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Abstract: Nowadays, in the context of the industrial revolution 4.0, considerable volumes of data
are being generated continuously from intelligent sensors and connected objects. The proper under-
standing and use of these amounts of data are crucial levers of performance and innovation. Machine
learning is the technology that allows the full potential of big datasets to be exploited. As a branch
of artificial intelligence, it enables us to discover patterns and make predictions from data based
on statistics, data mining, and predictive analysis. The key goal of this study was to use machine
learning approaches to forecast the hourly power produced by photovoltaic panels. A comparison
analysis of various predictive models including elastic net, support vector regression, random forest,
and Bayesian regularized neural networks was carried out to identify the models providing the best
predicting results. The principal components analysis used to reduce the dimensionality of the input
data revealed six main factor components that could explain up to 91.95% of the variation in all
variables. Finally, performance metrics demonstrated that Bayesian regularized neural networks
achieved the best results, giving an accuracy of R? = 99.99% and RMSE = 0.002 kW.
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1. Introduction

Artificial intelligence is already proving to be a huge success in various sectors and
disciplines. Despite the fact that this concept has been there since the 1960s, it has only
lately acquired popularity as a result of expanding data quantities, advanced algorithms,
and improvements in computing capacity [1].

In the energy field, artificial intelligence can be used as a forecasting tool for grid
quality and stability, planning, dispatching of power, and efficient management [2]. Re-
newable energy sources encounter several critical challenges regarding their integration in
the energy mix due to their unpredictability and improbability. In the case of photovoltaic
solar energy, these inaccuracies are mainly controlled by the Earth’s motion around the
sun [3].

The relevance of this problem has led to advanced research in order to accurately
predict photovoltaic power production. One of the best solutions used to tackle and address
this issue is the machine learning approach since it does not require any knowledge about
PV systems. In the literature, several machine learning-based prediction techniques are
used, including multiple linear regression (MLR) [4], support vector regression (SVR) [5],
random forest (RF) [6], quantile random forest (QRF) [7], long short-term memory (LSTM)
neural networks (NNs) [8], K nearest neighbors (KNN), extreme learning machine (ELM),
generalized regression neural network (GRNN) [9], elastic net, ridge regression, gradient
boosting (GB) [10] etc.

This study can give important information regarding forecasting methodologies to
academics and engineers working in solar PV plants, since it presents comparative research
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on different machine learning techniques for hourly PV power prediction. Moreover,
since several factors, namely climatic variables, can affect solar PV output power and add
complexity to the prediction process, a principal component analysis (PCA) was conducted
to decrease the number of interconnected variables into a smaller number of dominating
factors. The prevailing factors were then used as inputs for the predictive models. Finally,
the accuracy of the proposed models was assessed using performance metrics, residual
analysis, and a diagnostic approach, mainly the regression error characteristic (REC) curve.
The main contributions of this study are the following:

e  This study enhances the ability of short-term PV power predictions thanks to the
robust and competitive results obtained in terms of R> and RMSE

e  Our approach requires only open data freely available on the web, and anyone with
technological skills may create their own customized version.
The most relevant variables to PV power prediction are identified using PCA.
Finally, investments in new PV installations will be encouraged thanks to the results
of our comparison.

2. Materials and Methods
2.1. Data Source and Description

In this work, we used the hourly PV output power data (PAC) derived from a PV
power platform with a total capacity of 6 kW in Rabat, Morocco. For the input data, we
used SoDa, a free data source offering solar energy and weather services. The inputs
utilized in our forecasting models are presented in Tables 1-3 as follows.

Table 1. Solar irradiation parameters.

Parameter Unit Symbol
Top of atmosphere radiation Wh /m?2 TOA
Clear sky global horizontal irradiation Wh/m?2 CSGHI
Clear sky beam horizontal irradiation Wh /m? CSBHI
Clear sky diffuse horizontal irradiation Wh /m? CSDHI
Clear sky beam normal irradiation Wh /1m? CSBNI
Global horizontal irradiation Wh /m?2 GHI
Beam horizontal irradiation Wh /m?2 BHI
Diffuse horizontal irradiation Wh/m?2 DHI
Beam normal irradiation Wh /m?2 BNI
Short-wave irradiation Wh /m?2 Irr

Table 2. Meteorological parameters.

Parameter Unit Symbol
Relative humidity % RH
Wind speed m/s WS
Wind direction deg WD
Ambient temperature °C Tamb
Pressure hPa P

Table 3. Two additional parameters.

