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Abstract: With the spread of camera-equipped devices, massive images and videos are recorded on
construction sites daily, and the ever-increasing volume of digital images has inspired scholars to
visually capture the actual status of construction sites from them. Three-dimensional (3D) recon-
struction is the key to connecting the Building Information Model and the project schedule to daily
construction images, which enables managers to compare as-planned with as-built status and detect
deviations and therefore monitor project progress. Many scholars have carried out extensive research
and produced a variety of intricate methods. However, few studies comprehensively summarize
the existing technologies and introduce the homogeneity and differences of these technologies. Re-
searchers cannot clearly identify the relationship between various methods to solve the difficulties.
Therefore, this paper focuses on the general technical path of various methods and sorts out a compre-
hensive research map, to provide reference for researchers in the selection of research methods and
paths. This is followed by identifying gaps in knowledge and highlighting future research directions.
Finally, key findings are summarized.

Keywords: construction progress monitoring; 3D reconstruction of building; daily construction
image; building information model

1. Introduction

Schedule and cost have always been the focus of construction management. Early
detection of actual or potential schedule delay or cost overrun provides opportunities for
timely adjustments. This requires an automated, timely, and accurate progress-monitoring
system to detect deviations between the planned process and the actual performance. In
current practice, prevailing monitoring and management systems in the Architecture, Engi-
neering, Construction (AEC) and Facilities Management (FM) industry are still dominated
by traditional approaches, including manual paper-based collection and recoding of on-site
activities [1,2]. These procedures are time-consuming, labor-intensive, and error-prone,
which cannot be performed as frequently as required. Moreover, current methods may not
be conducive to a clear and quick understanding of progress. Because the progress reports
in text and graphic format are visually complex, they cannot intuitively reflect information
related to space, so it often takes a while for managers to understand the status of progress,
which affects the efficiency of information transmission [3].

Building Information Modeling (BIM) is an essential step to digital management
of construction projects [4,5]. BIM creates a three-dimensional (3D) model of building
that can be used to represent construction process (4D BIM) by linking activities of a
schedule with corresponding building elements. It provides an opportunity to visually
compare deviations between the planned process and the actual performance. Recently,
several approaches and studies that address the comparison of as-built and BIM-based
as-planned data have been presented. The as-built data came from barcoding, Radio-
Frequency Identification (RFID), Ultra-Wideband (UWB), Geographic Information System
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(GIS), Global Positioning System (GPS), laser scanners, image-capturing devices, and so
forth. Among them, only laser scanners and image-capturing devices can realize the 3D
reconstruction from the construction site to the digital model, which is a necessary part of
automated construction progress monitoring in the future.

The goal of general 3D reconstruction is to infer the 3D geometry and structure of
objects and scenes from one or multiple two-dimensional (2D) images [6]. In the AEC
industry, 3D reconstruction of building is the key to connecting the BIM and the project
schedule to daily construction images, which enables managers to compare as-planned
with as-built status and detect deviations and therefore monitor project progress [7]. At
present, 3D reconstruction methods of buildings are mainly divided into two categories:
one is to directly generate 3D point clouds of the building through laser scanning, and the
other is to take 2D images and then reconstruct a 3D model.

3D laser scanning technology, based on laser ranging principle, can quickly reconstruct
the 3D model of the measured object by recording the 3D coordinates, reflectivity and
texture of many dense points on the surface of the measured object [8]. This technology has
unique advantages in efficiency and accuracy, and is not affected by illumination. However,
there are also some shortcomings, such as high cost, high time consumption, and high
technical requirements for operation [9–11].

In this article, the second method, image-based 3D reconstruction, is focused on. The
image includes photographs, videos, and depth images. Among them, photographs and
videos are RGB images, while depth images are RGB-D images. The spread of camera-
equipped devices has promoted the explosion of image data. Massive images and videos
were recorded on construction sites daily, and the ever-increasing volume of digital images
had inspired scholars to visually capture actual status of construction sites from them. In
comparison to other alternatives such as laser scanning, 3D reconstruction from images is
at a fraction of cost [12], and the rich color and texture information retained in the image
can also be used for semantic recognition and process reasoning.

Compared with the 3D reconstruction of general objects or the 3D reconstruction
of building based on laser scanning, the image-based 3D reconstruction of building has
different characteristics and faces special challenges. The research contents of the image-
based 3D reconstruction of building can be roughly divided into six processes: image
collection, 3D point cloud generation, image-to-BIM alignment, point cloud segmentation,
point cloud semantic recognition, and progress reasoning. The main challenges or tasks of
each process are as follows:

1. Although here are many ways to collect images including monocular cameras, binoc-
ular cameras, and multi-cameras, the challenges are similar. The intensity of light
and shadows seriously affect image quality, and there are many dynamic and static
occlusions in addition to self-occlusion at the construction site that prevent researchers
from directly observing the building. These factors have brought huge obstacles to
3D reconstruction from images.

2. To generate point cloud from images, the feature points in different images need to
be found first. Many algorithms have been studied, such as Scale-Invariant Feature
Transform (SITF) [13] and Speeded-Up Robust Features (SURF) [14]. Then, these
feature points need to be matched with each other to estimate the fundamental
matrixes using algorithms such as Random Sample Consensus (RANSAC) [15]. When
the images are taken by a moving camera, it is required to reconstruct the point clouds
using Structure from Motion (SfM) [16].

3. There are various registrations in the process of 3D reconstruction of building, such
as 2D–3D and/or 3D–3D registration among images, point clouds, and BIM models.

4. The point cloud generated from images is massy and complicated, which contains
background, noise, obstacle, etc. Removing the redundant point cloud and keeping
only the Region of Interest (RoI) are beneficial for simplifying data processing and
improving calculational efficiency.
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5. The point cloud usually only contains 3D coordinate information. To obtain a seman-
tically rich model to infer progress, it is required to identify the type and state of
building components represented by each point from the color and texture in RGB
images, which is called semantic recognition/labeling of point clouds.

6. Process reasoning is the last step including geometry-based, appearance-based, and
relationship-based reasoning.

To solve the above challenges and tasks, many scholars have carried out extensive
research and produced a variety of intricate methods. In technical articles, however,
the review part usually takes the related technologies and methods as the bedding for
the follow-up discussion, and does not make a comprehensive analysis of the related
technologies. At the same time, most of the review articles tend to focus on one perspective,
such as point cloud [17,18], big data [12,19], data collection [2,20–22], algorithm [23], etc.,
which does not unify all the methods. Therefore, researchers cannot clearly identify the
relationship between various methods to solve the difficulties.

