

2. Related Works
2.1. Automatic Prediction of Prohibited Items in X-ray Scanned Images

Contrary to other types of images, X-ray security inspection images have the follow-
ing characteristics:

• Personal items are often placed casually, which leads to randomly stacked and over-
lapped objects. Consequently, prohibited items are often occluded by the background;

• In X-ray images, objects composed of the same material will be assigned similar colors,
which leads to indistinguishability between prohibited items and background;

• X-ray security inspection image itself relates to the privacy of the inspected person.

These characteristics pose an enormous challenge to many aspects, including detection
methods and dataset construction. Due to this, there are relatively few related contributions,
especially to the latter.

Earlier work mainly relied on the bag of visual words (BoVW) model to extract hand-
crafted features [7–9], then adopted support vector machine [10] (SVM) as a classifier to
recognize and detect prohibited item objects [11]. Additionally, there are some studies
which used sparse representation methods [12].

As deep learning mounts, large scale datasets [13] become crucial. For dataset con-
struction of X-ray security inspection images, the GRIMA (from Grupo de Inteligencia
de Máquina, the name of Machine Intelligence Group at the Department of Computer
Science of the Pontificia Universidad Católica de Chile) database of X-ray images (GDXray)
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proposed in [14] was one of the very few public datasets for a long time. The initial purpose
of this dataset is to help people study the performance of hand-crafted features. Hence,
relatively few negative samples and a relatively simple background make it inapplicable to
meet current demands. More recently, there were also some research works based on deep
learning methods for the detection of prohibited items in X-ray security images [15–17].
With the help of transfer learning method based on ImageNet [18] pretrained models and
some prevalent object detection techniques such as region-based convolutional neural net-
works (RCNN) [19], “You Only Look Once” (YOLO) [20], etc. They performed satisfactorily
in private datasets or the GDXray dataset. The work completed in [21] proposed a large-
scale security inspection X-ray benchmark (SIXray), consisting of more than one million
images. There are 8929 images with six classes of prohibited items manually annotated, and
each of these images contains at least one of them. The distribution of positive/negative
samples in this dataset is extremely imbalanced, and the background information is highly
complex. It makes SIXray much more challenging and closer to practical applications. This
work provides an authoritative verification benchmark for the related research about X-ray
security inspection images. In recent years, many studies have been conducted with the
adoption of this dataset [22–25]. Specific to object occlusion in X-ray security inspection
image, research [26] proposed a dataset named occluded prohibited items X-ray (OPIXray)
image benchmark. This dataset contains 8885 high-quality X-ray images of five classes of
prohibited items. It is worthy to note that, to better validate the performance of detectors,
the test set is divided into three parts according to occlusion levels.

2.2. Deep Feature Fusion

Deep feature fusion can be divided into early fusion and late fusion according to
the sequence of fusion and prediction. Early fusion is to fuse the features of various
layers first, and then train the predictor based on the fused features. The main methods
of this kind of fusion are concatenating and element-wise sum. In addition, the study
conducted in [27] introduced a feature fusion method named discriminant correlation
analysis (DCA). DCA maximizes the correlation between corresponding features in the
two feature sets, while maximizing the difference between different classes. As a result, the
authors of [27] effectively improved the classification performance for recognizing very-
high-resolution (VHR) remote sensing images. Late fusion mainly improves performance
by fusing the prediction results of different layers. Representative work includes single shot
multibox detector (SSD) [28], multi-scale convolutional neural network (Multi Scale-CNN,
MS-CNN) [29], etc.

There are also some works utilizing both early fusion and late fusion. One of the
representative works is the feature fusion single shot multibox detector (FSSD) [30]. FSSD
adds a feature fusion module so that features of the original SSD architecture can be fused.
Then, it constructs pyramid feature generator and sends the output to the multibox detector
to predict. In addition, it is worth mentioning that research in [31] indicated that, due to the
gap between semantic information and high-resolution detail information, simply fusing
high-level and low-level features is not effective. On this basis, two optimization schemes
were proposed, including the introduction of more semantic information into low-level
features and the embedding of more spatial information into high-level features. Experi-
ments in [31] showed that using these schemes can significantly improve the segmentation
performance by 4%.

