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Abstract: The lack of publicly available up-to-date datasets contributes to the difficulty in evaluating
intrusion detection systems. This paper introduces HIKARI-2021, a dataset that contains encrypted
synthetic attacks and benign traffic. This dataset conforms to two requirements: the content require-
ments, which focus on the produced dataset, and the process requirements, which focus on how the
dataset is built. We compile these requirements to enable future dataset developments and we make
the HIKARI-2021 dataset, along with the procedures to build it, available for the public.

Keywords: network intrusion detection system; network intrusion datasets; encrypted network
traffic; https; tls

1. Introduction

It is challenging to estimate how much malicious detection methods have improved
in the intrusion detection system (IDS) field. Training IDSs that employ machine learning
depends on the available datasets, but obtaining a reliable dataset for comparison is
difficult. Among the factors that make it difficult to compare datasets are a lack of proper
documentation of the methods [1], a lack of comparison methodology [2], and a lack of
important features, such as ground-truth labels, and publicly available and real-world
environment traffic. Furthermore, network traffic nowadays is mainly being encrypted for
communication security and privacy, and only very few datasets reflect this situation.

The dataset is an important part to build machine learning-based IDS models. The
process starts with capturing traffic either as a packet or flow from the internet. Afterward,
the captured traffic is compiled into a specific type of data containing network-related
features, including labeling. A general machine learning-based IDS can be shown in
Figure 1. Labeling is a crucial process for the dataset. Handling ground-truth is a real
challenge, especially when experts cannot determine whether the traffic is an attack or
benign. This is a reason why researchers use synthetic traffic. However, this implies
the generated traffic is not representative of the real world environment. In a nutshell,
the process of making a dataset starts with capturing traffic, and ends with the final
preprocessing phase. The final result from the preprocessing phase is a labeled dataset.
Each data point is classified into malicious or benign. The file contains tabular data in a
human-readable format, such as a CSV file, or binary form, such as an IDX file. The number
of detected malicious or false alarms can be used to benchmark the dataset.

The existing datasets lack reliably encrypted traces and practicality to produce as
the basis to build the comprehensive model for the detection of new attacks. Most of the
existing research that employs encrypted traffic are focused on different scopes, such as
traffic classification and analysis [3]. Although such research exists [4], the dataset is not
publicly available, due to the sensitivity of the data.
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Figure 1. A general machine learning-based IDS flow.

Benchmark datasets are an important basis to evaluate and compare the quality among
different IDS. Based on the detection methods, there are three types of IDS: signature-
based, anomaly-based, and a combination of signature-based and anomaly-based. These
three types of IDS benchmark their systems with the KDD99 dataset, which is obsolete.
The signature-based one focuses on building automatic signature generation [5], while
the anomaly-based focuses on observing an outlier from the legitimate profile [6]. The
signature-based type relies on a pattern-matching method to identify and attempt to match
with the signatures database. When an attack attempt matches with the signature, an alert
is raised. The signature-based type has the highest accuracy and lowest false alarm rate
but this type cannot detect unknown attacks. While the anomaly-based type might detect
unknown attacks by comparing abnormal traffic with the normal traffic, the ratio of false
alarm rates remains high.

In this paper, we present a tool and requirements for making a new dataset created
by generating encrypted network traffic in a real-world environment. Our contributions
are two-fold. First, we propose new requirements for creating new datasets. Second,
we create a new IDS dataset that covers the network traffic with encrypted traces. The
dataset is labeled with attacks, such as brute force login and probing. The packet traces
with payload are provided along with the background traffic and ground-truth data. We
extract and adopt more than 80 features from the CICIDS-2017 dataset for the ground-truth,
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benign traffic, and malicious traffic by using Zeek [7], an open source network security
monitoring tool.

The paper is organized as follows. In Section 2, we review the existing datasets and we
provide the most important features from their dataset, such as the duration of capturing
of the network traffic, what kind of attack they implemented, and what format of data they
used. From the review, we summarize the requirements that need to be satisfied to build a
practical, implemented dataset and compare it among the existing datasets in Section 3.
In Section 4, we describe the dataset generation methodology along with the attack traffic
generation and explain the characteristics of the attack traffic. Subsequently, we describe
the network configuration for generating network traffic, the scenarios, the tools and code
we used to generate, and the duration of capturing the network features. In Section 5, we
analyze the dataset and provide information on how the labeling works. Finally, the last
section concludes this paper.

2. Review of Existing Datasets

Many researchers have published papers based on generated IDS datasets, such as
ISCX [8], UNSW-NB15 [9], and UGR’16 [10]. In this section, we introduce several IDS
datasets with their characteristics. We highlight several important requirements from
their perspective.

2.1. KDD99

The KDD99 dataset was created in 1999, using tcpdump, and was built based on the
data captured by the DARPA 98 IDS evaluation program [11]. The training data are around
four gigabytes of compressed TCP data from seven weeks of network traffic. The network
traffic contains attack traffic and normal traffic. The capture of the network traffic was done
in a simulated environment. The dataset contains a total of 24 attack types, which fall into
four main categories: Denial of Service (DOS), Remote to Local (R2L), User to Root (U2R),
and probing. KDD99 has been used extensively in IDS research. The report [12] showed
that during 2010–2015, 125 published papers performed IDS evaluation using KDD99.
While this dataset is considered inadequate for evaluation, such as a lot of redundant
instances recorded, the main problem is that the dataset is not up to date with the recent
situation and attack vectors. Although many researchers were already convinced with this
information, studies from another group of researchers argued that this dataset is the most
widely used for benchmarking [13] or to limit their study only for KDD99 [14].