This paper will sort out a comprehensive research map, and describe the relevant
research results, to provide reference for researchers in the selection of research methods
and paths. The goals of this article are three-fold: (1) to integrate the advanced image-
based 3D reconstruction methods of buildings to form a research map; (2) to compare
the differences among various methods and highlight the advantages and limitations of
these methods; (3) to discuss the current challenges of image-based 3D reconstruction of
building and explore feasible solutions. What should be noted is that the 3D reconstruction
mentioned later is the image-based 3D reconstruction of building; the image refers to
photographs, videos, and depth images; the buildings refer to civil infrastructures; and
the 3D reconstruction refers to the reconstruction from reality rather than from Computer
Aided Design (CAD) drawings.

The remainder of this paper is structured as follows. The first part briefly introduces
the general process of the 3D reconstruction of building, and the representation of knowl-
edge are described to limit or unify related concepts, and then six key steps of image-based
3D reconstruction of building are analyzed which covers the state-of-the-art. In the sub-
sequent part, six important knowledge gaps for the image-based 3D reconstruction of
building are explained in detail. The limitations and challenges are highlighted, and the
future research directions are discussed. In the last part of the paper, key findings are
summarized.

2. Methodology

This review focuses on the image-based 3D reconstruction in the field of construction
progress monitoring, hoping to obtain a comprehensive technical path, which provides
technical selection reference for researchers. To achieve this goal, the following work was
carried out in this study.

1. Literature search and screening: This study searched the relevant research results
since 2008 from Google Scholar, and the key words included image, photography,
video, depth image, computer vision, three-dimensional reconstruction, construction
progress monitoring, construction progress tracking, etc. Then, articles related to
this topic were selected, and the papers indexed by Web of Science were focused on.
Finally, a total of 66 articles were selected, as shown in Table 1.

2. Method classification: The knowledge and methods used in these papers are divided
and classified into these six aspects: knowledge representation, image collection, and
3D point cloud generation, image-to-BIM alignment, point cloud segmentation, point
cloud semantic recognition, and progress reasoning.

3. Methods comparative analysis: The methods of each aspect were classified and
summarized, and the advantages and limitations of various methods were analyzed.
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Table 1. Literature sources.

Publication Number of Articles

Advanced Engineering Informatics 9
Automation in Construction 22

IEEE Conference 5
ISPRS Journal of Photogrammetry and Remote Sensing 5

Journal of Computing in Civil Engineering 4
Journal of Construction Engineering and Management 2

Journal of Information Technology in Construction 2
Sensors (Basel) 2

Others 15
Total 66

3. Technology Path of Image-Based 3D Reconstruction

This section presents a comprehensive synthesis of the state-of-the-art in image-based
3D reconstruction. By categorizing these existing studies, a research map is summarized.
Figure 1 illustrates the research map for image-based 3D reconstruction starting from data
collection to progress reasoning. The upper portion categorizes the as-planned models
which is ready before construction, including geometry models, and relationships. Cor-
respondingly, the bottom portion illustrates the as-built models that is collected on the
construction site and reflects the actual construction status, including images and point
clouds. Through the interaction among the as-planned models and the as-built models,
combined with other technologies, the construction process is inferred from the geometry-
based, relationship-based, and appearance-based information. The process can be divided
into six steps: image collection, 3D point cloud generation, image-to-BIM alignment, point
cloud segmentation, point cloud semantic recognition, and progress reasoning. Table A1
in the appendix shows literature related to these steps. In the subsequent part, the recon-
struction process will be described in detail and at length and the advantages and possible
obstacles of the state-of-the-art methods will be analyzed.
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3.1. Representation of Knowledge

In the field of visual 3D reconstruction, the representations of knowledge are diverse,
such as 2D/3D/4D models, schedules, physical, and logical relationships, images and
videos, point clouds, contours, patches, and so on. These representations of knowledge can
be roughly categorized on three fronts:

1. Direct as-planned information: 2D/3D/4D models are widely known as the as-
planned information which depict the planned process and final states, and the
core purpose of these as-planned models, during the 3D reconstruction process, is
to serve as a reference standard. Schedules and weekly work plan representing
project execute process are usually combined with 3D models to form 4D models.
Physical relationships represent the spatial connection between geometric primitives
(including aggregation, topological and directional relationships) [24], while logical
relationships represent the sequential relationship among building components due to
procedural or technical requirements, similar to the construction sequence under the
constraint of the activity-on-arrow network. Both physical and logical relationships
can be used to assist decision-making [25].

2. Direct as-build information: Image is one of the most common as-build information
including photographs, videos, and depth images. With the recent advances in
smart devices and camera-equipped platforms, an exponential growth in the volume
of images and videos that are recorded on construction sites [12,26]. Compared
with ordinary photographs, depth images/RGB-D images generated by the range
camera contain depth information, which makes them easy to generate as-build point
clouds. Furthermore, laser scanned point cloud is also a common way to represent
as-build models.

3. Derived information: Derived information comes from images or point clouds and
provides support for the construction process reasoning. First, the point clouds de-
rived from images or videos are a kind of derived information. Presently, taking real-
time videos or time-lapse images and then aligning these sequential frames/images
via feature detection, matching, and homography transformation to generate point
clouds are common practices [12,27]. In addition, if point clouds are projected onto
the plane which runs parallel to the floor/wall, contours of buildings can be extracted
through the algorithm from Suzuki [28,29] to reason walls, doors, windows or other
apertures [29]. Moreover, there is also a lot of useful information generated from
images. For example, some researchers project 3D model elements onto image planes
and the images are segmented into patches for the progress reasoning [30]. Further-
more, the image patches can be used for creating multiple discriminative material
classification model and the Construction Material Library (CML) for the progress
reasoning [31].

3.2. Image Collection and 3D Point Cloud Generation
3.2.1. Data Acquisition Device

In the AEC industry, many devices are used for image acquisition, including camera
(monocular/binocular/camera array), smart devices (mobile phone/tablet/personal lap-
top), monitor, UAV with camera, laser scanner, depth camera (Kinect), satellite, etc. Main
performance indexes of these devices are shown in Table 2.

The data generated by these devices can be divided into two categories: image
and point cloud. The laser scanner for generating point cloud has the characteristics of
high equipment cost, high technical requirements, limited texture information, etc., so
that it is not accepted by most construction companies. Therefore, the image (including
photograph and video) becomes an alternative way. Images can be collected by a variety
of devices, and most of these devices have the characteristics of low cost, low technical
requirements, portable, high-resolution, rich-texture information. This makes image-based
3D reconstruction a key technology for automated construction progress monitoring.
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Table 2. Device performance comparison.