2.3. Class Imbalance and Its Treatment

Class imbalance problem refers to the fact that the gap between training samples of
various classes is comparatively large. On this basis, imbalanced training samples will
make the model more likely to predict the sample as the majority class. This is as even if
the model predicts all the samples as the majority class, it can still achieve a high accuracy
rate. Nonetheless, this will bring about the incapability of the model to predict minority
classes, and furthermore the loss of generalization. The class imbalance problem regularly
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occurs, not only in classification, but also in other computer vision tasks such as object
detection and semantic segmentation.

The class imbalance problem is mainly treated by two aspects, namely data and
algorithm. Data level treatment balances samples of various classes by sampling the whole
dataset, including under-sampling majority class samples and over-sampling minority
class samples. In addition, some operations apply data augmentation of minority class
samples [32], etc. Algorithm level treatment is mainly based on improving loss function.
By increasing the cost that samples with minority class yield, or ignoring the contribution
that some samples with majority class make, the attention to the minority class can increase.
Research in [33] proposed an online hard example mining algorithm (OHEM), which solves
the class imbalance problem by retraining some samples that yield much loss in model
training process.

As for binary classification, p denotes probability predicted by the model, y denotes
ground-truth label, and y ∈ {0, 1}. Define pt as Formula (1).

pt =

{
p if y = 1

1− p , otherwise
(1)

Then, cross entropy (CE) is defined as CE(pt) = − log(pt).
Proposed in [6], the design of focal loss is CE based. Focal loss introduces weight α for

the minority class and 1− α for the majority class, to balance the importance of majority
and minority class samples. It also adds a formulating factor (1− pt)

γ with the focusing
parameter γ ≥ 0, to distinguish difficult samples (pt ≤ 0.5) from easy samples (pt > 0.5).
By defining αt analogously to pt, focal loss (FL) defines as Formula (2).

FL(pt) = αt(1− pt)
γCE(pt) (2)

Extend to multi-label classification, for p ∈ RC and y ∈ RC where C denotes the
number of classes appearing in the dataset. Then, focal loss transforms into Formula (3).

FL(pt) = 1T[αt � (1− pt)
γ �CE(pt)] (3)

where � denotes element-wise multiplication among vectors.

3. Method
3.1. Dual Branch Network Architecture

The deep feature fusion model is in charge of improving the model’s perception ability
to small-sized objects, and works at the feature level. The focal loss function balances the
importance between positive and negative samples; moreover, it distinguishes difficult
samples from easy ones, which works at the loss level. To effectively combine their
advantages, instead of intuitively adopting the focal loss function on loss calculation of the
deep feature fusion model, this paper proposes a dual branch network architecture. Each
branch of the network corresponds to one of the above two methods and implements the
integration of two branches on the final loss calculation. The specific architecture is shown
in Figure 1.

The network output on the left branch is based on a CNN model, and the loss calcula-
tion adopts the focal loss function. The network output on the right branch is based on the
deep feature fusion model, and the loss calculation adopts a cross entropy loss function.
The dual branch network enables the two branches to supervise the training process on
each other due to the integration brought about by late fusion, effectively combining the
advantages of different branches and further improving the performance of the network.
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fusion strategy that adopts both early fusion (up) and late fusion (down) at the level of feature and loss, respectively.

Based on the design of dual branch architecture, the entire network will yield two var-
ious outputs and losses. However, in principle, a deep neural network is an end-to-end
system, so that the output and loss of the network should be unique. As for the output,
we evaluate the performance of the outputs of the two branches on the test dataset and
select the output with better performance. Assume that on each branch, as samples of the
test dataset delivered into the network, oI and oII denote the yielding output, respectively.
M(o, t) denotes the performance measurement function. t denotes ground-truth labels of
test dataset. Then, the output of network will be determined as follows:

onet = argmax{oI,oII}M(o, t) (4)

while the loss calculation of the network adopts the form of weighted sum. Assume that LI
and LII denote loss on each branch, respectively. Then, the loss of network is calculated
as follows:

Lnet = λ1 · LI + λ2 · LII (5)

where λ1 and λ2 are hyperparameters preset before training. For the loss of each branch, it
controls the contribution to the network, respectively.

