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Abstract: We propose a simple and robust HSV color-space-based algorithm that can automatically
extract object position information without human intervention or prior knowledge. In manufac-
turing sites with high variability, it is difficult to recognize products through robot machine vision,
especially in terms of extracting object information accurately, owing to various environmental factors
such as the noise around objects, shadows, light reflections, and illumination interferences. The pro-
posed algorithm, which does not require users to reset the HSV color threshold value whenever a
product is changed, uses ROI referencing method to solve this problem. The algorithm automatically
identifies the object’s location by using the HSV color-space-based ROI random sampling, ROI
similarity comparison, and ROI merging. The proposed system utilizes an IoT device with several
modules for the detection, analysis, control, and management of object data. The experimental
results show that the proposed algorithm is very useful for industrial automation applications under
complex and highly variable manufacturing environments.

Keywords: object localization; HSV color space; teaching-less robot; smart factory

1. Introduction

The smart factory describes a future state of fully connected and functioning manu-
facturing systems conducting all the required tasks, from customer orders to production,
without the need for human involvement [1].

Recently, due to the COVID-19 pandemic, factories have accelerated the transition to
contactless services in the manufacturing industry and smart factory transformation by
utilizing advanced ICT technologies such as AI, IoT, cloud, robots, and big data. Owing
to the different characteristics of the manufacturing and information fields, there are still
many technical problems to be solved to accelerate the path of smart factories [2].

In the manufacturing environment of the future, the manufacturing trend is changing
from mass production systems to personalized production systems [3,4].

Robots, which serve as advanced manufacturing equipment in smart factories, are
important to solve problems such as the decrease in the labor force and specialized human
resources due to aging, and the increase in the demand for human convenience. Robots
are widely used, with high repeatability, in various industrial processes, such as transfer,
picking, painting, welding, and assembly processes, to optimize factory productivity.
However, in a flexible production environment, changes in the product lead to a need
for frequent robot teaching. The operator manually performs the robot teaching, which
requires considerable time and effort [5]. The role of machine vision is important for the
intelligent and automated teaching tasks of robots without human intervention.

This is because robot machine vision improves factory productivity in the manufac-
turing processes (defect finding, transfer, material handling, welding, assembly, etc.); it
also enables factories to meet high levels of automation and high-quality manufacturing
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requirements because it provides visual and judgment information (environmental recogni-
tion, information acquisition, autonomous behavior, etc.) that enables a robot to act similar
to a human being.

Computer vision technology is being used and developed in various industries, such
as autonomous driving, medical care, manufacturing, and logistics [6]. However, in
manufacturing factories with high variability, it is difficult to accurately detect object
localization and information due to various environmental factors, such as noise around
objects, light reflections, and illumination interference.

To solve this problem, we propose a robust algorithm for object localization that can
easily and quickly respond to changes in the external environment by improving a previous
work [7].

The remainder of this paper is organized as follows: In Section 2, we describe the
research trends related to object detection for changes in the external environment in
computer vision. Section 3 introduces the robot grasping scenario in the structure of a
personalized manufacturing service. Section 4 proposes an automated object localization al-
gorithm based on the HSV color space. In Section 5, we analyze the performance evaluation
and test results. Finally, Section 6 presents the conclusions.

2. Related Work
2.1. Background Subtraction Algorithms

Background subtraction [8] is a method of extracting the region of interest of an object
by using the difference between the background image and the current input image. This
algorithm is widely used in image processing and video applications [9]. The background
subtraction must accurately model the background to detect an object. However, the
background changes over time, resulting in changes in the background values. Background
subtractions are sensitive to external environment changes (brightness of light, reflection,
shadow, etc.) and noise, making it difficult to detect objects [10]. Representative methods
of this algorithm include the mean filter, median filter method, adaptive thresholding, and
Gaussian mixture methods that make the average of the previous image the background of
the current image [11].

Adaptive thresholding [12,13] is a variable binarization algorithm that considers
spatial changes in lighting. It divides an image into a plurality of areas and then processes
each region by specifying a threshold. Background modeling that is based on the Gaussian
mixture model [14], which uses a statistical probability distribution, responds to changes
in the external environment and models the distribution of data with multiple Gaussian
probability density functions. However, there are many difficulties in minimizing noise
and accurately detecting objects in the background due to various flow changes over time
(lighting conditions, shadows, weather changes due to sunlight, etc.).

There are various background subtraction techniques, such as optical flow and shadow
detection [15–20].