Device Raw Data Type Cost Technical
Threshold Portability Resolution Texture

Representation
3D Surfaces

Reconstruction

Camera Photograph Low Low High High Rich -
Smart

devices Photograph Low Low High High Rich -

Monitor Video Low Low Low Medium Rich -
UAV Video High High Low Medium Rich -

Laser scanner Point cloud High High Low High Limited Automatic
Depth
camera

Photograph and
point cloud Medium Low High High Rich Automatic

Satellite Remote sensing
images High Low - Low Medium -

3.2.2. Data Type

In different studies, the form of images is related to the acquisition equipment and affects
the selection of subsequent methods. There are three main forms used by most researchers.

1. Time-lapse images/videos from fixed camera: Fixing the camera position means
simplifying complicated registration process. As long as the camera coordinates and
camera shooting direction are obtained, the images can be registered with the BIM
model after simple rotation and scaling. Although this means a lack of flexibility in re-
sponse to occlusions caused by changing structures, the benefits of always-on-demand
images provide the possibility for fast and responsive assessment [32]. However, to
reduce occlusion, it is necessary to increase the number of cameras shooting from
multiple angles [33,34], as shown in Figure 2, which raises new questions—how to
arrange multiple cameras and how to deal with data conflicts between cameras. In
addition, the cameras need to be fixed on a stable object, which sometimes proves dif-
ficult. In addition, Golparvar-Fard et al. [33] found that small errors will significantly
affect registration and minimize the allocated image area for each element, making
the task of recognition much more challenging.

2. Unordered image sets: Unordered image sets can be taken from any location, so that
almost all corners can be captured without occlusions. These images are usually taken
by construction managers, owner representatives, contractors, and subcontractors
and have capacity to enable complete visualization of a construction site [3]. However,
developing computer vision and image processing techniques that can effectively
operate on such imagery is a huge challenge [3]. Golparvar-Fard et al. [3,35] came
up with a way—extract SIFT feature points from continuous images, match them to
estimate the fundamental matrixes using the RANSAC algorithm, and use the SfM
principle to generate point clouds, as shown in Figure 3. In this method, although
the image sets can be unordered, the images in an image set are orderly, and a
certain proportion of repeating regions among these images is needed to extract
corresponding SIFT points. In addition, the user needs to initially register the as-
planned and as-built models [35]. When there are many unordered image sets, it is
necessary to manually record the camera position and external parameters, and each
image set requires an initial registration that is quite troublesome. Moreover, to avoid
occlusion and cover all observed objects, a large amount of overlap is necessary, which
is almost impossible for manual acquisition. Some researchers use camera-equipped
Unmanned Aerial Vehicles (UAVs) to professionally take images and document
them [36,37], which allow for a wider range of views, especially from above, and the
GPS coordinates and camera orientation are known in most cases. Even so, it is still
very difficult and is tedious to find the exact views in BIM due to the inaccurate GPS
coordinates especially in the vertical axis [12].

3. Depth images: Depth images, generated from range cameras/RGB-D cameras, contain
not only RGB colors but also depth information, as shown in Figure 4. Similar
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to the point cloud generated by laser scanners, the 3D point cloud model of the
observed object can be generated directly from the depth images. The range camera
has attracted the attention of many scholars because of its low cost and portability.
However, due to the limited shooting range, it is only suitable for indoor shooting,
not for large-scale image acquisition [38,39].
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Figure 4. A photo taken from the construction site and its depth map [40].

3.3. Image-to-BIM Alignment

The existing registration (or alignment) methods for 3D reconstruction can be catego-
rized into two forms: one is the registration between homogeneous partial data to form
a global model, including image–image (2D–2D) and point cloud-point cloud (3D–3D)
alignment; the other is the registration between different types of data, such as image–BIM
(2D–3D), point cloud–BIM (3D–3D), and/or image–point cloud–BIM (2D–3D–3D) align-
ment. Since these alignment processes start from the original data (images) and finally to
BIM, the whole process will be called image-to-BIM alignment in this article.
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To analyze the construction performance, an as-is condition needs to be compared to
an as-planned condition [12]. The image-to-BIM alignment intends to make the acquired
images comparable to the as-planned information contained in BIM [4]. There are four
approaches proposed in recent years to support image-to-BIM alignment.

1. 3D–2D registration-based: Monitoring the construction process using fixed cameras
without pan/tilt/zoom is one of the most convenient ways. Because once the user
initially registers the as-planned and as-built models, the correspondence between
the photograph and the virtual model would be set for all subsequent images [33].
Many scholars superimpose 3D visual models on images in Augmented Reality (AR)
or Visual Reality (VR) environments [3,33,41]. Ideally, all visual models could be pro-
jected on the image plane and fully registered with the image. However, the outdoor
camera is susceptible to environmental influences such as gravity and transverse
winds, which can easily lead to the failure of automatic registration. Therefore, a set
of key points with known positions in the photograph and the 3D visual environment
is required to achieve more accurate registration [32].

2. Feature point-based: To avoid the problem of occlusion caused by fixing cameras,
some scholars explore the methods of movable cameras. Golparvar-Fard et al. [3,35]
studied a method of extracting SIFT feature points from unordered image sets. By
identifying the common feature points of overlapping region, these images were
registered with each other to generate feature point cloud. Then, the images and the
virtual model were registered by aligning the feature point cloud with the 3D virtual
model in 4D Augment Reality (D4AR) environment. They realized the image-to-BIM
alignment through the registration of image-to-point cloud and point cloud-to-BIM. In
addition, many automated methods have also been proposed to register point clouds
with BIM models. Bueno et al. [42] presented a novel method (4-plane congruent set
algorithm) for automatic registration of as-is 3D point clouds with 3D BIM models.
Lei et al. [43] proposed a 3D patch registration approach based on Convolutional
Neural Network (CNN) deep-learning algorithm for integrating sequential models in
support of progress monitoring.

3. Depth image-based: Compared with the above method, the image-to-BIM alignment
method based on the depth image simplifies the process of image registration and
point cloud generation because the depth information is included in the depth image.
In the research of Pučko et al. [38], workers captured all workplaces inside and
outside of the building in real time and record partial point clouds, their locations,
and time stamps by Kinect (helmet-mounted scanner). Then by manually picking the
equivalent points, the partial point clouds were registered and merged into a complete
4D as-built point cloud of a building under construction. Finally, the image-to-BIM
alignment was realized using a software developed at the University of Maribor [10].
Although the early process of image registration and point cloud generation has been
simplified, the process of picking the equivalent points manually was not subtracted,
which requires a lot of manual work. It is time-consuming, sometimes it must be
repeated, the result is not precise and leads to limited usefulness.