3.2. Feature Fusion Model

While generating features in a CNN model, with the network level deepening con-
tinuously, the feature maps generated at different levels show various characteristics.
Specifically, the low-level features have higher resolution. This better preserves the spatial
detail information the image itself has, but the semantic information utilized for recog-
nition is insufficient. The high-level features are processed by multiple convolutional
layers so that their semantic information is comparatively rich. However, due to the lack
of resolution in the convolutional calculation process, the loss of spatial information is
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quite enormous. Consequently, the receptive ability for detail becomes poor. The task
of deep feature fusion is to endow the two types of features with efficient fusion and
complementary advantages, so as to improve the classification and detection performance
of the network.

In single-label image classification tasks, high-level features are adequate to make the
model recognize and classify sample images. However, in multi-label object recognition
tasks, sample images often contain multiple objects belonging to various classes. In this
case, a CNN model is not capable of recognizing all objects when merely using semantic
information from high-level features, especially objects of smaller sizes. Therefore, a
network designed for single-label classification has poor performance for this task. Given
this situation, this paper proposes a CNN model architecture that adds a deep feature
fusion module, as shown in Figure 2.
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Figure 2. Proposed Deep Feature Fusion Model (DFFM) architecture. Components in leftmost
dashed box belong to backbone model (e.g., ResNet34 in this figure). Components in the whole
solid box comprise the model proposed in this paper. Numbers (H ×W × C) in blocks indicate the
output dimension.

As for CNN, a prevalent variant such as ResNet [34] consists of an initial 7 × 7
convolutional layer and four blocks. These blocks usually build by stacks of convolutional
layers and pooling layers with similar structures. Sample image delivered to the CNN
model will be operated by these components to produce features of various sizes. The
feature produced by the first convolutional layer, whose semantic information is so lacking
as too defy calculation, is out of consideration. Other features generated by blocks can all be
utilized as features to be fused. Our deep feature fusion module precisely revolves around
these four features. However, it is noteworthy that not all four features are necessary to
attend feature fusion. The selection strategy involves a tradeoff with accuracy versus speed.
Further analysis will be described herein in Section 4.4.2 through experiments.

To enable feature fusion between high-level and low-level features and preserve spatial
detail information of the low-level feature, we make the plane size of high-level features
and low-level features identical using upsampling operation. There are three prevalent
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upsampling methods, i.e., deconvolution [35], reshape [36], and bilinear interpolation.
Deconvolution brings learnable parameters, which improves the network performance but
also increases the computational complexity. Reshape operation increases plane size at the
expense of channels, which results in low computational complexity but poor performance.
In contrast, bilinear interpolation increases plane size on the premise of keeping channels
unchanged. It makes better tradeoff between performance and computational complexity,
which is the most prevalent at present. The upsampling operation in this paper adopts this
method and mainly acts it on high-level features.

Followed by the upsampling of high-level features, dimension reduction (dim-reduce)
operation is performed. Specifically, we introduce a convolution operation with a kernel
size of 1 × 1. This changes output channels, making them smaller than input channels.
In addition, the 1 × 1 convolutional layer can also increase non-linear characteristics and
further enhance the capability of the network.

The sizes of high-level and low-level features are already identical after upsampling
and dimension reduction. Thus far, all features to be fused can conduct a fusion. This
paper chooses element-wise summation to fuse the processed features. After that, the fused
feature will deliver to the convolutional layer subnet (conv layer subnet), and then the
score output vector for all classes of the sample is obtained. The hierarchical structure of
the convolutional layer subnet is affected by the selection of features to be fused. Taking
level2/level3/level4 as features to be fused as an example, Table 1 shows the hierarchical
structure of the convolutional layer subnet.

Table 1. Convolutional layer subnet hierarchy (based on the selection of level2/level3/level4).