2.2. MAWILab

MAWI was built in 2001 and consists of a set of labels locating traffic anomalies in
the MAWI archive [15]. This dataset contains tcpdump packet traces captured from an
operational testbed network in a link between Japan and the United States. The archive
contains 15 min of daily traces. This dataset is huge with a very long period. The labeled
MAWI archive is known as MAWILab, obtained from a graph-based methodology that
combines different and independent anomaly detectors [16]. MAWI archives labeling is
based on inferences that results in no ground-truth traffic that can be used for evaluation.
The label has three classes: anomalous for a true anomaly, suspicious indicates that the
traffic is likely to be anomalous, and notice is assigned as an anomaly but it does not reach
a consensus from all anomaly detectors. Several researchers used MAWILab for anomaly
detection [17] and generating labeled flow [18]. The limitation of this dataset is that the
packet traces are captured for 15 min each day. The header information is available in the
packet traces but the payload is removed.

2.3. CAIDA (Center of Applied Internet Data Analysis)

CAIDA has several different types of datasets, categorized as ongoing, one-time
snapshot, and complete [19]. CAIDA collects the data from different locations, and each
of the datasets has different characteristics, such as Distributed Denial of Services (DDoS)
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attack, UDP probing, BGP monitoring, IPv4 census with passive traffic traces captured from
a darknet, an academic ISP, and a residential BGP with active measurements of ICMP ping,
HTTP GET and traceroutes. Most of the datasets are anonymized with IP addresses and the
payload, which severely reduces their usefulness. Based on their catalog, during 2017–2020,
most of the papers related to IDS and security focused on Denial of Service (DoS) [20,21],
Distributed Denial of Service (DDoS) [22], DNS security [23], Network Telescope Daily
Randomly, and Uniformly Spoofed Denial-of-Service (RSDoS) Attack Metadata. Each
record contains the IP address of the attack victim, the number of distinct attacker IPs in
the attack, the number of distinct attacker ports and target ports, the cumulative number
of packets observed in the attack, the cumulative number of bytes seen for the attack,
the maximum packet rate seen in the attack as the average per minute, the timestamp of
the first and the last observed packet of the attack, the autonomous system number of
target_IP at the time of the attack, and the country and continent geolocation of target_IP
at the time of the attack. This dataset is updated every day.

2.4. SimpleWeb

SimpleWeb is a dataset collected from the network of the University of Twente [24].
This dataset contains packet headers of all packets that are transmitted over the uplink of
access to the internet. The packets are captured with tcpdump and Netflow version 5. The
payload from the packets is removed because it contains sensitive information, such as
HTTP requests or conversations of instant messaging applications. The labeled dataset for
suspicious traffic is collected by using a honeypot server. Despite no ground-truth data
being available, researchers still use it to compare with the different real-world environment
(e.g., campus network, backbone link) [25], while others employ it for background traffic
for botnet detection [26], and to evaluate publicly available dataset for similarity searches
to detect network threats [27].

2.5. NSL-KDD

NSL-KDD is an updated dataset that tries to solve some of the inherent problems in the
KDD99 dataset [28]. The NSL-KDD dataset contains features and labels indicating either
normal or an attack, with specific types of attacks. Every instance in the training set contains
a single connection session, which is divided into four groups, such as basic features from
the network connection, content-related features, time-related features, and host-based
traffic features. Each instance is labeled either as normal or attack. These attacks are
categorized into four groups: Denial of Service (DoS), User to Root (U2R), Remote to Local
(R2L), and Probing. Many researchers use it as a benchmark to help them to compare their
intrusion detection systems performance. Several groups of researchers used different
scopes, such as IoT-based networks [29] and Vehicular Ad Hoc Network (VANET) [30].
The former is for SYN flood, UDP flood, and Ping of Death (PoD) detection, while the latter
is mostly for DDoS detection. Other researchers used different methods and switched from
conventional machine learning to deep learning based methods [31–33].

2.6. IMPACT

IMPACT is a marketplace of cyber-risk data. The data distribution and tool repository
are provided by multiple providers and stored and accessed from multiple hosting sites [34].
The datasets related to cyber-attacks, such as the daily feed of network flow data produced
by Georgia Tech Information Security Center’s malware analysis system, updates once
a year. These datasets are only open for specific countries based on approval by the
Department of Homeland Security (DHS).

2.7. UMass

UMass is a trace repository provided by the University of Massachusetts Amherst [35].
The network-attack-relevant data are provided with various type of data, such as traffic
flow from the TOR network [36], a trace of attack simulation on peer-to-peer data sharing
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network [37], passive localization attack simulation with reality mining dataset [38] con-
taining sensor data (proximity, location, location labels, etc.), and survey data (personal
attributes, research group, position, neighborhood of apartment, and lifestyle).

2.8. Kyoto

This dataset was created between 2006 and 2015 by Kyoto University through honeypot
servers. This dataset was created using Bro 2.4 (the former name of Zeek) with 24 statistical
features consisting of 14 features extracted based on the KDD99 dataset and an additional 10 fea-
tures, such as IDS_detection, Malware_detection, Ashula_detection, Label, Source_IP_Address,
Source_Port_Number, Destination_IP_Address, Destination_Port_Number, Start_Time, and
Protocol [39]. The information is limited to the attack information targeting the honeypot
server. There are no packet traces or information about the payload. Furthermore, the in-
formation on how to label the dataset is not found [40]. Several published papers using the
Kyoto dataset focused on anomaly detection, especially on the feature analysis [41], feature
dimensionality reduction and ensemble classifier [42].