4. Perspective-based: This method uses the relationship among points, lines, and sur-
faces in images to directly register the image with BIM. For example, Kropp et al. [4]
and Asadi et al. [44] proposed a new method to register images with BIM using per-
spective alignment for indoor monitoring of construction, as shown in Figure 5. First,
video frames were captured with a monocular camera system to create as-built data
of the current construction status. Second, the first frame was registered initially with
the BIM model by superimposing the wire frame model on it in an AR manner. Then
the fine correspondence between the model and the as-built scene was calculated
from line candidates extracted by scanning as-built images RoI. Although only the
first frame needs manual alignment, each video needs manual processing, which
obviously requires a lot of manual labor. Because each room needs a separate video,
and they need to be shot daily. Similarly, Fernandez-Labrador et al. [45] propose a
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novel procedure for 3D layout recovery of indoor scenes from single 360◦ panoramic
images. The proposed method combined geometric reasoning and deep learning to
generate a pruned set of lines belonging to the main structure of the room, from which
they extracted candidate corners and generated layout hypotheses. These alignment
methods register the as-built image directly with the as-planned model without the
assistance of point clouds. However, these technologies only have been applied in
the indoor decoration stage with little occlusion, which may not be applicable to the
outdoor scenes.
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3.4. Point Cloud Segmentation

No matter what method is used to generate point clouds, there will be a lot of noise,
background, and obstacles (equipment, materials, personnel, tools, protective measures,
garbage, etc.). The messy and redundant point clouds not only waste computer resources
but also affect judgment. Therefore, it is necessary to segment the point cloud to delete
the redundant points outside the RoI. There are various computational methodologies
proposed to conduct point cloud segmentation. Wang et al. [46] divided them into six
categories: clustering-based, edge-based, region-based, graph-based, model fitting-based,
and hybrid. The advantages and disadvantages are shown in Table 3.

Table 3. Summary of data segmentation methodologies for point cloud data.

Segmentation
Methodologies Advantages Disadvantages Ref

Clustering-based Easy to understand and implement Accuracy problem: sensitive to the noise in data and is
influenced by the definition of neighbor [47,48]

Edge-based Fast segmentation Accuracy problem: sensitive to noise and uneven
density of point clouds [49,50]

Region-based More accurate to noise Over or under segmentation and accuracy of
determining boundaries [51]

Graph-based Better on complex point cloud data
with uneven density or noise

Cannot process in real time, and training or other
system is required to assist process [50,52]

Model fitting-based
Hough transform Fast and robust with outliers Slower and more sensitive to segmentation parameters [53]

RANSAC Fast and robust with outliers, can
process a large amount of data

Accuracy when processing different point
cloud sources [54]

Hybrid Take advantage of multiple
approaches more accurate Contain all disadvantages of selected approaches [55]

In addition, many scholars used the geometric primitives of BIM models to segment
point clouds [50]. After aligned with BIM models, the point cloud was naturally divided
into different regions, which is great for geometry-based reasoning. The specific analysis
will be introduced in Section 3.6.

3.5. Point Cloud Semantic Recognition

The point cloud generated by laser scanning is a group of indistinguishable points that
only contains the 3D coordinate of points. The points representing various components
are glued together. However, the point clouds generated from RGB or RGB-D image can
contain color, texture, and other information. They can be delivered to the point cloud
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through the mapping relationship between the point cloud and the image to help identify
which primitive a point belongs to.

Many scholars mark semantic information for point clouds in various ways, which
is called semantic recognition/labeling. The key to semantic recognition is to establish
semantic mapping. In general, practice, the point cloud is segmented into small homoge-
neous 3D patches, and then the features (including color, position, height, compactness,
linearity, planarity, angle with the ground, etc.) of each patch are extracted to classify
these patches to form semantic point cloud. Antonello et al. [56] proposed a multi-view
frame fusion technique to enhance the semantic labeling results with 3D entangled forests
and built semantic maps on RGB-D point cloud. The point cloud was over-segmented
into homogeneous 3D patches and a feature vector of length 18 was calculated for each
patch. Five binary tests defining the entangled features were used to describe complex
geometrical relationship between segments in a neighborhood. Posada et al. [57] presented
a purely semantic mapping framework which operates solely with omnidirectional images.
The free space was found from the omni-image with a binary floor/obstacle classifier. In
addition, a place category classifier was used to label the navigation relevant categories:
room, corridor, doorway, and open room. Adán et al. [58] divided the semantic modeling
process into five semantic levels, including (1) automatic data acquisition of the building’s
as-is state, (2) simple geometric building model, (3) recognition and labeling of primary
structural elements (SEs) of the building, (4) recognition of openings within SEs of the
building, and (5) recognition of small building service components on SEs, as shown in
Figure 6. The integrated system they proposed can automatically reconstruct large scenes at
a high level of detail and provide detailed as-is semantic models of building. Dimitrov [59]
presented an image-based material classification method for semantically rich as-built 3D
modeling, and a CML was formulated to train and test the proposed method, as show
in Figure 7. Although their method was only used on images, it is feasible to graft this
technology into point cloud semantic recognition.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 26 
 

 

Figure 6. Levels of semantic 3D modeling [58]. 

 

Figure 7. The construction material library [59]. 

3.6. Progress Reasoning 

Progress reasoning is a key approach that compares the as-panned model with the 

as-built model and detects deviation between them. In the last few years, many methods 

for progress reasoning have been proposed. These reasoning processes are based on ge-

ometry, appearance, relationship, and so on. In this paper, these methods are classified 

into four categories: 

1. Based on the 3D space occupancy by the point clouds: Braun et al. [25] split the BIM 

element surface into 2D raster cells and verified the progress information by the num-

ber of points extracted for each raster cell within a certain distance before and behind 

the BIM element surface. Omar et al. [1] created internal and external surface planes 

for BIM model and measured the true column heights by the point cloud between 

the external and internal surface boundaries. Golparvar-Fard et al. [35] traversed and 

labeled for expected progress visibility and a machine-learning scheme built upon a 

Bayesian probabilistic model was proposed that automatically detects physical pro-

gress. 

2. Based on the 2D plane projection of the point clouds: Rebolj et al. [10] and Pučko et 

al. [38] projected a BIM element to three orthogonal planes and rasterized them 

within a regular grid. Then, they projected the points in the element’s proximity onto 

the same grids and the area of grid-cells containing projected points is considered to 

Figure 6. Levels of semantic 3D modeling [58].