Layer Name Output Size Description

input 28 × 28 × 128 Fused feature
conv1 14 × 14 × 256 conv: 3 × 3, stride 2, 128→256; batchnorm, relu
conv2 7 × 7 × 512 conv: 3 × 3, stride 2, 256→512; batchnorm, relu
pool 1 × 1 × 512 Global average pooling (GAP)

fc 5 × 1 Fully connected (fc), 512→5

4. Experiments
4.1. Dataset

This paper evaluates the proposed method on the SIXray dataset proposed in [21].
The SIXray dataset (as shown in Figure 3) contains 1,059,231 X-ray images. There are
8929 images with six classes of prohibited items manually annotated, namely "gun”,
“knife”, “wrench”, “pliers”, “scissors”, and “hammer”. Each positive sample image may
contain more than one class of prohibited item. Among them, class “hammer” is deprecated,
as too few samples belong to it.
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SIXray dataset contains three subsets, named SIXray10, SIXray100, and SIXray1000,
respectively, according to the ratio of negative samples over positive samples, i.e., 1:10,
1:100, and 1:1000. As positive samples contained in SIXray1000 are different from SIXray10
and SIXray100, we only conducted experiments on SIXray10 and SIXray100 subsets.

For the partition strategy of the training set and test set, we complied with related
settings in [21], splitting 7496 positive samples for training set and 1433 positive samples
for test set. Then, negative samples were put in correspondence to positive/negative ratio,
respectively. Class distribution of positive samples shows in Table 2.

Table 2. Class distribution of positive samples in SIXray dataset. As class “hammer” contains only
60 sample images, we deprecate it in later experiments.

Gun Knife Wrench Pliers Scissors Hammer Total

3131 1943 2199 3961 983 60 8929

4.2. Implementation Details
4.2.1. Baseline

We adopt ResNet34 as the backbone of all network architectures. For the training
process, we adopt a transfer learning technique wherein parameters pretrained on Ima-
geNet [18] are used for the pretrained model while reinitializing parameters of the fc layer.
For the baseline setting, we adopt CE loss on the backbone of ResNet34 model.

4.2.2. Preprocessing of Images

Similar to the preprocessing procedure in [21] via open-source code provided by the
authors, the training image is processed as follows:

• Resize to 256 × 256 pixels;
• Random cropping to 224 × 224 pixels;
• Random horizontal flipping with probability of 0.5.

The test image merely resizes to 224 × 224 pixels without any other processes.

4.2.3. Training Parameters

We trained our networks with Stochastic Gradient Descent (SGD) [37] optimizer. The
initial learning rate was set to 1 × 10−2, momentum parameter to 0.9, and weigh decay
parameter to 1 × 10−4. The total epochs of training are 40. The learning rate decays after
the 15th epoch and 30th epoch by a factor of 0.1. The batch size was set to 256.

4.3. Evaluation Metric

We adopt the same evaluation metric as pattern analysis, statistical modeling, and
computational learning visual object classes (PASCAL VOC) [38] image classification tasks.
Specifically, for each class, all test images containing this class are sorted according to the de-
gree of confidence (i.e., the output of the model). Additionally, the mean Average Precision
(mAP) is calculated as the evaluation metric with respect to the classification performance.

4.4. Ablation Studies
4.4.1. Parameter Setting on Focal Loss

For focal loss, there are two vital parameters, namely α and γ. They are similar to
hyperparameters such as learning rate, which need to be preset before training. As focal
loss aims to alleviate the degree of class imbalance, we first study the influence of class
imbalance on setting these parameters.

We refer to the setting of γ with corresponding optima α in [6], conducting experiments
on two subsets, SIXray10 and SIXray100. The performance results are shown in Table 3.
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Table 3. Effect of varying parameters setting to model performance on SIXray10 and SIXray100
subsets. First row with symbol “–” shows the performance result on baseline.

SIXray10 SIXray100

γ α mAP/% γ α mAP/%

– – 74.83 – – 52.74
0 0.5 82.02 1 0 0.5 73.05
0 0.75 81.35 0 0.75 72.94

0.2 0.75 80.72 0.2 0.75 76.09
0.5 0.5 76.21 0.5 0.5 73.28
1 0.25 74.29 1 0.25 72.90
2 0.25 67.18 2 0.25 69.80

1 As for the entire paragraph, number with bold font indicates optimal results.

The experimental results show that the adoption of the focus loss can improve the clas-
sification performance of the model for class imbalanced datasets. It has a significant effect
on both SIXray10 and SIXray100 subsets. The optimal result has increased by 7.19 points
compared with baseline on SIXray10, while 20.31 points on SIXray100. As the results
show, the improvement on SIXray100 is far greater than SIXray10. This implies that, for a
deeper class imbalance degree, focal loss with appropriate parameter setting can handle
the scenario better, due to balancing the importance of negative and positive samples.