2.9. IRSC

This dataset was created by Indian River State College and consists of network flows
and full packet capture [43]. The dataset represents a real-world environment in which
the attack traffic has two different types: the controlled version, which is synthetically
created by the team, and the uncontrolled version, which are the real attacks. The flow
based traffic created with the Silk [44] and the full packet capture created with the Snort
IDS [45]. The additional source of flow data was produced from the Cisco firewall using
NetFlow version 9. While the authors stated that the dataset is a complete capture with
payload and flow data, unfortunately, it is not publicly available.

2.10. UNSW-NB15

UNSW-NB15 was created using a commercial penetration tool in the Cyber Range
Lab of the Australian Centre for Cyber Security (ACCS). This tool can generate hybrid
synthetically modern normal activities and contemporary attack behaviors from network
traffic [9]. They collected tcpdump traces for a total duration of 31 h. From these network
traces, they extracted 49 features categorized into five groups: flow features, basic features,
content features, time features, and additional generated features. Feature and statistical
analyses are the most common methods used in several published papers employing
UNSW-NB15 [46–48]. While [46] could obtain 97% accuracy by using 23 features, [47] in-
corporated the XGBoost algorithm for feature reduction, using several traditional machine
learning algorithms for evaluation, such as Artificial Neural Network (ANN), Logistic
Regression (LR), k-Nearest Neighbor (kNN), Support Vector Machine (SVM) and Decision
Tree (DT).

2.11. UGR’16

This dataset was created from several NetFlow v9 collectors located in the network
of a Spanish ISP [10]. It is composed of two different types of datasets that are split
in weeks. First, the calibration set contains real background traffic data, and second,
the test data contain real background traffic and synthetically generated traffic data with
well-known types of attacks. Due to the nature of the NetFlow data, payloads from
the network traffic were not included. The types of attacks implemented in this dataset
are Low-rate DoS, Port scanning, and Botnet traffic. Between 2017 and 2021, we found
mixed methods from several published papers, such as [49,50], Rajagopal et al. [49], who
argued that conventional machine learning methods were ineffective and instead used
stacking ensembles to improve performance and reliable predictions, while [50] proposed
hybridized multi-model system to improve the accuracy of detecting the intrusion. Ref. [51]
addressed imbalanced data problems by producing synthetic data with the Generative
Adversarial Network (GAN).
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2.12. CICIDS-2017

This dataset was created by the Canadian Institute for Cybersecurity at University
of Brunswick in 2017. The purpose of CICIDS-2017 was intrusion detection, and it con-
sisted of several attack scenarios. In this dataset, the attack profiles were produced using
publicly available tools and codes. Six attack profiles were implemented, such as brute
force, heartbleed, botnet, DoS, DDoS, web attack, and infiltration attack. The realistic
background traffic was generated, using a B-Profile system [52]. The B-Profile system
extracted 25 behaviors of users based on several protocols, such as HTTP, HTTPS, FTP, SSH,
and SMTP. The network traffic features were captured with CICFlowMeter [53], which
extracted 80 features from the pcap file. The flow label included SourceIP, SourcePort,
DestinationIP, DestinationPort, and Protocol. Mixed methods are used, incorporating
CICIDS-2017 to detect specific attacks such as DoS attack [54] by using feature reduction,
web-attack detection [55], and anomaly web traffic [56] with ensemble architecture and
feature reduction. Others are improving the AdaBoost-based method [57] to counter the
imbalance of the training data [58], and combining feature selection and information gain
to find relevant and significant features and to improve accuracy and execution time.

3. Dataset Requirements

While the authors of ISCX [8], UGR’16 [10], and CICIDS-2017 [53] introduce a new
dataset and provide extensive requirements about the dataset, their works have different
research objectives and scope. In contrast to their earlier dataset, our work is a complement
to fill the gap, missing from the previous requirement.

3.1. Requirements for IDS Evaluation Datasets

Generally, different datasets have different assets and requirements. Shiravi et al. [8]
focused on accurate labeling in the dataset by building a systematic profile to generate
the dataset. They argued that the network traffic should be as realistic as possible, so a
complete capture in a realistic network must be satisfied. It will impact anonymity and
lead to potential privacy issues. Fernandez et al. [10] provided only flow information and
focused on the duration of the capturing. Furthermore, a flow format with only 5-tuple
is not enough and needs additional features if the malicious traffic is delivered via an
encrypted protocol, such as HTTPS. We found that the requirements to build an IDS dataset
from Sharafaldin et al. [52] is extensive. Unfortunately, their generated traffic comes from
an emulated network, which is missing a realistic environment. In addition, the information
about ground-truth and how the labeling works was not found in their paper and, thus,
has the potential to be inaccurate and unreliable for analysis. Cordero et al. [59] created
a tool called ID2T and we found that their requirements are better in practical terms.
They categorized the requirements into functional and non-functional ones. Functional
requirements focus on what is needed to construct datasets, while the non-functional
requirements specify several criteria that need to be satisfied to be of practical use.

All of the requirements have high similarity. However, none of the works highlighted
the importance of encrypted traffic in the dataset, and this is one of the emphases in our
requirements. We derived our requirements for datasets based on the above works as
well as by reviewing the existing datasets which described that the quality of the dataset
mostly affects the outcome of the NIDS system. We classified the requirements into content
requirements and process requirement. The content requirements are similar to [59], such
as functional requirement, which focuses on what is needed to construct a dataset, and [8]
on complete network traces and realistic network traffic capture. The process requirement is
similar to that of [10] in the documentation point. While this is not enough, the information
on how to produce a new dataset and practical to implement does not exist.