Appl. Sci. 2021, 11, 7840 11 of 24

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 26 
 

 

Figure 6. Levels of semantic 3D modeling [58]. 

 

Figure 7. The construction material library [59]. 

3.6. Progress Reasoning 

Progress reasoning is a key approach that compares the as-panned model with the 

as-built model and detects deviation between them. In the last few years, many methods 

for progress reasoning have been proposed. These reasoning processes are based on ge-

ometry, appearance, relationship, and so on. In this paper, these methods are classified 

into four categories: 

1. Based on the 3D space occupancy by the point clouds: Braun et al. [25] split the BIM 

element surface into 2D raster cells and verified the progress information by the num-

ber of points extracted for each raster cell within a certain distance before and behind 

the BIM element surface. Omar et al. [1] created internal and external surface planes 

for BIM model and measured the true column heights by the point cloud between 

the external and internal surface boundaries. Golparvar-Fard et al. [35] traversed and 

labeled for expected progress visibility and a machine-learning scheme built upon a 

Bayesian probabilistic model was proposed that automatically detects physical pro-

gress. 

2. Based on the 2D plane projection of the point clouds: Rebolj et al. [10] and Pučko et 

al. [38] projected a BIM element to three orthogonal planes and rasterized them 

within a regular grid. Then, they projected the points in the element’s proximity onto 

the same grids and the area of grid-cells containing projected points is considered to 

Figure 7. The construction material library [59].

3.6. Progress Reasoning

Progress reasoning is a key approach that compares the as-panned model with the
as-built model and detects deviation between them. In the last few years, many methods
for progress reasoning have been proposed. These reasoning processes are based on
geometry, appearance, relationship, and so on. In this paper, these methods are classified
into four categories:

1. Based on the 3D space occupancy by the point clouds: Braun et al. [25] split the
BIM element surface into 2D raster cells and verified the progress information by
the number of points extracted for each raster cell within a certain distance before
and behind the BIM element surface. Omar et al. [1] created internal and external
surface planes for BIM model and measured the true column heights by the point
cloud between the external and internal surface boundaries. Golparvar-Fard et al. [35]
traversed and labeled for expected progress visibility and a machine-learning scheme
built upon a Bayesian probabilistic model was proposed that automatically detects
physical progress.

2. Based on the 2D plane projection of the point clouds: Rebolj et al. [10] and Pučko et al. [38]
projected a BIM element to three orthogonal planes and rasterized them within
a regular grid. Then, they projected the points in the element’s proximity onto the
same grids and the area of grid-cells containing projected points is considered to
be a covered area. Finally, they identified the existing elements by assessing the
percentage of elements’ surface being covered by the point cloud. Volk et al. [29]
projected the point clouds onto a plane which runs parallel to the floor generating a
heat map, from which a closed loop providing the room’s floor plan were construct,
as shown in Figure 8. On this basis, 3D points were projected onto the walls creating
an image per wall to extract contours which were characterized into windows, doors,
or other apertures.

3. Based on the image changes of 3D–2D projection area: Kim et al. [60] applied 3D
CAD-based image mask filters to identify the construction progress of a cable-stayed
bridge on background with little noise, which may not be appropriate for complex
environments. Zhu and Brilakis [61] identified the segmented image region using
machine-learning techniques to determine whether the region was composed of con-
crete or not. The concrete identified by this method is a whole area, not refined to
the component. For this defect, Ibrahim et al. [32] segmented the image into a set
of discrete component masks and analyzed the texture or color changes of specific
regions of interest related to each component to infer the timings of significant events.
Unfortunately, most of these changes were related to spurious lighting and other
variable conditions, such as equipment, or scaffolding being moved. Then Han and
Golparvar-Fard [30] proposed a new appearance-based material classification method
for monitoring construction progress deviations at the operational-level. They used
pre-trained multiclass material classifier to recognize the texture of the region of inter-
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est, rather than only based on the change of color. Afterward, Han et al. [62] combined
the geometry-based and appearance-based reasoning methods for detecting construc-
tion progress, which had the potential to provide more frequent progress measures.

4. Based on the relationships of geometric primitives: Sometimes occlusions are in-
evitable. It is a wise choice to use auxiliary information to reason progress, because
it can greatly reduce the duplication of effort in the data collection phase and the
ambiguity of recognition results. The auxiliary information includes physical relation-
ships (aggregation, topological and directional relationships) and logical relationships
between objects or geometric primitives. Nuchter and Hertzberg [63] represented the
knowledge model of the spatial relationships with a semantic net. Nguyen et al. [64]
automatically derive topological relationships between solid objects or geometric
primitives with a 3D solid CAD model. Braun et al. [25] attributed these relation-
ships to technological dependencies and represented these dependencies with graphs
(nodes for building elements and edges for dependencies). However, there is con-
troversy about the use of ancillary information. For example, Ibrahim et al. [32]
pointed out this approach would not be totally reliable, since the only way to truly
gain confidence that a component is finished is to visually verify it. They suggested a
combination of multiple sources of image to increase the overall reliability.
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4. Knowledge Gaps and Challenges

Literature shows that image-based 3D reconstruction techniques for project monitoring
are still under development, and there remain research gaps that need to be addressed for
image-based modeling techniques to become standard practices [7]. Some of these gaps
are highlighted in the following paragraphs.

4.1. Occlusions and Limited Visibility

In the implementation of 3D construction, occlusions are inevitable and the most
challenging issues that must be addressed. Occlusion is defined as any blockage of the
camera vision by a physical object [65], which results in incomplete data and challenge
reasoning under limited visibility [30]. Occlusion can be classified into two main categories
based on its source, static occlusions which are self-occlusions caused by progress itself
(e.g., a facade blocking the observation of elements in the interior) or occlusions caused
by temporary structures (e.g., scaffolding or temporary tenting), and dynamic occlusions
which is a result of movable objects (e.g., laborers, machines, etc.) [35], as shown in Figure 9.
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To reduce dynamic occlusion, Omar et al. [1] decided to capture site photos after
the duty time (i.e., after 5:00 p.m.). The selected time significantly reduced the dynamic
occlusions for captured photos because the site was shut down and there are no active
laborers or machines.