As for the value of focus loss parameter on optimal performance, the optimal result
of the SIXray10 occurs at γ = 0, α = 0.5. Meanwhile, with the continuous increase in γ,
model performance continues to decline. For the focal loss function, when the value of γ is
0, it degrades into a weighted CE loss function. It also shows that the modulating factor
of focal loss is not effective in this subset. It is possibly prompted by inadequate difficult
samples in SIXray10 when the model is on predicting. As for the SIXray100 subset, the
optimal result occurs at γ = 0.2, α = 0.75. As the level of class imbalance further deepens,
difficult samples gradually increase. Henceforth, the impact of modulating factor begins to
gradually rise, further validating the effectiveness of the loss function setting in this paper.

4.4.2. Level Selection of Features to Be Fused

As for the deep feature fusion model proposed in this paper, we compare three
level selections of features to be fused through adding low-level features to the fusion
stepwise, i.e., level4/level3, level4/level3/level2, and level4/level3/level2/level1. We give
the experimental results as shown in Table 4. The experiment here is based on the SIXray10
subset with the adoption of cross entropy loss function. To validate the effectiveness
of the proposed model, the first row of Table 4 illustrates the experimental result of the
baseline method.

Table 4. Effect of level selection of features to be fused on model performance.

Levels of Features to Be Fused mAP/%

Baseline (without fusion) 74.83
level4/level3 79.22

level4/level3/level2 81.07
level4/level3/level2/level1 81.27

Through comparing the experimental results, we find that, as more levels attend to
fusion, the classification performance of the model increases. On the other hand, this
margin of growth is gradually reduced, from 4.39 points brought by merely adding level3
to the fusion, to 1.85 and 0.2 points brought by adding level2 and level1, successively. For
the features of these four levels, higher-level ones need a larger parameter amount of occu-
pancy. It implies that, for later added high-level features, the performance improvement
gained by consuming so much computational cost is extremely limited. In other words,
the improvement is inefficient, especially for the addition of level1. It also shows that the
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output feature of level1 is inappropriate to add into the feature fusion module. Getting
to the bottom of this, the feature of this layer experiences few convolution calculations,
which brings about poor expressive ability. In consequence, no more information will
be obtained by fusing the feature of this layer. Considering performance and computa-
tional cost comprehensively, we finally choose features of level4/level3/level2 for the
fusion procedure.

4.4.3. Loss Weight Setting of Dual Branch Network

We design a dual branch network by integrating the deep feature fusion model and
focal loss function, which reflects the importance of each branch through setting weights
(λ1 and λ2) of loss on it. After the optimal setting of these two modules is determined, we
pick multiple pairs of λ1 and λ2 for conducting classification performance experiments of
dual branch network on SIXray10 subset, whose results show in Table 5.

Table 5. Effect of loss weight of each branch on dual branch network performance.

λ1 λ2 mAP/% λ2 λ1 mAP/%

1

0.25 79.52

1

0.25 81.28
0.5 80.09 0.5 80.83
1 82.52 1 82.52
2 81.92 2 81.73
3 83.10 3 81.78
5 81.92 5 82.05

Firstly, comparing experimental results row-wise, we find that network performance
is better when λ2 is larger than λ1. Furthermore, investigating weight setting for optimal
performance, we notice that network performance reaches the peak when λ1 = 1, λ2 = 3.
This implies that, as for the dual branch network proposed in this paper, it is demand-
ing to expand the importance of branch II, i.e., deep feature fusion module, for better
network performance.

4.4.4. Results of Ablation Studies

To validate the effect of each component, we formed a table of ablation results by
summarizing optimal results in the previous three sections, as shown in Table 6.

Table 6. Ablation results of each component based on SIXray10 subset.

