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301 00 Plzeň, Czech Republic; martiros@kpv.zcu.cz (S.M.); kopecek@kpv.zcu.cz (P.K.); buresm@kpv.zcu.cz (M.B.);
simon@kpv.zcu.cz (M.Š.)
* Correspondence: tucnak@kpv.zcu.cz

Abstract: The main point of the work was to use virtual reality to discover its benefits on training,
specifically on the precision of hand movements in specific settings, and then evaluate its effects both
for virtual reality and the transfer of the results to the real world. A virtual reality simulation was
created using the Unity3D game engine and real-world experimental material was also prepared.
A total of 16 participants took part in the training, which lasted for approximately one month. Once
the data was gathered from both the virtual reality and real-world tests, we carried out in-depth
statistical analysis. The results suggest positive outcomes in most aspects in virtual reality training
productivity, but only partial transfer of the training benefits to the real world scenario. The possible
reasons for this are described in the work and suggestions are given to duplicate the study with
different variables to try to achieve different results.

Keywords: virtual environments; training; manuals and instructions; controls and input devices;
human error

1. Introduction

VR technology is used in different areas of life for various purposes. VR is the most
immersive type of reality technology that creates an artificial environment to inhabit. This
immersive, computer-generated environment blocks out sensory input from the outside
world and uses visual and auditory cues to make the virtual world seem quite real. It is
immersive because of its simulated environment that manages to trick your subconscious
mind to start treating this illusion as real.

The main point of this work is to perform an experiment in VR and RW and find
out if precision, accuracy and time factors change and, if so, by how much and in which
direction. Accuracy and precision are alike only in the fact that they both refer to the
quality of measurement, but they are very different indicators of measurement. Accuracy
is the degree of closeness to the true value, whereas precision is the degree to which an
instrument or process will repeat the same value. In other words, accuracy is the degree of
veracity while precision is the degree of reproducibility [1].

This work focuses on just one way of measuring the precision of hand movements
using one specific type of simulation, but the types of training simulations for each job
should definitely have their own variants and styles of simulation. Some examples of
professions that require high hand-to-eye coordination and precision are given below. VR
training in these cases could drastically improve the skills required to perform the tasks, as
it would allow unlimited training in any circumstances.

VR technology has become very popular and is used in many different areas such
as entertainment, military, healthcare, education, engineering, etc. VR is a simulated
environment that is created with computer technology and presented to the user in such a
way that the user starts to feel as if they are in a real environment. A simulation is a model
of the RW wherein the user has the ability to interact with the environment [2]. Simulations
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are helpful and useful as they provide a realistic context in which individuals can explore,
experiment and see immediate results as they create models of their own or try theories
on the modelled concept [3]. Depending on the number of senses simulated in VR, such
as vision, hearing, touch, balance, even smell, the immersion level in the artificial world
can vary.

The technological advances of computer hardware and software have made it possible
to incorporate 3D Virtual Reality in innovative applications for teaching, training, and
learning [4–6]. It has been noted that there is a strong potential value of ergonomics
for virtual environments and vice versa [7]. A virtual environment or virtual world is a
computer-generated 3D representation of real or fictional environments. A user can interact
in such an environment independently at the same pace as one would experience events
in the real world [8]. VR can support realistic and immersive simulation and enables the
transfer of skills taught in VR into real contexts, as well as the provision of multi-user,
embodied, and interactive active learning [9]. VR is believed to be a promising tool for
training and complex problem solving, where weighing multiple variables and situational
decision making are required [9–12]. Not only VR but also augmented reality (AR), which
is often used in combination with or supplemented by VR, has been studied intensively
and proven to be a useful training tool. One study [13] suggests using virtual training with
augmented reality in assembly tasks as it can greatly reduce the time taken to perform
assembly tasks compared to classical methods. Having skilled and trained employees
is very important, and a study [14] proposed brand new smart solutions for designing
and presenting work instructions and showed a comparison of different types of virtual,
augmented, and conventional assembly instructions. The results of the research show
promising future potential.

One of the uses of VR can be helping those with autism to lessen social anxiety
and frustration and improve academic and social skills. Individuals with autism suffer
from the impairment of social functions, which leads to difficulties in social interaction,
communication, and emotion recognition [15,16]. The fact that VR systems can allow users
to explore immersive 3D environments from any location at any time could have a profound
impact on science education [17]. VR allows the exploration of hidden phenomena and
distant locations and the manipulation of otherwise immutable objects [18]. For instance,
VR gives medical students the possibility to explore delicate internal organs that would
otherwise require cadaver dissection [19].