The proposed requirements try to fill the gap of information from previous datasets.
Based on our content requirements, we found at least four missing points:



Appl. Sci. 2021, 11, 7868 7 of 17

(1) Most of the datasets are not anonymized, such as KDD99, SimpleWeb, NSL-KDD,
Kyoto, IRSC, and UNSW-NB15. We chose to preserve privacy by anonymizing only
a specific part of the background traffic based on the Crypto-Pan algorithm.

(2) The majority of the datasets are impractical to generate, such as KDD99, CAIDA,
NSL-KDD, IMPACT, UMass, IRSC, UNSW-NB15, and CICIDS-2017.

(3) They do not have ground-truth data, such as MAWILab, CAIDA, SimpleWeb, IM-
PACT, UMass, Kyoto, and CICIDS-2017.

(4) As for encryption information, most of the datasets contain non-encrypted traffic, ex-
cept for MAWILab, UGR’16, and CICIDS-2017. These datasets neither focused on nor
classified encrypted traffic. However, HIKARI-2021 is focused on encrypted traffic.

The content requirements focus on the assets of the dataset to achieve a practical way
to produce a dataset, while the process requirement specifies the information on how the
dataset is built, so a new dataset can be built in the future using the same process. We list
these requirements below along with some descriptions of each item.

3.1.1. Content Requirements

(1) Complete capture: complete capture of the network traffic, such as communication
between host, broadcast message, domain lookup query, the protocol being used.
The most important thing from complete capture is that both flow data and pcap
should be available.

(2) Payload: payload is not needed for a flow-based approach. However, having compre-
hensive information and extracting the most out of the data is important. HIKARI-
2021 is the dataset that provides labeled encrypted traffic, while the well-known
datasets do not focus on encrypted traffic. There is a possibility that a full payload
captured might be useful in the future.

(3) Anonymity: synthetic traffic should provide full packet capture, while real traffic
must anonymize certain packets to preserve privacy.

(4) Ground-truth: the datasets should provide realistic traffic from a real production
network, compared with the synthetic traffic, and ensure no unlabeled attack in the
ground-truth.

(5) Up to date: both packet traces from flow data and pcap should be always accessible
by repeating the capturing process of the network traffic. Because the data are subject
to change over time, repeating the procedures guarantees that the dataset always
obtains the latest information.

(6) Labeled dataset: correctly labeling data as malicious or benign is important for
accurate and reliable analysis. The labeling process is a manual task and determined
by the flow with a combination of the source IP address, source port, destination IP
address, destination port, and protocol.

(7) Encryption Information: information on how to establish benign or malicious traffic
must be stated. We are focused on application layer attacks, such as brute force and
probing that employ HTTPS with TLS version 1.2 to deliver the attacks.

3.1.2. Process Requirement

Methods: producing a new dataset with specific requirements and practical imple-
mentation is important. Therefore, the methods should cover information on how to
generate the dataset, how to generate the benign and attack traffic, how the background
traffic is being captured, how the labeling process works, and how to implement it in
the network. Furthermore, we need to determine what scenarios and how to deliver the
synthetic attack in the network. In addition, the information of what features and how
many can be extracted from the packet traces should be declared. Information on how to
make a new dataset should be available in detail and practical to generate.
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3.2. Comparison of the Existing Datasets against the above Requirements

Comparisons between IDS datasets are shown in Table 1, where we assess the datasets
in Section 2, based on the requirements that we set in Section 3.1.

Table 1. Comparison of IDS datasets based on the requirements in Section 3.1.

Dataset Comp.
Capture Payload Anonymity Ground-Truth Up to Date

Traffic Labeled Encryption Practical
to Generate

KDD99 [11] Yes Yes No Yes No Yes No No
MAWILab [15] Yes No Yes No Yes Yes Yes Yes
CAIDA [19] Yes No Yes No Yes No No No
SimpleWeb [24] Yes No No No No No No Yes
NSL-KDD [28] Yes Yes No Yes No Yes No No
IMPACT [34] Yes No Yes 1 No Yes No No No
UMass [35] Yes Yes - No No No No No
Kyoto [39] Yes Yes No No No Yes No Yes
IRSC [43] Yes Yes No Yes No Yes No No
UNSW-NB15 [9] Yes Yes No Yes No Yes No No
UGR’16 [10] Yes No Yes Yes Yes Yes Yes Yes
CICIDS-2017 [53] Yes Yes Yes No No Yes Yes 2 No

1 Mix datasets with partial anonymization; 2 Mix data between un-encrypted data, such as HTTP, and encrypted
data, such as SSH.

We were unable to find the information regarding the anonymity of the UMass dataset;
therefore, no indicator was given. As for the IMPACT dataset, this platform has many datasets,
some parts of which are anonymized, while others are not. In the CICIDS-2017 dataset, one
part of the traffic has samples for encrypted traffic with benign and attack profiles.