Compared with the dynamic occlusions, static occlusions are unavoidable. In par-
ticular, time-lapsed images or videos from fixed camera only show what is within range
and field-of-view of the camera [3]. Golparvar-Fard et al. [33] described two different
scenarios on horizontal and vertical occlusions and the challenges of visualizing progress
only on a single view. To reduce the occlusion, a network of multiple cameras was used
to realize the coverage of the whole building [34]. Golparvar-Fard et al. [33] suggested
finding the optimum location of a network of cameras to make sure all the elements could
be monitored [33]. However, it still cannot be used to track progress inside the building
after the building envelope is placed.

This motivated scholar to use an unordered set of progress imagery that is taken from
various viewpoints to tackle the occlusion issue [3,33]. These images and videos collected
by digital cameras and smartphones were usually taken by field personnel, including
construction managers, owner representatives, contractors, and subcontractors. Although
they have the capacity to enable complete visualization of a construction site, these images
are typically uncalibrated and their locations and orientations are unknown, which makes
it very hard to accurately localize them with BIM [12].

In addition to the above direct avoidance of occlusion, scholars have also proposed
some indirect methods to avoid the effects of occlusion. One approach is to use prior
knowledge, for example, the projections of BIM models to define the RoI to guide the
process of identifying [12,32]. In this case, a lot of occlusions can be ignored because the
result can be obtained as long as a certain proportion of the target area meets the recognition
requirements. In addition, in recent studies, advanced deep-learning technology has
been used to identify construction components in images, which can deal with partial
occlusion [66]. These methods can only be used for partial occlusion rather than full or
almost all occlusions. In the more negative case, the semantic net describing the spatial
and logical relationships between objects of geometric primitives can be used [63]. Objects
that are easily recognizable can be detected first, and then more challenging structures can
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be inferred using the information in semantic net [24]. In addition, the semantic net can
also provide an effective way to verify the recognition results.

4.2. Lighting and Shadow Conditions

The camera is an optical sensor, so the image is extremely sensitive to light intensity.
The quality of images collected under different lighting conditions varies greatly. Poor
lighting results in blurry pictures, and the point cloud is inaccurate and noisy. Especially
in the construction site, the similarity of the surface texture of many materials and ad-
verse light conditions makes the appearance-based reasoning difficult. Furthermore, the
constantly changing shadows during the day add a lot of messy lines to the image and
make the same material show a completely different appearance. Various illumination,
shadows, weather, and site conditions make it difficult to perform consistent image analysis
on such imagery [3], as shown in Figures 10 and 11. In the face of this situation, using laser
scanning is a more ideal solution, although there may be some problems such as cost and
technical requirements.
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The above-mentioned various attempts to solve the occlusion problem were also
applied to solve the problem of light intensity and shadow. Therefore, they will not be
repeated here.

4.3. Indoor 3D Reconstruction

Continuous monitoring of the construction process is necessary, both indoors and
outdoors. Compared with outdoor, indoor construction monitoring contains more contents.
First, many elements need to be arranged (e.g., pipeline and cable installation, surface
decoration, and fire protection) which makes detailed progress monitoring challenging [67].
Second, many construction activities occur indoors. All these cover a significant portion of
the whole project and the delays associated with them can result in costly consequences
and re-scheduling of the project [68]. Third, when the work moves indoors, the need for
situation awareness and monitoring increases because of many trades involved including
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site managers, framers, insulation installers, electricians, drywall installers, plasterers,
painters, and laborers [69].

However, the interior construction sites are complicated, congested, and frequently
changing. Especially in civil buildings, the available operating space is extremely limited.
Therefore, some 3D reconstruction techniques are neither directly applicable indoors nor
validated for interior sites [4], although most of them are applied on outdoor construction
sites. Of course, many scholars have also explored the construction progress monitoring
under the indoor scene, providing interesting directions, such as the results of Antonello
et al. [56], Fernandez-Labrador et al. [45] and Volk et al. [29].

4.4. Non-Automated Image-to-BIM Registration

Schedule deviation is derived from comparing the as-planned model and the as-built
model, and this process is based on their registration. In recent years, several research
contributions have been presented that address the registration of the images/point clouds
and the corresponding BIM models. It is expected to realize fully automatic construc-
tion process monitoring with fast information feedback. However, most practices either
depend on manual intervention for the registration or work automatically under severe
constraints [4]. According to the type of data collected, the challenges faced by automatic
registration are analyzed below.

1. Time-lapse images or videos from fixed camera: Since the cameras are fixed, it is
convenient to manually register each camera only once. However, the scenes captured
by this method are so limited that it is only suitable for shooting large-scale scenes.
Therefore, it is necessary to equip multiple high-resolution cameras at the construction
site. Even so, they are still severely affected by lighting conditions and there are still
many unavoidable occlusions [33].

2. Unordered images or videos: To avoid occlusion, some scholars proposed to free the
camera and use unordered images that collected by field personal. If the camera is
not calibrated, and the position and orientation are unknown, registration is almost
impossible. Many researchers took video clips to generate partial point clouds, and
then integrate different parts to form a global 3D model. However, each part needs to
record the initial state of the camera and be registered. Usually, many clips need to be
taken to cover all the details of a building, which is very troublesome [35,59].

3. Image sequences taken with UAVs: Images sequences are usually taken by camera-
equipped UAVs and come with GPS coordinates and camera orientation which can
used to align the point clouds and BIM. Ideally, only the starting position needs to
be registered and all architectural details could be captured at once. However, the
effect was not good in practice due to the inaccurate GPS coordinates especial in the
vertical axis. The longer the flight path means the greater the accumulated deviation,
and it is difficult to build accurate point clouds.

In fact, based on existing technology, these challenges can be attributed to finding a
balance between automation and accuracy. Because the higher the degree of automation,
the less chance of manual parameters to correct errors. Therefore, in-depth exploration of
algorithms is needed in the future to find reasonable solutions.

4.5. Troubles of Point Cloud

The current 3D reconstruction process mainly relies on the point cloud, but there
are some inherent shortcomings in point cloud-based 3D reconstruction. First, the point
cloud-based method requires extensive computing resources to process huge amounts
of data. It is time-consuming to remove all points of the backgrounds and the objects of
no interest [50,62,70]. Second, there is no guarantee on the completeness of point clouds,
and sufficient overlaps among images are required to cover all areas of interest [12,71]. In
large-scale projects, the area of point clouds collected at one time is limited. If the area of
one-time acquisition is too large, the accuracy of the point clouds would be relatively low
affecting the effect of 3D reconstruction, while reducing the acquisition area would lead



Appl. Sci. 2021, 11, 7840 16 of 24

to the soared acquisition cost. Third, the point clouds also have problems such as high
noise, difficulty in segmentation and registration [46]. Therefore, are there other ways to
reconstruct the as-built model without point clouds? Like image recognition. This is still
an open challenge that needs further exploration.