Backbone Feature Fusion Focal Loss mAP/%

Baseline ResNet34 74.83

Ours ResNet34

√
81.07√
82.02√ √
83.10

From Table 6, we find that the two components, feature fusion and focal loss, are both
capable of gaining considerable performance improvement. As improvement adopted by
focal loss (7.19 points) is higher than that adopted by feature fusion module (6.24 points), it
implies that:

• As for the class imbalance dataset, it is of the highest urgency to balance importance
on positive and negative samples;

• As for the deep feature fusion module, the considerable optimization on model
performance also validates its effectiveness.

Optimal performance is obtained through adopting the dual branch network, which
integrates these two components. Hence, we can conclude that the dual branch network
proposed in this paper has advantages of these two components complemented and makes
effective integration. Furthermore, it will make better effects on the task of multi-label
object classification in X-ray security inspection images.
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4.5. Overall Performance Study

Table 7 compares performance results of baseline method with the Class-balanced
Hierarchical Refinement (CHR) method, proposed in [21], and the dual branch network,
proposed in this paper, on SIXray10 and SIXray100 subsets.

Table 7. Result of multi-label classification performance.

Dataset AP/% Baseline CHR [21] Ours

SIXray10

Gun 89.71 87.16 90.66
Knife 85.46 87.17 89.99

Wrench 62.48 64.31 79.90
Pliers 83.50 85.79 89.14

Scissors 52.99 61.58 65.79
mean (mAP) 74.83 77.20 83.10

SIXray100

Gun 83.06 81.96 84.84
Knife 78.75 77.70 86.98

Wrench 30.49 36.85 70.00
Pliers 55.24 64.56 81.92

Scissors 16.14 14.49 58.36
mean (mAP) 52.74 55.11 76.42

The analysis of Table 7 leads to the conclusion that compared to baseline and CHR,
the method proposed in this paper achieves optimal performance of all classes. To show
the difference of performance between the three methods more intuitively, according to
Table 7, we compiled a bar chart, as shown in Figure 4.
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tween classes.

Considering overall performance (mAP), compared to the CHR method, our method
gains more improvement, with 5.90 points on SIXray10 and 21.31 points on SIXray100.
Compared with the baseline method, the value achieves 8.27 points on SIXray10 and
23.68 points on SIXray100. It is worth mentioning that the improvement on SIXray100 is
far more than that on SIXray10. This implies that, for the dataset with a higher level of
class imbalance, our method gains more on performance. It would benefit from special
treatment for class imbalance by the adopted focal loss function.

Considering average precision (AP) on a single class, improvements on various classes
exist in enormous variation. As for classes wrench and scissors, on which baseline performs
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worse, our method outperforms baseline by 17.42 and 12.80 points on the SIXray10 subset,
and by 39.51 and 42.22 points on the SIXray100 subset, respectively. It plays a primary
role in the improvement of overall performance. Based on this, it appears that our method
makes a better alleviation to objects which suffer greater prediction bias in the training
stage, as samples of class scissors are the least in the SIXray dataset. As for class wrench,
without consideration of the distribution issue that the dataset itself has, it can be thought
that the deep feature fusion module enhances receptive ability of the model to objects that
belong to it.

5. Conclusions and Future Work

In this paper, we investigate the recognition problem of prohibited items in X-ray secu-
rity inspection images. We propose a deep feature fusion model architecture that effectively
takes advantage of spatial information of low-level features and semantic information of
high-level features through fusing features of various levels in the backbone. For the pres-
ence of class imbalance within data samples in actual applications, we introduce focal loss
to alleviate the prediction bias caused by it. To integrate these two components effectively,
we propose a dual branch network. It reflects them on two branches and integrates training
on two branches using weighted sum in final loss calculation. Experimental results on
SIXray dataset demonstrate that the proposed method outperforms the baseline method
and previous state-of-art by a large margin.

In future work, as the studied task is strongly real-time oriented, related research
should be more considerate of judgment speed with acceptable accuracy guaranteed.
One-stage detectors such as YOLOv4 [39] can afford some inspiration. Additionally, other
applications of deep neural networks in the security domain, such as backdoor samples [13],
are also worth continued study.
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