Parameter Unit Symbol
Cell temperature °C Teell
Efficiency % Eff

2.2. Principal Component Analysis

Principal component analysis (PCA) is an extremely powerful tool for synthesizing
information. It is used especially when there is a large amount of quantitative data to
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process and interpret. The core of this statistical technique is to use fewer independent
factors to reflect the majority of the original variables and to eliminate their duplication [11].
The principal components are obtained from the covariance matrix’s eigenvalues and
eigenvectors [12]. In this study, 17 variables were studied as inputs for our predictive
models.

2.3. Machine Learning Algortihms

In this paper, four machine learning algorithms were tested and fitted in R (R Core
Team, 2018) [13]. The dataset was partitioned into two parts—training and testing sets—
according to the Pareto rule of 80% and 20% using the function createDataPartition in the
CARET Package in R. We defined the training and tuning settings using the trainControl
function. To minimize over-fitting of the training set, we used cross-validation with 10 folds.

2.3.1. Elastic Net Regression

The first algorithm tested in our work was elastic net regression. It adds two penalty
terms from both the lasso and ridge methods to regularize regression models (with non-zero
coefficients ;) as presented in Equation (1) [14].

k k
pen (B) = A Y il + (1 —a) Y |Bif*) 1)

i=1 i=1
where lambda A (A> 0) is the penalty coefficient.

2.4. Support Vector Regression

The second method used in our study was support vector regression. It is one of
the most popular algorithms in machine learning. Its main principle is to find an ideal
hyperplane in the training data space that represents all of the observations in the dataset.
The hyperplane is the line used to forecast the target. The support vectors or data points
nearest to the boundary lines might be either within or outside the boundary lines [6]. The
hyperplane is then established by any equation, i.e., non-linear or polynomial. In this study,
a radial-based kernel function was used [15].

2.5. Random Forest Regression

Random forest (RF) is an ensemble-based regression method. In the form of a tree
structure, RF displays relationships between features and the target, which allows for easy-
to-understand and interpretable results [16]. This method is a decision tree adaptation, in
which a model produces predictions based on a succession of base models as stated as in
Equation (2) [17].

g(x) = F1(x) + F2(x) + f3(x) + - + fk(x) @

where each base model is a decision tree and k denote the number of decision trees.

2.6. Bayesian Regularized Neural Networks

In this work, we investigated the ability of a neural network trained using the Bayesian
regularization technique to forecast PV power, since this method has not seen many
applications in the field of solar energy prediction. The Bayesian technique has a variety of
practical benefits, including the ability to solve the over-fitting problem which occurs in
conventional neural networks [18].

2.7. Performance Metrics

The accuracy of PV power (PAC) forecasting models was evaluated considering the
following metrics [19,20]:

Y, (PAG; - PAG)*
Y'_ ,(PAC; — PAC)®
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RMSE = \/

MAE =

(PAC; — PAC;)? (4)
1

I |~

|PAC; — PAG| ®)

n
i=
)
=
3. Results
3.1. Principal Component Analysis: Factor Extraction Results

The principal component analysis (PCA) was performed on the datasets to identify the
most important data features for use in training the machine learning models. Table 4 shows
the variance distribution of the principal components (PCs) (PC1-PC17). According to the
eigenvalues, it appears that the cumulative variance of PC1 to PC6 is 91.95%Therefore, the
first six principal components were identified as the main model inputs and were sufficient
to develop our predictive models. Moreover, Figure 1 presents the scree plot, which is a
line plot of the correlation matrix’s eigenvalues, arranged from greatest to smallest.

Table 4. Principal components (PCs).

PCs Eigenvalues Variance (%) Cumulative Variance (%)

1 9.5770 56.3356 56.3356
2 1.8230 10.7240 67.0597
3 1.4733 8.6669 75.7266
4 1.0447 6.1458 81.8724
5 0.9068 5.3345 87.2069
6 0.8063 4.7434 91.9504
7 0.4738 2.7875 94.7379
8 0.2733 1.6078 96.3458
9 0.2175 1.2795 97.6253
10 0.1779 1.0468 98.67222
11 0.0958 0.5638 99.23608
12 0.0778 0.4579 99.69398
13 0.0407 0.2396 99.93361
14 0.0099 0.0583 99.99193
15 0.0013 0.0080 99.99999
16 2.3198 x 10~¢ 1.3646 x 107° 100

17 3.6497 x 1078 2.1469 x 1077 100

Scree plot
60- 56.3%

40-

Percentage of explained variances

1.3% 1%

' '
1 2 3 4 5

Figure 1. Scree plot.