2.2. Feature Extraction and Region-Proposal-Based Algorithms

The features of the object extracted from the image mainly utilize color and structural
feature points (keypoints). A typical method that utilizes color characteristics is the color
histogram method [21]. It has the advantage that color information can be grouped and
mapped in object similarity discrimination and is not affected by rotation or changes in
the position [22]. However, if the color information does not include spatial information,
it is discriminated from another image. The structural features of an object can become
its local invariance features, mainly using corners (i.e., keypoints, interest points, salient
points, and feature points) [23]. To be a good feature point, it must be resilient to changes
in the shape, size, and position of the object, and it must be detectable even if the camera’s
viewpoint and lighting change.

The Harris corner [24] detection has robust performance against changes in translation,
rotation, intensity shift, and illumination. However, because it is sensitive to image scaling,
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it has the disadvantage of the necessity to extract feature points from images of various
scales. The histogram of oriented gradients (HOG) [25] is an algorithm that divides the
target area into cells of a certain size and extracts and classifies objects with a histogram
of the direction components of the cell gradation. HOG has some robust characteristics
against local changes. The histogram is normalized by its neighboring cells to increase the
robustness to texture and illumination variations [26].

The scale-invariant feature transform (SIFT) is an algorithm that extracts features that
do not change in image size and rotation. This algorithm extracts SIFT features from two
different images, matches the features closest to each other, finds the corresponding part,
and maps them. It is robust against distortion, noise, and lighting changes, but it has the
disadvantages of complicated computation and slow speed [27,28].

Otsu [29] found the optimal boundary value that divides the image into two classes
based on the observed distribution of pixel values. The threshold is set by maximizing the
dispersion between the background and object. This algorithm is very effective when a
single object has a different brightness distribution than the background, but when the
internal brightness distribution of the object is not constant, only a part of the object is
detected.

GrabCut [30] is a graph-cut-based partitioning algorithm used to separate the fore-
ground and background of an image. This algorithm undertakes image segmentation
based on the Grab cut [31,32] algorithm, which uses the distribution of user-specified
regions to minimize the energy of each pixel and find zones. However, GrabCut is not
an automatic object extraction algorithm but one that requires the user to intervene and
extract the required object.

The convolutional neural network (CNN) [33] technique is a widely used deepening
algorithm used to detect objects such as images, videos, texts, and voices. Face recognition
algorithms can be applied to discover changes in lighting angles, brightness, facial expres-
sions, poses, etc. based on CNN [34]. However, large visual variations of faces, such as
occlusions, pose variations, and illumination changes, pose great challenges for this task in
real applications [35].

To minimize external environmental changes, deep learning algorithms such as R-
CNN [36], Fast R-CNN [37], and YOLO [38] have attracted attention in recent years [39–41].
However, deep-learning-based object detection has many constraints, such as a large
amount of training and test data, a long learning time, an annotation task, and a large
amount of calculation.

Object detection determines object classification and localization in an image. Owing
to large variations in viewpoints, poses, occlusions, and lighting conditions, it is difficult to
perfectly accomplish object detection with an additional object localization task [39].

The various algorithms to improve performance degradation due to noise and lighting
changes have been suggested. However, the models need to be updated through mathe-
matical modeling techniques such as machine learning or deep learning to recognize the
location and the shape of an object accurately whenever there are some significant changes
in the external environment. Thus, we propose a new algorithm to improve these problems,
which is robust to the noise around objects, shadows, light reflections, and illumination
interferences because it can separate the brightness information and the color informa-
tion in the HSV color model. In addition, it does not require user intervention and prior
knowledge, and it responds immediately to some changes in the external environment.

Our work focuses on object localization in complex and ever-changing manufactur-
ing environments.

2.3. RGB and HSV Color Space Overview

Color space is a mathematical model that represents color information as three or four
different color components [42]. In the RGB color model, all other colors can be produced
by adding the primary colors: red, green, and blue [43]. It can combine color expression
with these three primary colors of light in different proportions. RGB is primarily used to
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represent colors on computer monitor screens, televisions, and color printers. The HSV
color space is represented by H (hue), S (saturation), and V (value). The HSV color space
corresponds closely to the human perception of colors [44]. It is suitable as a color space
that deals with human visual perception. HSV color-space-based image segmentation is
better than RGB color space [45].

The HSV model, also known as hue, saturation, and brightness (HSB), defines a color
space in terms of three constituent components [46]:

• Hue—the color type (such as red, blue, or yellow) ranges from 0 to 360◦;
• Saturation—the “vibrancy” of the color ranges from 0 to 100%;
• Value—the brightness of the color ranges from 0 to 100%.

The transformation of color images in the RGB into the HSV color space is achieved
as in Equations (1)–(3) [42].