4.6. Disputes about Prior Information

As mentioned above, point clouds and BIM models can be used to infer geometric
changes and construction progress, and image information such as color and texture can
be used to make the inference more accurate. However, due to the complex structure of the
building nested in large and small spaces, self-occlusion is inevitable. Therefore, it is obvi-
ously unrealistic to obtain information of all the building components only through images.

In many studies, prior information, such as logical and physical relationships between
objects or geometric primitives, is used to assist reasoning or reduce the ambiguity of
recognition results. Usually, such relationships are represented by semantic net [24,63], as
shown in Figure 12. However, it must be acknowledged that this information will not be
totally reliable, since the only way to truly gain confidence that a component is finished is
to visually verify it [32]. If the prior information plays a major role, most of the results can
be inferred from them, as shown in Figure 13. These results may not be consistent with
reality violating the original intention of monitoring. Therefore, how to reasonably use
prior information is a question that needs to be explored.
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5. Research Findings

Automated construction progress monitoring can reduce schedule delay, enhance
information visualization, and assist decision-making. In the past few years, the construc-
tion team has used various simulation tools to track construction progress. Unfortunately,
while some paperless construction planning and tracking tools are available today, many
construction companies do not use them. Because of the threat of cost, time, or complexity,
construction companies around the world are putting digital and mobile strategies on
the back burner and sticking to their old technologies. Compared with other 3D recon-
struction methods, image-based 3D reconstruction seems to be a more critical and feasible
technology, despite there are some challenges. Here are summaries of the uniqueness of
this technology:

1. Image has more advantages than other forms of data. There are various types of
automatic acquisition technologies, which can be roughly divided into Enhanced
IT technologies, Geospatial technologies, Imaging technologies, and Augmented
reality [20]. However, the imaging technologies, especially photography and video
shooting, have the advantages of intuitive, rich information, accurate, low cost, and
low technical requirements, which is congenitally advantageous to be accepted by
construction companies.

2. Easy and cheap access to massive image data. The acquisition of reliable data is
supported by the development of hardware, including camera, monitor, storage
device, smartphone, UAV, etc. Daily images can not only be collected systematically,
but also recorded by workers on site, due to the diffusion of devices with built-
in cameras. Abundant and sufficient data means that enough information can be
extracted in theory, while information extraction is up to the software.

3. Rapid development of software technology. The booming new image processing
technologies, especially the ones based on deep learning, have been fully and deeply
applied in biomedicine, aerospace, transportation, public security, and other indus-
tries. However, in the field of AEC, the research and application of these technologies
are still in its infancy.

4. Most of the research is based on the point cloud, rather than the image itself. The meth-
ods without point cloud are still worth exploring, for example, VR-based registration
and object detection-based reconstruction.

5. New technologies that can be combined with image-based 3D reconstruction have
emerged. With the vigorous development of hardware, software, algorithms, and data
in computers and related industries, various new technologies have emerged. These
technologies have made huge breakthroughs and are sought after by researchers.
Many scholars have begun to integrate these emerging technologies with existing 3D
reconstruction technologies and have achieved amazing results.

6. Discussion
6.1. Contribution

To help researchers clarify the context of related technologies and clearly identify the
relationship between various methods, this paper presented a comprehensive research map
of the current practices about image-based 3D reconstruction. Following this, the fourth
part of the paper focused on a critical synthesis of the main knowledge gaps and challenges
in the 3D reconstruction process. Finally, main findings were summarized. In this process,
the contribution of this paper is mainly divided into the following two aspects:

1. A more comprehensive technology roadmap is created. Reading and summarizing
the previous work, the authors find that the relevant literature only focuses on point
cloud-based methods or perspective-based methods, which are applied to outdoor
and indoor monitoring, respectively. Few people analyze them together in one article.
This paper breaks the barriers between them and obtains a comprehensive technology
roadmap. The technical roadmap is new and covers a wider range of methods,
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which provides a reference for the integration of indoor and outdoor construction
progress monitoring.

2. The knowledge gap ignored by most scholars is highlighted. In the fourth part, the
main knowledge gaps and challenges in the process of 3D reconstruction are analyzed,
and the solutions are indicated. In addition to the problems concerned by scholars,
this part also points out the problems of point cloud and prior knowledge, which are
less concerned by scholars.

6.2. Practical Guidance

Through the analysis of related technologies, it is found that the image-based method
is the development trend of construction progress monitoring in the future. The image-
based method includes multiple branches and processes. In practice, different methods
can be integrated, such as image-based modeling, perspective-based method, time-delay
photography, target detection, and so on. For different scenarios, appropriate methods
can be flexibly selected in terms of equipment, data form, registration method, schedule
reasoning method, etc. For example, in the concrete pouring site of high-rise buildings, the
latest construction progress is blocked by templates, scaffolds, and protective nets. Both
point cloud-based and perspective-based methods fail in such a chaotic scene. Therefore,
the target detection technology can be used to infer the construction progress through
the context information in the image. In short, in the actual construction process, flexible
technology combination should be adopted.

6.3. BIM Technology

Among the various methods discussed, BIM Technology is widely used. This is be-
cause BIM provides a visual digital model of the building, which enables the collected
data to have a carrier and compare with each other. BIM also has good simulation perfor-
mance, can carry out 3D visual simulation of design, construction, and other solutions, find
problems in the simulation, and solve the problem in the planning stage.

In the digital management of construction projects, BIM is an important step. A
major advantage of BIM is the comprehensive collection, linking, and provision of data
for different planning, construction, and operation tasks. In the context of construction
management, it is very common to apply 4D building model by connecting schedule
activities with corresponding building elements. Based on 4D building model, construction
sequence can be analyzed, and progress monitoring can be supported.

6.4. Future Development Trends
6.4.1. Combination with VR and AR

In recent years, virtual technology has not only achieved success in the game industry,
but also promoted the development of other fields. The virtual technology is a computer
simulation system that can use a computer to generate a simulation environment to im-
merse users in the environment. In the field of AEC, VR technology can provide realistic
location and condition of structure element for remote construction monitoring [40,41],
while AR technology can superimpose virtual BIM models on the real world to achieve a
sensory experience beyond reality. For example, the electromechanical equipment models
that need to be installed in the future can be projected into the screen to guide the on-site
construction and check whether the construction progress is consistent with the BIM de-
sign at any time; information on construction procedures, issues, and attributes can be
projected to the front by recognizing the scene and gestures of the wearer; the pipeline can
be projected to the ground and walls for precise excavation in the renovation project.