3 7 8 9 10
Dimensions

The top three variables with a value greater than 0.60 in Table 5 were chosen as the
main variables of each of the PCs to choose prominent predictor variables for further
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regression analysis [21]. For PC1, the global horizontal irradiation (GHI), beam horizontal
irradiation (BHI), and beam normal irradiation (BNI) were used. For PC2, the pressure (P)
was identified. For PC3, top of atmosphere radiation (TOA), clear sky diffuse horizontal
irradiation (CSDHI), and diffuse horizontal irradiation (DHI) were chosen. For PC4, the
wind speed parameter was selected. For PC5, cell temperature (Tcell), PV efficiency (Eff),
and ambient temperature (Tamb) were used. Finally, only wind direction was identified
for PC6. All 12 variables were considered to be PV power driving factors, allowing them to
be used as inputs in the proposed predictive models.

Table 5. Results of PCA.

Factor PC1 PC2 PC3 PC4 PC5 PCeé
Tcell 0.41 0.01 0.24 0.09 0.83 0.11
Eff 0.17 0.18 0.43 0.21 0.75 0.04
Tamb 0.26 —0.56 0.08 —0.28 0.62 0.13
RH —0.42 0.08 —0.02 —0.02 —-0.77 —0.02
P 0.10 0.88 —0.11 —-0.24 0.04 —0.08
WS —0.02 —0.17 0.00 0.94 0.10 0.08
WD —0.01 —-0.10 0.04 0.08 0.11 0.98
Irr 0.75 —-0.12 0.33 0.04 0.46 0.13
TOA 0.73 —0.06 0.64 0.01 0.21 0.02
CSGHI 0.77 —0.04 0.59 0.02 0.19 0.02
CSBHI 0.84 0.00 0.46 0.04 0.18 0.02
CSDHI 0.34 —0.16 0.84 —0.05 0.19 0.02
CSBNI 0.75 0.22 0.44 0.12 0.25 —0.04
GHI 0.89 —0.04 0.36 —0.06 0.24 0.01
BHI 0.94 —0.04 0.12 —0.08 0.24 0.00
DHI 0.29 —0.05 091 0.02 0.13 0.04
BNI 0.87 0.12 0.01 —0.06 0.34 —0.06

Underlined variables are the top three variables with a value greater than 0.60.

3.2. Final Models
3.2.1. Elastic Net Regression

The final values used for the model were « = 0.9 and A = 1.884535. The regression

coefficients of the final model are presented below in Table 6.

Table 6. Regression coefficients of the final model.

Input Parameter Coefficient
Intercept —7.7668 x 103
Teell 8.2463 x 10!
Eff —3.3805 x 10!
Tamb —9.8509 x 10!
P 8.9286 x 10°
WS 7.8149 x 10°
WD —7.2022 x 1071
TOA 7.8705 x 1072
CSDHI 2.3547 x 1072
GHI 44554 x 1072
DHI 2.5494 x 1071
BNI 2.0092 x 107!

3.2.2. Support Vector Regression

We used a radial-based kernel function to conduct an epsilon regression. The final
model’s parameters achieving the best fit were Cost = 1,y = 0.0833,¢ = 0.1, and

number of support vectors = 3641.
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3.2.3. Random Forest

In the final model, the number of variables randomly test at each split was mtry = 7,

as seen in Figure 2.

'S

o
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RMSE (Cross-Validation)
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Figure 2. Random forest model plot.

3.2.4. Bayesian Regularized Neural Networks

As shown in Figure 3, the final value of neurons reducing the RMSE error in the final

model was neurons = 3.

— 350 - -
@
2
[}
[}
S 345 -
7] ~
=
4
340 -
T T T T T
1.0 15 20 25 3.0
# Neurons

Figure 3. Bayesian regularized neural networks model plot.

3.3. Performance Measures for Predictive Models

The accuracy of the investigated models was measured for the training phase and the
testing phase using the most common metrics in regression as presented in Tables 7 and 8.

Table 7. Performance metrics—training phase (80%).

Machine Learning Algorithm R2 RMSE (kW) MAE (kW)
Elastic net regression 0.8933 0.6900 0.5167
Support vector regression 0.9436 0.5014 0.3295
Random forest regression 0.9953 0.1434 0.0906
Bayesian regularized neural networks 0.9999 0.0033 0.0024
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Table 8. Performance metrics—testing phase (20%).