H = arccos
1
2 (2R−G− B)√

(R−G)2 − (R− B)(G− B)
(1)

S =
max(R, G, B)−min(R, G, B)

max(R, G, B)
(2)

V = max(R, G, B) (3)

3. HSV Color-Space-Based Automated Object Localization Scenario for Robot
Grasping in Factory-as-a-Service (FaaS) Platform
3.1. FaaS Platform Architecture and Line Configuration

FaaS (factory as a service: personalized manufacturing service) is a concept that pro-
vides an IoT-based smart factory that supports personalized production to individuals or
companies in the form of a service [4,7]. The FaaS platform provides open manufactur-
ing services based on a smart factory that provides flexible production for personalized
products based on ICT and digital facilities (3D printers, robots, etc.).

Figure 1 depicts the structure of the FaaS platform. The FaaS platform [4] consists
of three layers: a cloud layer, a manufacturing operation layer, and an execution control
layer. The FaaS cloud layer provides individuals or small- and medium-sized enterprises
with a web-based personalized manufacturing service that supports the entire process
from ordering prototypes or products to manufacturing and distribution. The FaaS op-
eration layer is a smart factory dynamic manufacturing operation technology (dynamic
planning/scheduling, virtual simulation, production monitoring, real-time process control,
situational awareness/analysis, etc.). The FaaS execution control layer connects and con-
trols manufacturing equipment such as post-processing equipment, e.g., polishing, robots,
and inspection equipment, based on the Internet of Things (IoT).

The FaaS testbed was designed and built in a micro smart factory to enable small
batch production of various types for individual idea realization. The main facilities of the
FaaS testbed consist of 34 IoT-based manufacturing facilities, including robots, CNCs, and
vision inspection machines [7]. The FaaS production line consists of a line that produces
customized products and a line for post-processing in the form of an octagon modular
factory. The first product line consists of additive manufacturing facilities (3D printers) to
produce a variety of customized products. The second line for post-processing consists
of facilities that perform processes such as inspection, assembly, and cutting of products
produced from additive manufacturing facilities. In the first production line, the robot
handler transfers the produced product to the buffer process. The tower handler in the
second post-processing line transfers the products loaded in the buffer to the next process
for post-processing in the second line.
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Figure 1. FaaS platform configuration: (a) FaaS platform architecture; (b) real manufacturing line; (c)
octagonal modular factory.

3.2. IoT-Based Device Management for Robot Grasping in FaaS Platform

Major facilities are managed through the FaaS Manager in the execution control layer
of the FaaS platform. FaaS manager manages IoT-based manufacturing facilities (initial
setting, control, event, status information provision, etc.). IoT devices integrate with sensor
devices (cameras, pressure, illuminance sensors, etc.) and manufacturing facilities (3D
printers, robot handlers, etc.) to collect facility status information, receive events, and
control and monitor functions [7].

Figure 2 shows the structure and function blocks of the IoT device connected to the
robot handler for product transfer [7].

Figure 2. IoT device management and FaaS manager in the factory execution layer.

3.3. Robot Grasping Scenario in FaaS Platform

Figure 3 depicts a sequence flow diagram for automated object feature extraction
when the robot handler transfers the product to the buffer process after the product is
manufactured in an additive manufacturing facility [7]. With regard to the robot grasping
scenario of the previous work [7], we propose an HSV color-space-based automated object
localization algorithm without prior knowledge.



Appl. Sci. 2021, 11, 7593 6 of 19

Figure 3. Sequence scenario of automated object feature extraction for robot grasping.

The IoT-based robot handler collects an image of the product from the data aggregation
module through a vision camera. The data conversion module converts the collected videos
into images and converts them into an HSV.

The object detection and analysis module works in HSV color-space-based automatic
object localization and measurement. The data control module transmits the created recipe
to the robot through the TCP socket and performs the grasping function.

4. HSV Color-Space-Based Automated Object Feature Extraction
4.1. Motivation

In a previous study [7], HSV color-space-based robot grasping was conducted by
measuring object detection and size. However, the HSV color-space-based product detec-
tion algorithm requires human intervention and preset settings (color designation, setting
threshold value for color identification, etc.), in addition to product size measurement,
whenever a product is changed. In addition, even if the user designates a specific color
for the product to be recognized in advance, the color of the target product appears to
be deformed due to external environmental changes (weather, illumination interference,
shadows, reflections, etc.). In a complex and highly volatile factory environment, users
have many difficulties in automating object recognition based on color. To solve this prob-
lem, we propose a robust and simple HSV color-space-based automated object localization
algorithm that can respond in real time to changes in the external environment without
prior knowledge by improving the contents of previous work. The previous work is shown
in Figure 4.