We have four observations from the above comparisons. First, there is a need for
encrypted samples of benign and attack traffic. We found that [15] in their dataset have
information on whether the traffic is anomalous or suspicious but it depends on the
anomaly detectors. The payload from the packet traces was not included. This limited
the capability of IDS because many attacks cannot be detected only by network flow with
only 5-tuple attributes. In addition, [53] in their datasets included the traffic from benign
and attack profiles from SSH. While this is beneficial, the diversity of the attack needs to
be expanded to applications, such as browser attacks, or with different protocols, such as
HTTPS, and we did not find that this protocol exists in their dataset. Second, we found that
most of the datasets are not anonymized. The reason is probably that their testing beds
are in a controlled environment or they have consent with their activity. The former is the
best option with the consequences that the traffic will have more synthetic traffic while
reducing the real traffic. The latter is preferred if they can preserve privacy. Furthermore,
privacy can be maintained by anonymizing the traffic, but being highly anonymized may
decrease the results of the analysis [8,60,61]. Third, we found that most of the datasets do
not have ground-truth data and background traffic, which make the analysis limited only
to their model. Fourth, there is a need for a methodology on how to create a new dataset.
This is due to the nature of the network environment that is subject to change over time.
How to create new datasets with the practical implementation is important, so researchers
may make their dataset and evaluate it with their environment. This methodology can be a
guideline for IDS researchers to follow for making a practical dataset.

4. HIKARI-2021 Generation Methodology

In this section, we explain our methodology for producing our dataset, which we call
HIKARI-2021. The process starts with creating a victim network, where background traffic
is captured, and attackers generate synthetic benign traffic, using a benign profile (details
in Section 4.3), and malicious traffic, using an attacker profile (details in Section 4.4). The
attacker traffic is captured in the attacker network. We do this to differentiate between
synthetic benign and malicious traffic. Distinguishing between benign and malicious traffic
is based on several criteria (details in Section 4.4). We then process the packet traces to
anonymize the background traffic and extract the features. The packet traces and extracted
features, as well as the documentation, constitute the produced dataset.
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We are focused on application layer attacks that employ HTTPS. Based on the report
from the 2021 Data Breach Investigation, 80% of the attack vectors come from application-
layer attacks. There are many attacks on the internet but we are not focused on how many
attacks we can generate. Based on the survey from netcraft.com and websitesetup.org,
WordPress, Joomla, and Drupal are among the ten most popular open-source CMSs, with
the combined market share of almost 50%. Based on the information from CVE, more than
300 vulnerabilities existed for WordPress from 2006 to 2021, 92 vulnerabilities for Joomla
from 2004 to 2021, and 202 vulnerabilities for Drupal from 2002 to 2021. More than half of
the vulnerabilities from these three CMSs are part of Brute Force and Probing. Furthermore,
the goal of this research is not in the attack diversity but in what kind of attack we can
deliver in the encrypted network. We decided to focus on common application-layer
attacks, such as brute force and probing. In addition, the IDS researcher may build their
script based on our tool to enrich the attack, such as SQL Injection, Denial of Service, etc.

4.1. Network Configuration for Generating Dataset

Figure 2 shows our network configuration, where attackers are on a separate network
from the victims. The format of the data we captured is pcap. The important point in
this configuration is as follows:

(1) The attacker network with two machines is deployed with CentOS 7 and CentOS 8.
There are no specific criteria of the attackers’ machines as long as they can run Bash
and Python scripts. The Python version is 3.8.8 from Miniconda 3.

(2) In the victim network, three machines are deployed with one Debian 8 machine
running Joomla 3.4.3, and two Debian 9 machines running Drupal 8.0 and Word-
Press 5.0. There are no specific criteria for the OS version for the victim network,
and the three different Content Management Systems (CMS) such as Drupal, Word-
Press, and Joomla use default themes and plugins. These three open-source CMSs
were chosen based on their popularity. These machines are used for collecting the
background traffic.

Figure 2. Network configuration to generate dataset.

4.2. Background Profile

Generating realistic data is important. For the background traffic, we captured all the
data without any filter or firewall in the victim network. Therefore, there is a possibility
that the background traffic may contain malicious traffic or attacks. To preserve privacy
without degrading the result of the analysis, we anonymized several pieces of information,
such as IP address and the payload.

netcraft.com
websitesetup.org


Appl. Sci. 2021, 11, 7868 10 of 17

4.3. Benign Profile

To generate the benign profile, we considered using a profile similar to human be-
havior. To achieve it, we used Selenium [62], which runs two headless browsers: Google
Chrome and Mozilla Firefox. These two browsers act like humans by clicking random links
from multiple websites, sign up as a user, sign in, post an article to the target victim’s server,
and sign out. To behave like a human and to avoid being detected as a bot or web spider,
we used several configurations, such as user-agent and random delay, for every sequence
of action. The addresses of the websites are from Alexa’s top 1 million visitors [63]. The
benign profile was developed with Python script; this activity simulates benign traffic. All
benign traffic is captured without anonymizing the payload. The type of traffic generated
is HTTPS only.

4.4. Attacker Profile

The attack traffic is generated synthetically, first by targeting a specific page for user
login of the CMSs, and second by scanning their vulnerability. Both of the attacks are
delivered via the HTTPS protocol. The attacks are delivered on different days with different
scenarios (details in Section 4.5). The types of attacks are as follows:

(1) Brute force attack: this attack is the most famous for cracking passwords. The
attacker usually repeatedly tries to gain the target over and over using all possible
combinations using a dictionary of possible common passwords [64]. We developed
a script that mimics a brute force attack, using a browser to deliver the attack. We
intentionally added a user to the three different CMSs with the role as an admin and
password, which we took randomly from [64]. The purpose is to make sure that the
brute force attack is delivered successfully.

(2) Brute force attack with different attack vectors: while the first type of attack uses the
browser as the attack vector, the second attack uses a different attack vector, XMLRPC.
We developed a script that accesses XMLRPC for gaining valid credential access.