Machine Learning Algorithm R2 RMSE (kW) MAE (kW)
Elastic net regression 0.8930 0.6957 0.5297
Support vector regression 0.9368 0.5344 0.3632
Random forest regression 0.9733 0.3489 0.2297
Bayesian regularized neural networks 0.9999 0.0027 0.0021

Scatterplots (see Figure 4) revealed more information about the model’s effectiveness.
Figure 4 shows the scatterplots of predicted values vs. actual ones. For a suitable model,
all points should be near to the diagonal line and show no practical dependencies.

Predicted *  Elastic Net Predicted
6000

6000

® 4000 & 4000
3 3
© ©
> >
o o
2 2
2 2000 =

3 ® 2000
o o

0
0
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Target variable Target variable
Elastic Net regression Support Vector regression
Predicted * RF Predicted * BRNN

6000 6000
& 4000 2

E 2 4000
[ [
> >
o Rl
e e
o o
® ®

& 2000 & 2000

0 0

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Target variable Target variable
Random Forest regression Bayesian regularized neural networks

Figure 4. Scatterplots: predicted versus observed values plots.

3.4. Residual Analysis Result

The investigation of residuals is widely acknowledged as a critical step in any re-
gression study. The first plot (see Figure 5) displays the residuals versus the observed
values.
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Residuals * Elastic Net Residuals + SVR
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Figure 5. Residuals versus observed values plots.

The second plot represents the residual boxplot. It depicts the distribution of absolute
residual values as illustrated in Figure 6.

Absolute residuals

Elastic Net —]

sw
[

BRMNN

L]

2000 4000 6000

=

Figure 6. Residual boxplots.
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The last plot represents regression error characteristic (REC) curve. This is a regression
form of the ROC curve in classification. The error tolerance is plotted on the x-axis, and the
percentage of points forecasted inside the tolerance is plotted on the y-axis [22].

4. Discussion

The principal component analysis (PCA) conducted above revealed six major factor
components affecting PV power and explaining up to 90% of the total variable variance.
The most significant variables identified using the PCA technique were subsequently used
in the proposed models.

Moreover, based on the findings of the performance metrics acquired in Tables 7
and 8, it can be seen that non-linear models, particularly Bayesian regularized neural
networks and random forest, obtained the best compromise between the predicted and
observed values, with R? = 99.99% and R? = 99.53%, respectively, in the training phase and
R? = 99.99% and R? = 97.33%, respectively, in the testing phase, while the lowest perfor-
mance was achieved by linear models such as the elastic net algorithm with R? = 89.3%
and RMSE = 0.69 kW. This is mainly because non-linear methods are better at including
data dynamics and capturing non-linear correlations between variables.

Finally, several plots have been presented above to enable a more accurate study of
the models in terms of residuals. For instance, using residual versus observed values
plots in Figure 5 showed that Bayesian regularized neural networks offer better prediction
accuracy when compared with the other predictive models investigated in this study,
since the residuals are symmetrically distributed around the x-axis (near to zero). In
the same way, when examining the residual boxplots (see Figure 6), we can observe that
Bayesian regularized neural networks have the fewest residuals, followed by random forest
and support vector regression, unlike elastic net, which has considerably more widely
distributed residuals.

Another important tool for comparing and analyzing the accuracy of regression
models for different tolerance levels is the REC curve graphic (see Figure 7). The ideal
model is located in the upper left corner, similar to the ROC curve. The better the model,
the faster the curve approaches this point, which is the case for the Bayesian regularized
neural networks model, followed by random forest.

REC Curve — Elastic Net — SVR RF BRNN

100% —

50% | /]

0 2000 4000 6000
Error tolerance

Figure 7. REC curves.

This study presented deep insight into comparing the performance of four statistical
and machine learning techniques for hourly PV power forecasts, which will be useful to
researchers and engineers working in the field of solar photovoltaic energy such as PV-
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integrated smart buildings, efficient energy management system, electric vehicle charging,
and smart grids.

5. Conclusions

Two key contributions are made by this study. To begin, the most significant variables
affecting PV power were identified using principal component analysis (PCA). In addition,
a comparison research was conducted to explore which algorithms forecasted solar PV
output power the best.

PV power prediction will not only aid in assuring cost-effective solar power dispatch,
but it will also enable solar electricity suppliers to make better financial and funding
decisions. Finally, the presented findings show that machine learning algorithms can
accurately forecast the output power generated by PV panels in a shorter amount of
time. This specificity is determined by the precision of the data utilized, the time horizon,
meteorological conditions, and the geographic area.

Author Contributions: Conceptualization; methodology; software; writing—review and editing,
S.C.; Supervision, M.M. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
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