Figure 4. HSV color-space-based robot grasping in previous work in FaaS platform: (a) robot handler;
(b) robot grasping; (c) user’s HSV color configuration and monitoring GUI.

4.2. HSV Color-Space-Based Automated Object Localization Algorithm

The HSV color-space-based automated object localization algorithm consists of four
steps, as shown in Figure 5:
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• HSV color-space-based auto HSV color picking;
• Region of interest (ROI) random sampling;
• HSV similarity comparison;
• ROI merge operation.

Figure 5. Process HSV color-space-based automated object localization algorithm.

The process is described in Sections 4.2.1 and 4.2.3.

4.2.1. Configuration of Reference ROI and HSV Color-Space-Based Auto HSV
Color Picking

The first step of the proposed algorithm is to set the reference region of interest (ROI)
and maximum ROI information to automatically recognize the product feature information
(color, position) based on the HSV color space in the additive manufacturing facility (3D
printer) from the camera device of the robot handler. Each of the maximum ROIs consists
of one large bounding box. The bounding box is rectangular, which is determined by the
x_start and y_start coordinates of the upper-left corner of the rectangle and the x_end
and y_end coordinates of the lower-right corner. Algorithm 1 presents the algorithm for
HSV color-space-based auto color picking. ROImax_region and ROIref_region represent the
bounding box size of the maximum ROI and the reference ROI, respectively. The reference
ROI is set around the center of the bottom of the 3D printer, which is the reference position
information where the additive manufacturing to produce the product is first started. The
maximum ROI is set slightly higher than the maximum size of the product produced by
the additive manufacturing facility. The reference ROI extracts reference color data to
automatically identify the color of an object in the input video from the vision camera of
the robot handler after product production is completed using a 3D printer.

Algorithm 1. Auto HSV Color Picking

1: Configuration of ROImax_region from Robot Handler
2: Set ROImax_region location info from bounding box (x_start, y_start, x_end, y_end)
3: Input Video from IoT-based Robot Handler
4: Video to image frame conversion and transformation from RGB to HSV through Equations
(1)–(3)
5: Set ROIref_region location info from bounding box (x_start, y_start, x_end, y_end)
6: Picking automated HSV Color Extraction (HSV values) from ROIref_region
7: Registration color threshold of ROIref_region
8: Set H, S, V upper and lower bound threshold, ROIref_region location

The reason for setting the reference ROI is to solve the problem of the user’s need to
set the HSV threshold value every time because the color of the product varies depending
on the order.
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Auto HSV color picking extracts and stores the H, S, and V information through
the camera of the robot handler for the color information of the reference ROI after the
production is completed by the 3D printer.

Auto HSV color picking sets the upper and lower thresholds of the stored H, S, and V
information. The upper and lower threshold values are set as the maximum and minimum
ranges based on the extracted HSV values. It detects changes in product color owing to
illumination interference or changes in light conditions.

4.2.2. HSV Color-Based ROI Random Sampling and HSV Color Similarity Comparison

In this study, we propose an HSV color-space-based ROI random sampling and HSV
color similarity algorithm to automatically recognize and accurately reflect the shape
features of objects that are affected by lighting conditions, shadows, reflections, etc.

ROI random sampling is used to automatically recognize the shape of an object
from complex and volatile external environment changes such as shadows, reflections, or
lighting interferences, etc. in factories. ROI random sampling is advantageous for accurate
positioning and recognition of an object because it responds quickly and easily to some
changes in the lighting environment without any human intervention or prior learning.

HSV color similarity can be defined as the extent of color matching with the reference
ROI by calculating the distances for H, S, and V between the colors of the randomly
retrieved ROI and reference ROI. The definition of the similarity threshold means the
boundary value of whether the HSV color similarity matches. Algorithm 2 presents the
algorithm of the HSV color-based ROI random sampling and similarity. The ROIsampling_max
variable is the ROI max count of the ROI random sampling. ROIsampling_i represents the
initial value of the number of sampling ROIs. Similarity threshold refers to the threshold
of HSV color similarity. The ROITempList variable is a temporary array list that registers
random sampling ROIs with high HSV color similarity, compared to the reference ROI.
ROI random sampling randomly searches for the ROI to detect the location of the product
in various places inside the 3D printer from the maximum ROI. ROI random sampling
extracts the position values of the searched random ROI. Then, the RGB of the random ROI
is converted into an HSV, and the HSV value is extracted.