When working with VR applications, it is important to understand that eventually
the problem of cyber sickness arises, and it is very helpful to know where it is coming
from and how to combat it if possible. Visually induced motion sickness is a syndrome
that occasionally occurs when physically stationary individuals view compelling visual
representations of self-motion. It may also occur when detectable lags are present between
head movements and recomputation and the presentation of the visual display in helmet-
mounted displays [20]. When creating a simulation in VR, thinking ahead about all
the potential factors that could negatively influence participants in any way is crucial,
as cyber sickness can have negative effects on experimental results. Research suggests
there are various relationships between different factors, such as VR training experience,
engagement, immersion, etc. and the level of stress from training in VR [21]. Thus, having
that and other factors influencing cyber sickness in mind, we tried to create a VR training
simulation that was as simple and easy as possible. There is also evidence that the weight
of the head-mounted display can cause discomfort in the users’ necks and shoulders, and
if participants have to rotate their heads due to an activity in VR, their discomfort level
grows [22]. In our training the participants had to simply stand in one place and look down
at the table where the shape models were located. Rotation of the head was not required.
We tried to minimize this and other factors that could cause VR sickness. As cyber sickness
is very similar to motion sickness, there are many aspects that they share, thus making it
possible to borrow some solutions from motion sickness and apply them to cyber sickness.
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There is a wide variety of research being conducted in the field of VR on cyber
sickness: cyber sickness in different types of moving images [23], comparison of one-screen
and three-screen displays [24,25], relationship between age and sickness level [26], and
a gender effect on cyber sickness [27,28]. Research on virtual environments (VEs) has
provided converging evidence that being placed in a VE with a head-mounted display
(HMD) can lead to motion sickness (MS) [29] Previous studies suggest that a twenty-
minute exposure to VREs (virtual reality environments) can increase cyber sickness (CS)
symptoms in over 60% of participant [30]. It has been noted that some users might exhibit
symptoms of CS, both during and after experiencing VR [31,32]. CS is different from MS
in that the users are stationary, but they have a compelling sense of motion as the visual
imagery changes [33,34].

Currently there is a debate concerning VR technology and VR cyber sickness. Some
argue that the problem of VR sickness is inherent in this technology itself and that as long
as there is mismatch between what is visually perceived and what is physically sensed,
fixing the VR display properties will not address the root cause [35].

2. Materials and Methods
2.1. Software and Hardware Equipment

The VR simulation was created using the Unity3D game engine. The tests were run
on a VR-ready Acer Predator notebook, with Intel Core i7-6700HQ @ 2.60 GHz, 16 gb Ram
and Nvidia GeForce GTX 1060-6gb. The VR headset was a HTC Vive Pro, which has a
resolution of 1440 × 1600 pixels per eye (2880 × 1600 pixels combined), a 90 Hz refresh
rate, and a 110 degrees field of view. All of these parameters allowed participants to have
as comfortable a VR experience as possible.

2.2. Design

The environment in VR was a simple room with no extra objects in it, in order not
to distract participants with unnecessary visual noise (see Figure 1). Apart from the
room itself, the only 3D models available in the scene were a 1.05 m high table, an object
(line, circle, sinus wave) of reference to draw on, a model of a glue gun or caulking gun,
depending on the scene, which was either a one-handed or two-handed version. The
line, circle, and sinus wave were green with medium transparency on them, whereas the
drawing was done with opaque yellow with Unity3D’s line renderer.
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2.3. 3D Models

The models of the glue gun (see Figure 3) and caulking gun (see Figure 4) were first
downloaded from the web and slightly adjusted in Blender software for our experiment.
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2.4. Shape Models

Line, circle, and sine wave models were modelled in Blender software using curve
objects and were very thin, in order to create a strict movement pattern that participants
had to follow (see Figures 5–7). The thinner the objects were, the less would be the scatter
in precision.
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2.5. Procedure

One session lasted around 20–25 min, depending on the participants’ abilities. Each
participant was instructed to draw with the glue gun (one hand) and caulking gun (both
hands) following the line on the table, as precisely and as quickly as possible, but it was
completely up to them which of the two aspects (precision or speed) they would choose
over the other. They just needed to do it the best way they could.