(3) Probing: this is also called vulnerability probing. This script scans the web applica-
tions, such as Joomla, WordPress, and Drupal to find their vulnerability. The tools
for vulnerability scanning are publicly available. For this dataset, the scripts used
these probing scripts: droopescan [65] for WordPress and Drupal, and joomscan [66]
for Joomla.

We provide the template script to customize the attack profile so researchers may use
it for making custom attacks using different vectors. Distinguishing between an attack
profile and benign profile is based on the source IP address, source port, destination
IP address, destination port, protocol, and the day both of the profiles being generated.
In addition, to determine benign traffic, any destination addresses in the Alexa list are
considered benign.

4.5. Scenarios

We captured the traffic non-consecutively between 28 March and 4 May 2021, with
each capture session lasted for 3 to 5 hours. In the first scenario, no attack traffic was
generated, and only background traffic was being captured. In the second scenario, brute
force attack traffic was generated for 2 days. Furthermore, a brute force with different attack
vectors was generated in the third scenario. In the last scenario, scanning vulnerabilities of
WordPress, Joomla, and Drupal were generated.

4.6. Dataset Preprocessing

The traces were captured using tcpdump with full packet capture. As for the back-
ground traffic, we fully captured the traffic but then we anonymized it to maintain privacy.
To preserve privacy, we used a Crypto-PAn based algorithm [67]. The complete dataset con-
tains several files: pcap files from background traffic, and synthetic attacks. The flowmeter
files with pkl and CSV are available for downloads [68]. The preprocessing flow from pcap
files into CSV files is presented in Figure 3.
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Figure 3. The preprocessing flow of HIKARI-2021 dataset.

4.7. Labeling Process

During background traffic validation, we found malicious cryptomining traffic. The
result comes from the Zeek rules, which shows that some traffic is that of malicious
cryptomining, such as XMRIGCC. We then separated and added it as a new attack, which
we categorized as XMRIGCC CryptoMiner. Labels were applied on a per-flow basis. In
the background traffic, we did not find any attack besides the cryptomining. Other than
background, our labeling was based on the generated synthetic rules, such as source IP
address, source port, destination IP address, destination port, and protocol. The dataset
consists of two labels: traffic_category and label. The former represents the name of
the traffic category, while the latter is only a single value with 0 representing Benign,
and 1 representing Attack as shown in Table 2.

Table 2. Labeled features information.

Traffic Category Label Total Flows (Flowmeter) No. Encrypted Session

Background Benign 170,151 36,782
Benign Benign 347,431 116,309
Bruteforce Attack 5884 5884
Bruteforce-XML Attack 5145 5145
Probing Attack 23,388 23,388
XMRIGCC CryptoMiner Attack 3279 0

4.8. Feature Description

HIKARI-2021 features were extracted using Zeek. Table 3 shows the features while
Figure 4 displays a statistical description of the features. Most of the features were adopted
from CICIDS-2017, while uid, originh, originp, responh, responp, traffic_category, and La-
bel were derived from Zeek.
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Table 3. List of features in HIKARI-2021.

No Feature No Feature No Feature

1 uid 30 flow_ECE_flag_count 59 flow_iat.avg
2 originh 31 fwd_pkts_payload.min 60 flow_iat.std
3 originp 32 fwd_pkts_payload.max 61 payload_bytes_per_second
4 responh 33 fwd_pkts_payload.tot 62 fwd_subflow_pkts
5 responp 34 fwd_pkts_payload.avg 63 bwd_subflow_pkts
6 flow_duration 35 fwd_pkts_payload.std 64 fwd_subflow_bytes
7 fwd_pkts_tot 36 bwd_pkts_payload.min 65 bwd_subflow_bytes
8 bwd_pkts_tot 37 bwd_pkts_payload.max 66 fwd_bulk_bytes
9 fwd_data_pkts_tot 38 bwd_pkts_payload.tot 67 bwd_bulk_bytes
10 bwd_data_pkts_tot 39 bwd_pkts_payload.avg 68 fwd_bulk_packets
11 fwd_pkts_per_sec 40 bwd_pkts_payload.std 69 bwd_bulk_packets
12 bwd_pkts_per_sec 41 flow_pkts_payload.min 70 fwd_bulk_rate
13 flow_pkts_per_sec 42 flow_pkts_payload.max 71 bwd_bulk_rate
14 down_up_ratio 43 flow_pkts_payload.tot 72 active.min
15 fwd_header_size_tot 44 flow_pkts_payload.avg 73 active.max
16 fwd_header_size_min 45 flow_pkts_payload.std 74 active.tot
17 fwd_header_size_max 46 fwd_iat.min 75 active.avg
18 bwd_header_size_tot 47 fwd_iat.max 76 active.std
19 bwd_header_size_min 48 fwd_iat.tot 77 idle.min
20 bwd_header_size_max 49 fwd_iat.avg 78 idle.max
21 flow_FIN_flag_count 50 fwd_iat.std 79 idle.tot
22 flow_SYN_flag_count 51 bwd_iat.min 80 idle.avg
23 flow_RST_flag_count 52 bwd_iat.max 81 idle.std
24 fwd_PSH_flag_count 53 bwd_iat.tot 82 fwd_init_window_size
25 bwd_PSH_flag_count 54 bwd_iat.avg 83 bwd_init_window_size
26 flow_ACK_flag_count 55 bwd_iat.std 84 fwd_last_window_size
27 fwd_URG_flag_count 56 flow_iat.min 85 traffic_category
28 bwd_URG_flag_count 57 flow_iat.max 86 Label
29 flow_CWR_flag_count 58 flow_iat.tot

Figure 4. Most of the features are skewed, where the value of the 95th percentile is less than ten percent of the maximum value.
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4.9. Performance Analysis

We conducted an examination using a basic performance analysis using four ma-
chine learning algorithms. Table 4 displays the performance of the examination results in
Accuracy, Balanced Accuracy, Precision, Recall, and F1.