Algorithm 2. ROI Random Sampling and Similarity Comparison

1: Start ROI Random Sampling and Similarity Comparison in ROImax_region
2: Set ROIsampling_max = Max_sample_count
3: For ROIsampling_i = 0: ROIsampling_max
4: Extract Random ROIsampling_i location info from bounding box (x_start, y_start, x_end, y_end)
5: ROIsampling_i → Transformation from RGB to HSV through Equations (4)–(6)
6: Picking automated HSV Color Extraction (HSV values) from ROIsampling_i
7: Compute HSV Color Similarity of ROIref_region between ROIsampling_i
8: Retrieve HSV Color Values→ (H1, S1, V1 of ROIref_region and H0, S0, V0 ROIsampling_i)
9: Compute HSV Color Distance by Equation (7)
10: IF(Similaritythreshold > Distance) then
11: Set HSV Upper(max) and Low(min) bound threshold from ROIsampling_i
12: Add HSV value, Upper/Lower bound threshold of ROIsampling_i in ROITempList
13: Else
14: ROIsampling_i = ROIsampling_i + 1
15: IF(ROIsampling_i > Max_sample_count) then
16: Action ROITempList Merge Operation
17: Else
18: Continue:
19: End

The HSV color similarity compares the similarity between the HSV color of the
reference ROI and the searched HSV color value of the random ROI. HSV color similarity is
used to accurately classify product shape (position, color) as the HSV value of a random ROI
can be a shape property inside the object or a background property outside the object shape
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due to changes in the external environment (lighting condition, reflection, illumination,
etc.). The HSV color similarity algorithm compares the HSV value of the reference ROI
with the HSV color value of the random ROI and stores only the HSV value of the random
ROI closest to the distance.

The following is an algorithm for the HSV color-space-based similarity distance, as in
Equation (7):

h =
min(|h1− h0 |, 360−|h1− h0|)

180.0
(4)

s = | s1− s0 | (5)

v =
| v1− v0 |

255.0
(6)

distance =

√
h2 + s2 + v2 (7)

where H (hue) ranges from 0 to 360◦, and the distance between the two colors can be
calculated from 0 to 1 in Equation (4). S (saturation) is in the 0–1 range in Equation (5). V
(value) ranges from 0 to 255 in Equation (6), and when divided by 255, it has a value of 0 to
1. H1, S1, and V1 are the HSV values of the reference ROI, and H0, S0, and V0 are the HSV
values of the randomly sampled ROI. If the distance value of color similarity is close to 0,
compared to the threshold, it means that the HSV color value of the reference ROI and the
HSV value of the randomly searched ROI are the most similar.

If the threshold value of the HSV color similarity is less than or equal to the distance
value, the HSV upper and lower limit values of the randomly sampled ROI are added to
the temporary ROI buffer list and stored. Otherwise, the similarity of the HSV values is
compared by executing the maximum number of randomly sampled ROIs.

4.2.3. HSV Color-Based ROI Merge Operation

Algorithm 3 shows the algorithm of the ROI merge operation. The ROI merge opera-
tion retrieves the temporary ROI list for random sampling of ROI values with HSV similar
to the reference ROI. ROITempList _i represents the initial value of the index of the temporary
array list that registers random sampling ROIs with high HSV color similarity, compared
to the reference ROI. ROITempList_max denotes the maximum index length of the temporary
array. The ROI merge operation performs mask operation (OR bit operation) to merge the
searched random sampling ROI and reference ROI data.

The ROI merge operation is used to detect the shape (color, position) of the object of the
product more accurately from the interference of light, illumination, etc., based on the HSV
color base in the real environment. The final ROI merge operation is followed by the move to
the automated object measurement.

Algorithm 3. ROI Merge Operation

1: Start ROI Merge Operation
2: Set ROITempList_i, Retrieve ROITempList_max
3: Set ROITempList_i = 0
4: For i = 0: ROITempList_max
5: Retrieve HSV Value, Upper and Lower threshold for ROITempList_i
6: ROITempList_i → Image Masking According to Upper and Lower threshold
7: Bit Operation ROIref_region and ROITempList_i
8: Merge operation of ROIref and ROITempList_i
9: IF(ROITempList_i > ROITempList_max) then
10: Go to Automated Object Measurement through Equations (8) and (9)
11: Else
12: ROITempList_i = ROITempList_i +1
13: Continue:
14: End
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4.3. HSV Color-Space-Based Object Measurement Algorithm

The object measurement algorithm is calculated and used as the ratio of the “pixels per
metric” ratio of the reference object [7]. The object width describes the value measured in
the pixel as in Equation (8). We calculated the size of the bounding box (dHeight, dWidth)
based on the camera image of the HSV model [7].

The size of the real object (width, height) is calculated by dividing dHeight and dWidth
by the pixels per metric, as in Equation (9).