In the 3D reconstruction scene, VR and AR also have application value. They can be
used to align as-planned models with as-built models and observe which areas have not
been reconstructed on the actual construction site. For example, Rahimian et al. [40] pro-
posed framework for integration of BIM and interactive game-like immersive VR interfaces,
which empowered project managers and stockholders with an advanced decision-making
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tool. Golparvar-Fard et al. combined daily images and 3D/4D models to create D4AR
models [3,33,35,72,73]. In addition, they aligned the as-built point clouds with the BIM
model for automated progress deviation measurement [35]. Similarly, in a virtual environ-
ment, other forms of data can be integrated with BIM, such as images, laser point clouds,
RFID, etc.

For progress monitoring, the combination of real-time 3D reconstruction and VR can
make managers in the office as if they were in the construction site, which provides a new
way for remote management of progress, quality, and safety, especially for the inspection
of dangerous areas.

6.4.2. Combination with Deep Learning

Deep learning is booming recently and has basically replaced previous related tech-
nologies. An extraordinary breakthrough has been made in image classification, face
recognition, speech recognition, and so on. At the same time, these technologies have
also been introduced into the AEC industry, such as face recognition [74], workforce and
equipment tracking [75,76], helmet identification [77,78], defect detection [72,73].

In particular, there have been studies on 3D reconstruction of building using deep
learning in the past few years. They have focused on material recognition and classifi-
cation [79,80], point cloud segmentation [48,50,81], automatic registration of point cloud
and BIM [43], camera pose regression [82], structural component recognition [66] and so
forth. The topic, however, is still in its infancy and further developments are yet to be
expected [6]. First, the success of deep learning depends on the availability of data sets,
but there are currently no large-scale data sets available in the field of AEC, especially the
labeled data sets. To obtain more accurate results, a variety of images are required espe-
cially for those scenes that are difficult to recognize. However, the images in a project are
similar, so how to combine many projects in the AEC industry to obtain a comprehensive
and rich image database for training needs to be further explored. Second, the images
in other industries are so different from those in the AEC industry, and thus the general
feature-based object detection algorithms are not well suited for construction engineering
structural component detection because of the complex spatial structural relationships
(such as adjacency, aggregation, and hole inclusion) between various components in large
buildings and the insignificant differences in features such as texture and color. Third, most
of the state-of-the-art techniques deal with images that contain a single object, but there are
a lot of occlusions, shadows, and messy backgrounds in construction site images. In this
scenario, how to design a suitable point cloud segmentation strategy combined with deep
learning is a hot research topic.

6.4.3. Combination with Big Data

In a construction project, there is a huge variety of available data. For example,
monitoring records and various images taken at the construction site; files, records, data,
and models generated in the early stage; information that can be further collected, such
as the movement tracks of workers and equipment; data of other projects; and so on.
However, the reality is that a large amount of useful information was collected and then
discarded due to the inability to process the data promptly. How to use these abundant
data at the same time to make the best judgment is a challenge.

Big data technology is a technology that quickly obtains valuable information from
various types of data. Many new technologies have emerged in the field of big data,
and they have become powerful weapons for big data collection, storage, processing,
and presentation.

In the field of construction process monitoring, the data presents the following char-
acteristics. First, there is a wide variety of information. In addition to imaging and laser
scanning, many other technologies have also been applied for construction progress moni-
toring, such as barcoding, RFID, UWB, GIS, and GPS. Rich information will help reflect
the actual state of the construction site in more detail. Second, images and videos occupy
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more memory than type data, with smaller density of useful information. It is very difficult
to store these data reasonably and extract useful information from them. Third, there are
obstacles in data sharing between different enterprises and different projects. In addition, it
is attractive to summarize the general rules used in other projects from these daily images.
With these characteristics, the stage is set for big data technology.

Currently, due to the complexity of image processing, the application of big data in
the field of AEC is still very weak. However, it is certain that employing big data could
move the state of the art in the domain of construction progress monitoring to the next
level [19]. In addition, big data analytics will enable massive data to be processed in time
to reflect daily changes and update the BIM model and construction schedule accordingly.

7. Concluding Remarks

Construction site images, as instant records of the state of the construction site, contain
rich information, which makes them natural materials for automatic construction process
monitoring. On the one hand, the popularity of built-in camera equipment makes it
feasible to obtain massive free images from the construction site. On the other hand,
advanced software and hardware technologies provide powerful tools for extracting useful
information from daily images. These make the image-based 3D reconstruction more easily
accepted by the market, and it will be the main direction of future development.

At present, various image-based technologies are isolated from each other, such as
image-based modeling, perspective-based method, time-delay photography, and so on.
In practice, due to the particularity of the scene, the progress monitoring of a project may
re-quire a combination of multiple methods. However, few scholars have broken and
reorganized the relevant methods, which makes many methods unable to be fully grafted
and used. Therefore, this paper combines the relevant technologies and methods into
a comprehensive technology path. In this process, various technologies are separated
and then integrated, which makes various technologies connect with each other and
provides guidance for technology selection. This is very important for both researchers
and engineering practitioners.

In addition, in the AEC field, although many methods and technologies have been
proposed, the research on image-based construction progress monitoring is still in its
infancy. The technology applied to practice is still very few. The knowledge gap and
challenges still need to be further explored, such as occlusion, light problems, integration
of emerging technologies, etc.
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Appendix A

Table A1. Literature category.

Process Type References

As-built data

Photographs [1,3,12,17,25,27,28,30,32,35,45,59–62,72,73]
Video frames [4,12,17,26,27,33,41,62,74]

Feature point clouds from image [1,3,12,25,26,30,35,62]
Laser scanned/depth image point clouds [17,24,27,29,38,62]

Patches [12,30,32,60,62]
Contours [29]

As-planned data
3D models All references
4D models [4,12,30,32,38,60,62]

Logical/physical relationships [24,25]

Alignment

3D–2D registration-based [3,32,33,41]
Feature point-based [3,35,42,43,62]
Depth image-based [10,38]
Perspective-based [4,44,45]

Point cloud
segmentation

Clustering-based [47,48]
Edge-based [49,50]

Region-based [51]
Graph-based [50,52]

Model fitting-based [53,54]
Hybrid [55]

Point cloud semantic
recognition Point cloud semantic recognition [56–59]

Progress reasoning

Based on the 3D space occupancy by the point clouds [1,25,35]
Based on the 2D plane projection of the point clouds [10,29,38]

Based on the image changes of 3D–2D projection area [30,32,60–62]
Based on the relationships of geometric primitives [25,32,63,64]
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