Table 4. Basic Performance Analysis.

Algorithm Accuracy Balanced Accuracy Precision Recall F1

KNN 0.98 0.94 0.86 0.90 0.88
MLP 0.99 0.99 0.99 0.99 0.99
SVM 0.99 0.99 0.99 0.98 0.99
RF 0.99 0.99 0.99 0.99 0.99

5. Comparison of KDD99, UNSW-NB15, CICIDS-2017, and HIKARI-2021

Table 5 shows an analysis comparison among KDD99, UNSW-NB15, CICIDS-2017,
and HIKARI-2021. The table consists of seven parameters: the number of unique IP
addresses, simulation, duration of the data being captured, format data being collected,
attack category, feature extraction tools, and the number of features extracted from each
dataset. The number of unique IP addresses of CICIDS-2017 and HIKARI-2021 were from
the unique destination IP addresses from the dataset. Partial means that the dataset is
mixed between a simulation or synthetic and real-network environment.

Table 5. The dataset comparison of KDD99, UNSW-NB15, CICIDS-2017, and HIKARI-2021 [68].

Parameters KDD99 UNSW-NB15 CICIDS-2017 HIKARI-2021

Number of unique IP address 11 45 16,960 7991
Simulation Yes Yes Partial Partial
Duration of the data being captured 5 weeks 16 h 65 h 39 h

Format of the data collected 3 types (tcpdump,
BSM, dumpfile) pcap files pcap files pcap files

Number of Attack categories 4 9 7 4
Feature extraction tools Bro-IDS tool Argus, Bro-IDS CICFlowmeter Zeek-IDS, python tools
Number of features 42 49 80 86

6. Conclusions and Future Work

Publicly available up-to-date datasets to benchmark and compare among IDS are
important, especially as the network traffic is changing over time. There are two main
contributions of this paper. First, we made a new requirement for building new datasets
which are lacking in the existing datasets, such as anonymization, payload, ground-truth,
encryption, and a practical method to implement it. Anonymizing certain data will prevent
privacy issues, while capturing with the payload will enrich the information that we can
collect for detecting malicious traffic within encrypted traffic. Providing the ground-truth
data is crucial, so no unlabeled attack is recorded in the dataset. The lack of existing datasets
with encrypted traffic, even though most present-day traffic use it for delivering attacks,
has become our concern. Second, we generated a new IDS dataset called HIKARI-2021,
which covers the network traffic with encrypted traces. The datasets were produced with a
mix of ground-truth data, which are missing in the existing IDS datasets. The datasets are
available publicly [68]. We adopted more than 80 features from CICIDS-2017 and added
more features as a reference, such as a source IP address (originh), source port (originp),
destination IP address, and destination port. We labeled each flow as benign or attack,
where benign has two categories (Benign or Background), while attack has four (Bruteforce,
Bruteforce-XML, Probing, and XMRIGCC CryptoMiner).

We want to highlight what makes our dataset different from the existing IDS datasets.
This is based on our proposed ideal requirements. The first is from the content requirements,
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such as complete capture, for which we provide all traces with pcap files (e.g., background
traffic, benign, and attack); the payload is provided with the exception that we anonymize
the background traffic, while anonymity is part of a requirement to preserve privacy.

The ground-truth and labeled are manually evaluated based on the source IP address,
source port, destination IP address, destination port, and protocol. This process is to make
sure that no unlabeled attack is in the ground-truth. The last requirement is encryption.
This one of the most important requirements, as we know that unknown malicious traffic
uses these attack vectors to deliver attacks.

The second is process requirement. It is to ensure that researchers can follow the
guidelines to create their dataset. The information on how to generate the synthetic attacks
and the network configuration should be available. We provided the scripts on how to
capture and generate the synthetic attacks from the attack profile. The tools for mimicking
human interaction, such as browsing and clicking random links, are available. These
two profiles, the attack profile and benign profile, are important for producing new data
if researchers want to add more attack vectors and update the traffic with their own
needs. The labeling process script to produce ground-truth data is provided. The process
requirement can be implemented in the controlled environment so that researchers can
make new datasets based on their network configuration. For a basic evaluation, we
examined the performance of the HIKARI-2021 dataset in terms of Accuracy, Balanced
Accuracy, Precision, Recall, and F1, using four machine learning algorithms.

In the future, we would like to extend our observation with the background traffic
and add an evaluation. Because background traffic is uncertain and not labeled in the
data, the possible approach for evaluation is using machine learning with unsupervised
learning. Furthermore, we would like to make performance comparisons with the existing
datasets and proceed with the analysis of application identification, as this is important
because malicious traffic may be disguised using reserved ports to bypass firewalls or IDS
and blend with normal network activity.
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3. Velan, P.; Čermák, M.; Čeleda, P.; Drašar, M. A survey of methods for encrypted traffic classification and analysis. Int. J. Netw.