PixelsPerMetric = object width (measured in pixels)/reference object width (8)

Height = dH/pixelsPerMetric, Width = dW/pixelsPerMetric (9)

4.4. Automated Recipe Generation of Robot Grasping

The robot handler needs the loading position of the target object, the unloading
position to be transferred to, the trajectory of the robot manipulator, the control information
of grasping, etc. for the product transfer work. The robot control information is included
in the recipe and executes grasping or manipulation. In ISA-88.01 [47], the robot control
information was formatted as “Recipe.” The user should modify the recipe information
whenever the shape of the product is changed. It takes considerable time and effort for
the user to teach the operator directly to modify the recipe for control by moving the
robot manually. Figure 6 shows the recipe type for robot grasping in the FaaS platform.
ISA-88.01 [47] deals with the entire product cycle and is divided into four recipe types. This
study deals with a specific facility (robot handler), which is executed by dividing it into two
steps: master recipe and control recipe. The motion recipe information for robot grasping
consists of Product.json and Move.xml files, which are the master and control recipes,
respectively. The master recipe includes basic feature information and process information
of the target product, and the control recipe includes the trajectory information of the
robot grasping. The master recipe created through object localization and measurement is
delivered to the robot handler from the FaaS Manager. It includes the product ID (partID),
source loading equipment (fromFacility), and destination unloading equipment (toFacility)
information. The control recipe is managed within the robot handler facility; the two-recipe
information is combined to control the robot handler [7].

Figure 6. Recipe type for robot grasping in FaaS platform.
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The FaaS manager transmits the master recipe to the robot handler, and the IoT-based
robot handler performs the grasping operation to transfer the product through the master
and control recipes. (QfF) and (QtF) convert source loading equipment and destination
unloading equipment in the master recipe to equipment parameters. (Qobj) of the master
recipe is calculated by (Qobj) as the center point of the object. (Qgrip) of the master recipe
reflects the product’s horizontal and vertical size information extracted as HSV color-space-
based automatic object measurement information. <header> of the control recipe indicates
the total number of steps <numberOfseq>, and <task> denotes the task information for
each step. <step> represents the work progress step, <position> represents the target
position of the trajectory that the robot needs to move, and <unitAction> represents the
robotic unit performing tasks such as movement and grasping.

5. Experiment and Result Analysis

The experiment for evaluation was based on OpenCV [48], and the proposed algorithm
was tested and verified in an environment with a lot of ambient noise, light reflection, and
lighting interference of the product in the additive manufacturing facility.

IoU [49] refers to the value obtained by dividing the area of the intersection of two
regions by the value of the sum region and is used as one of the indicators to evaluate the
accuracy of the predicted bounding box in object localization. Generally, for two finite
sample sets A and B, their IoU is defined as the intersection (A∩B) divided by the union
(A∪B) of A and B [49].

IoU(A, B) =
A∩ B
A∪ B

=
A∩ B

|A|+ |B| −A∩ B
(10)

Comparison of Algorithms

The algorithm was evaluated by testing three products produced on the FaaS plat-
form with different colors. Figure 7 shows the actual appearance of the product and the
appearance of the product in the additive manufacturing facility (3D printer). It can be
observed that the color of the product is deformed by shadows, reflections, etc., owing to
the blue LED lighting in the additive manufacturing facility.

Figure 7. Test products and test environments after production is completed in 3D printers: (a,d,g)
original Test 1,2,3 products; (b,e,h) foreground of original Test 1,2,3; (c,f,i) background of original
Test 1,2,3.
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Figures 8–10 show the results of applying the background subtraction by the Otsu
and GMM (Gaussian Mixture Model) algorithms and applying GrabCut and HOG in test
products 1, 2, and 3. The green line represents the ground-truth bounding boxes, and the
purple line represents the predicted bounding boxes.

Figure 8. Test 1 product result of background subtraction by the Otsu and GMM algorithms: (a) foreground mask of the
background subtraction by the Otsu algorithm; (b) test result of the background subtraction by the Otsu algorithm; (c)
foreground mask of the background subtraction by the GMM algorithm; (d) test result of the background subtraction by the
GMM algorithm; (e) foreground mask of the GrabCut algorithm; (f) test result of the GrabCut algorithm; (g) gradient vector
of the HOG algorithm; (h) test result of the HOG algorithm.

Figure 9. Test 2 product result of background subtraction by the Otsu and GMM algorithms: (a) foreground mask of the
background subtraction by the Otsu algorithm; (b) test result of the background subtraction by the Otsu algorithm; (c)
foreground mask of the background subtraction by the GMM algorithm; (d) test result of the background subtraction by the
GMM algorithm; (e) foreground mask of the GrabCut algorithm; (f) test result of the GrabCut algorithm; (g) gradient vector
of the HOG algorithm; (h) test result of the HOG algorithm.
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Figure 10. Test 3 product result of background subtraction by the Otsu and GMM algorithms: (a) foreground mask of the
background subtraction by the Otsu algorithm; (b) test result of the background subtraction by the Otsu algorithm; (c)
foreground mask of the background subtraction by the GMM algorithm; (d) test result of the background subtraction by the
GMM algorithm; (e) foreground mask of the GrabCut algorithm; (f) test result of the GrabCut algorithm; (g) gradient vector
of the HOG algorithm; (h) test result of the HOG algorithm.

The background subtraction by the Otsu algorithm in Figure 8 does not detect the
product properly because of the long height of product 1 and severe noise owing to the
influence of the top illumination. Even background subtraction by the GMM algorithm is
not robust to changes in lighting, and only a part of the product background is detected.

The GrabCut algorithm exhibits high performance because the user directly sets the
product’s bounding box in the foreground. However, GrabCut extracts the foreground
step by step through user interaction. The HOG algorithm is insensitive to changes in light
and illumination owing to the characteristic that distinguishes the amount and direction of
the edge; thus, its IoU is higher than the background subtraction by the Otsu and GMM
algorithms, but it has difficulty in accurate object localization.

Test 2 in Figure 9 is a case where the background color and product color are clearly
different. In the test product, the color of the product changes owing to the lighting in the
3D printer, but the colors are easily distinguished and separated, so the Otsu and GMM
algorithms and IoU show good performance.

Figure 10 shows that the background subtraction by the Otsu and GMM algorithms
recognizes the reflected image of the Test 3 product, produced in the additive manufac-
turing facility (3D printer) as a product object. Although the intersection over union (IoU)
performance is not high, GraphCut set by humans shows the same excellent performance
as Test 1 and 2 products.

Figure 11 shows the performance evaluation results of the proposed algorithm for the
Test 1 product. The maximum ROI is displayed as a cyan line. Random sampling ROI sets
to search 70 or 150 ROI and are indicated by a red rectangle within the maximum ROI of
the 3D printer, and the reference ROI is represented by a yellow line. Figure 11b shows the
mask image of the product that is merged by selecting only ROIs with high similarity to
the HSV of the reference region among the HSV values of the random sampling ROI. The
proposed algorithm shows good performance in IoU by extracting object localization by
reflecting the effect of lighting in test product 1.
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Figure 11. Test 1 product result of the proposed algorithm: (a) reference ROI for auto HSV color picking; (b) merge
operation through random sample ROIs with close HSV Color similarity; (c) Test 1 product result (random sampling
ROI: 150); (d) another Test 1 product result (random sampling ROI: 150); (e) another Test 1 product result (random sampling
ROI: 150); (f) another Test 1 product result (random sampling ROI: 70); (g) another Test 1 product result (random sampling
ROI: 70).

Figure 12 shows the performance evaluation results of the proposed algorithm for the
Test 2 product. The proposed algorithm extracts the HSV values of the reference ROI and
of the random ROI and compares their similarity. Then, the merge operation is performed
by selecting only the HSV values of the ROIs with a close distance. As a result of the HSV
color-based similarity analysis, the similarity of ROI in the Test 1 product is high when the
distance value is small (approximately 30 or less).

Figure 12. Test 2 product result of proposed algorithm: (a) reference ROI for auto color picking; (b) merge operation through
random sample ROIs with close HSV color similarity; (c) Test 2 product result (random sampling ROI: 150); (d) another Test
2 product result (random sampling ROI: 150); (e) another Test 2 product result (random sampling ROI: 150); (f) another Test
2 product result (random sampling ROI:70); (g) another Test 2 product result (random sampling ROI:70).

Figure 13 shows the performance evaluation results of the proposed algorithm for
the Test 3 products. Depending on the position of the random sampling ROI, as shown
in Figure 13c, some of the reflected shadows of the product’s lighting were recognized,
resulting in a decrease in IoU performance. As the HSV value of the shadow ROI of the
product was measured similarly to that of the reference ROI of the product, it was difficult
to clearly distinguish the boundary between the background and the foreground.
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Figure 13. Test 3 product result of proposed algorithm: (a) reference ROI for auto color picking; (b) final mask binarization
image after merge operation (random sampling ROI: 150); (c) Test 3 product result (random sampling ROI: 150); (d) another
Test 3 product result (random sampling ROI: 150); (e) another Test 3 product result (random sampling ROI: 150); (f) final
mask binarization image after merge operation (random sampling ROI: 70) of another Test 3 product in Figure 12g; (g)
another Test 3 product result (random sampling ROI:70); (h) another Test 3 product result (random sampling ROI:70).