Manag. 2015, 25, 355–374. [CrossRef]
4. De Lucia, M.J.; Cotton, C. Identifying and detecting applications within TLS traffic. In Proceedings of the Cyber Sensing 2018,

Orlando, FL, USA, 15–19 April 2018; Volume 10630. [CrossRef]
5. Kaur, S.; Singh, M. Automatic attack signature generation systems: A review. IEEE Secur. Priv. 2013, 11, 54–61. [CrossRef]
6. Ahmed, M.; Naser Mahmood, A.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016,

60, 19–31. [CrossRef]
7. Zeek IDS. 2021. Available online: https://zeek.org (accessed on 10 May 2021).

https://doi.org/10.5281/zenodo.4782195
https://doi.org/10.5281/zenodo.4782195
http://doi.org/10.1109/TSMCC.2010.2048428
http://dx.doi.org/10.1002/nem.1901
http://dx.doi.org/10.1117/12.2305256
http://dx.doi.org/10.1109/MSP.2013.51
http://dx.doi.org/10.1016/j.jnca.2015.11.016
https://zeek.org


Appl. Sci. 2021, 11, 7868 15 of 17

8. Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark datasets
for intrusion detection. Comput. Secur. 2012, 31, 357–374. [CrossRef]

9. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set
and the comparison with the KDD99 data set. Inf. Secur. J. Glob. Perspect. 2016, 25, 18–31. [CrossRef]

10. Maciá-Fernández, G.; Camacho, J.; Magán-Carrión, R.; García-Teodoro, P.; Therón, R. UGR ‘16: A new dataset for the evaluation
of cyclostationarity-based network IDSs. Comput. Secur. 2018, 73, 411–424. [CrossRef]

11. Lippmann, R.P.; Fried, D.J.; Graf, I.; Haines, J.W.; Kendall, K.R.; McClung, D.; Weber, D.; Webster, S.E.; Wyschogrod, D.;
Cunningham, R.K.; et al. Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. In
Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’00), Hilton Head, SC, USA, 25–27
January 2000; Volume 2; pp. 12–26. [CrossRef]

12. Siddique, K.; Akhtar, Z.; Khan, F.A.; Kim, Y. KDD Cup 99 data sets: A perspective on the role of data sets in network intrusion
detection research. Computer 2019, 52, 41–51. [CrossRef]

13. Özgür, A.; Erdem, H. A review of KDD99 dataset usage in intrusion detection and machine learning between 2010 and 2015.
PeerJ 2016, 4, e1954v1. [CrossRef]

14. Luo, C.; Wang, L.; Lu, H. Analysis of LSTM-RNN based on attack type of kdd-99 dataset. In Proceedings of the International
Conference on Cloud Computing and Security, Haikou, China, 8–10 June 2018; Springer: Cham, Switzerland, 2018; pp. 326–333.
[CrossRef]

15. Fukuda Lab Mawi Archive. 2021. Available online: https://fukuda-lab.org/mawilab (accessed on 10 May 2021).
16. Fontugne, R.; Borgnat, P.; Abry, P.; Fukuda, K. Mawilab: Combining diverse anomaly detectors for automated anomaly labeling

and performance benchmarking. In Proceedings of the Co-NEXT ’10: Conference on Emerging Networking EXperiments and
Technologies, Philadelphia, PA, USA, 30 November–3 December 2010; pp. 1–12. [CrossRef]

17. Hafsa, M.; Jemili, F. Comparative study between big data analysis techniques in intrusion detection. Big Data Cogn. Comput.
2019, 3, 1. [CrossRef]

18. Kim, J.; Sim, C.; Choi, J. Generating labeled flow data from MAWILab traces for network intrusion detection. In Proceedings of
the ACM Workshop on Systems and Network Telemetry and Analytics, Phoenix, AZ, USA, 25 June 2019; pp. 45–48. [CrossRef]

19. CAIDA Datasets. 2021. Available online: https://www.caida.org/catalog/datasets/completed-datasets/ (accessed on 10 May 2021).
20. Jonker, M.; King, A.; Krupp, J.; Rossow, C.; Sperotto, A.; Dainotti, A. Millions of targets under attack: A macroscopic characteri-

zation of the DoS ecosystem. In Proceedings of the 2017 Internet Measurement Conference, London, UK, 1–3 November 2017;
pp. 100–113. [CrossRef]

21. Lutscher, P.M.; Weidmann, N.B.; Roberts, M.E.; Jonker, M.; King, A.; Dainotti, A. At home and abroad: The use of denial-of-service
attacks during elections in nondemocratic regimes. J. Confl. Resolut. 2020, 64, 373–401. [CrossRef]

22. Hinze, N.; Nawrocki, M.; Jonker, M.; Dainotti, A.; Schmidt, T.C.; Wählisch, M. On the potential of BGP flowspec for DDoS
mitigation at two sources: ISP and IXP. In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos, Budapest,
Hungary, 20–25 August 2018; pp. 57–59. [CrossRef]

23. Hesselman, C.; Kaeo, M.; Chapin, L.; Claffy, K.; Seiden, M.; McPherson, D.; Piscitello, D.; McConachie, A.; April, T.; Latour, J.;
et al. The DNS in IoT: Opportunities, Risks, and Challenges. IEEE Internet Comput. 2020, 24, 23–32. [CrossRef]

24. Barbosa, R.R.R.; Sadre, R.; Pras, A.; van de Meent, R. Simpleweb/University of Twente Traffic Traces Data Repository; Centre for
Telematics and Information Technology, University of Twente: Enschede, The Netherlands, 2010.

25. Haas, S. Security Monitoring and Alert Correlation for Network Intrusion Detection. Ph.D. Thesis, Staats-und Universitätsbiblio-
thek Hamburg Carl von Ossietzky, Hamburg, Germany, 2020.

26. Wang, J.; Paschalidis, I.C. Botnet detection based on anomaly and community detection. IEEE Trans. Control Netw. Syst. 2016,
4, 392–404. [CrossRef]
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