Figure 14 shows the performance evaluation results when the size of the reference ROI
is large and the reference ROI contains a different color (e.g., blue, similar to the bottom
surface). This shows that the object localization result is poor, including the shadow of
the bottom surface of the product. The proposed algorithm randomly samples an ROI
within the background space from a single HSV color range and compares the HSV color
similarity with a reference ROI. In addition, HSV color-based object localization selects only
ROIs from random sampling that contain a color similar to the HSV color of the reference
ROI as the candidate HSV colors. The Test 3 product consists of a product and a supporting
external frame with an empty space between the two, where the color of the bottom surface
(blue) of the 3D printer is expressed. Therefore, in auto HSV color picking, if the HSV of
the reference ROI is mixed with multiple colors, it is difficult to clearly distinguish the
product boundary, as shown in Figure 14.

Figure 14. Test 3 product result of proposed algorithm: (a) reference ROI for auto color picking;
(b) final mask binarization image after merge operation (random sampling ROI: 70); (c) Test 3 product
result (random sampling ROI: 70).

Table 1 summarizes the test comparison results of the algorithms used for object local-
ization. The GrabCut algorithm shows the highest performance of the overall algorithms.
The GrabCut algorithm exhibits good results because the rectangular window set by the
user is recognized as the foreground, and anything other than the rectangle is recognized as
the background; however, it has the drawback as the user must intervene directly and set
the bounding box every time the product is changed. Background subtraction using Otsu
and GMM algorithms showed high performance when not affected by light and lighting
conditions but did not otherwise find the position of the object accurately. As shown in
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the results Figure 8a–d, when the background includes a significant noise, its substation
algorithm cannot identify object localization accurately. Although the performance of the
HOG algorithm is not higher than that of the GrabCut algorithm, it shows stable results
that are somewhat robust to changes in lighting. The values without and with parentheses
in Table 1 show the IoU performance results when the number of random sampling ROIs
is 70 and 150, respectively.

Table 1. Summary of test comparison results.

Object
BS 1 Using

Otsu
BS 1 Using

GMM GrabCut HOG Proposed
Algorithm

IoU IoU IoU IoU IoU

Test Product 1 0.1004 0.6294 0.9733 0.8296 0.9039 (0.9458)
Test Product 2 0.9195 0.9195 0.9420 0.7672 0.9178 (0.9194)
Test Product 3 0.6711 0.6827 0.9323 0.8524 0.9218 (0.9378)

1 Background subtraction (BS).

The performance of the proposed algorithm is evaluated to be good because the
ROI merge operation is executed by comparing the HSV color similarity of the reference
ROI through an ROI random sampling that can cover the part affected by lighting. The
proposed object localization algorithm shows good performance results based on the HSV
color space by reflecting the color change of the original product due to light interference,
shadows, or light in a single HSV color space.

6. Conclusions

Smart factories are evolving to become intelligent by combining major ICT technolo-
gies such as IoT, robots, and AI to connect all processes of production, distribution, service,
and consumption. Smart factories for manufacturing intelligence beyond production
automation still have many problems to be solved on the production floor to improve pro-
ductivity, reduce costs, and optimize processes. To respond quickly to flexible production
environments and rapidly changing consumer demands, robots, the core equipment of
smart factories, require automation and intelligence that can operate on their own without
human intervention. The robot’s machine vision technology is one of the core technologies
of an important smart factory that can automate robots.

This study proposes a simple and robust HSV color-space-based object localization
algorithm for external environmental changes (illumination interference and shadow,
reflections, lighting conditions, etc.) in a highly variable manufacturing environment.

The proposed algorithm does not require the user to specify the HSV color in advance
for object detection and localization, even if the product is changed. The HSV color of the
reference ROI is automatically extracted from the vision of the robot connected to the IoT
device. In addition, through random sampling, the ROI merge operation is performed on
only the ROI with high HSV similarity to the reference ROI, so that the object localization
of the product can be automatically identified within the 3D printer. This means that object
localization can be extracted quickly and automatically without user intervention and prior
knowledge (e.g., learning and pre-setting).

Further work is needed to recognize the position of objects quickly and easily for
a variety of products that contain multiple colors, not just a single color. In addition,
when HSV color values are distributed differently in the ROI, it is necessary to develop
an algorithm that can accurately measure and analyze the distance of HSV similarity by
spatially subdividing the ROI. It is necessary to consider the optimization of the HSV color
similarity distance and random sampling ROI size. Moreover, interesting research [50–52]
such as artistic robot painting and real-time grasping detection for the intelligence and
automation of robots have been reported. We expect that the time and effort required
for robot setting and teaching work, which are approached by human manual work, can
be reduced.
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