Participants were handed HTC Vive Pro controllers and placed in a specific location
in the real environment, so that the tracking stations could follow their hand movements
throughout the whole experiment to avoid any jitter or freeze. Despite having the best
conditions, this still happened sometimes, so the drawing on which the tracking was jittery
had to be erased and redone. Using specialized gloves/trackers for such experiments/tasks
is the ideal situation as it provides maximum precision. But in this case, two Vive tracking
stations were used to track the hand movements in VR. The lighting and positioning of
the users during the experiment were taken into account; both tracking stations had clear
views of the participant, and the lighting in the room was also enabled to sufficient levels.
The drawing started on button press and finished on button release.

Once the VR scene started, participants would be ‘spawned’ right in front of the table,
as everything was positioned (both in VR and the RW) in a way to make the experience
for participants as comfortable as possible. The experiment was conducted in such a way
that all the objects required for the experiment (and there were no extra objects in the
environment) were located right in front of the user, at the closest possible distance. So
when it comes to the potential problem of stereopsis (difficulty focusing on farther objects),
in this particular case, everything was done in such a way so that the users could easily
focus on the task at hand and the objects in front of them. The drawing was done using
Unity3D game engines line renderer component, which draws points on the position of the
glue gun or caulking gun edge when the VR controller movement changes and the button
is pressed. The distance at which the points could be drawn was adjusted in such a way
that, when drawn, the points were so close to each other that it created the illusion of a
continuous yellow line. If the distance was adjusted for higher values, such as 1 cm, the
points would be drawn 1 cm apart from each other while the participant held the controller
and drew in VR, and with this big distance between points, there would be no continuous
line, but simply points in 3D space. Additionally, the more points there were, the more
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accurate the data that could be obtained. In this experiment, the distance was less than a
millimetre. The smaller the distance between the point centres, the more points would be
drawn.

Time and distance were automatically calculated using our own Unity3D VR simula-
tion. There is no need to consider the subjective time compression factor [36], as we are
obtaining only objective real data.

2.6. Results

Figures 8–13, which are the results from the VR experiment, show the trends in the
results after 7 sessions of the experiment from all the users’ combined data, which is the
average distance (millimetres) between the drawn points and the actual static 3D objects
(line, circle, sine) and the average time in seconds it took to perform each task. The trend
towards less distance between the points and objects is better. The same goes for the time
requirements to perform the tasks.
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From the graphs above, it can clearly be seen that all the results from one hand and
both hands VR experimental results of average time and distance improved from the first
day all the way to the last. It can even be concluded that, in VR, no more than 4 sessions are
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required, as, after the 4th session, the trend of improvement slowed down, thus indicating
that the benefits were sufficient right up until that point.
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3. Methods (RW)
3.1. Equipment

The same models as in VR were used for the experiment on paper, but this time they
were a real glue gun and a caulking gun (see Figures 14 and 15). The sizes of the real
models were very similar to the ones in VR, and the drawings on the paper were similar to
the 3D models of the lines in VR. Below are shown the real models of the glue gun and
caulking gun.

Although the glue gun uses plastic as a glue that melts when attached to an electric
socket, in this experiment a pencil lead on the tip of the glue gun was used. This was a
much easier solution then using melted plastic and allowed us to get a continuous line on
the paper.

The caulking gun had a new unopened silicone tube. Similarly, instead of using
silicone for drawing, a small pencil was inserted in the nozzle. This was an easier solution
and produced better drawing results.
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3.2. Paper/RW Material

For both sessions for the paper experiment, 5 A4 format sheets of paper were used for
each participant.

1. One sheet of paper contained 2 lines on one side for one-hand drawing (glue gun),
and 2 lines on the back of the sheet for both-hands drawing (caulking gun).

2. One sheet of paper with 2 circles on both sides for one-hand drawing (glue gun).
3. One sheet of paper with 2 circles on both sides for both-hands drawing (caulking gun).
4. One sheet of paper with 2 sine waves on both sides for one-hand drawing (glue gun).
5. One sheet of paper with 2 sine waves on both sides for both-hands drawing (caulk-

ing gun).

In Figures 16–18 are photographs of the paper sheets with red lines drawn on them.
In addition, you can see the drawings made by participants with the glue gun and the
caulking gun (using pencil). The first number (e.g., 5.7 or 7.3) indicates the time in seconds
taken to draw the line. The second number (1 or 2) indicates the one-hand (glue gun) or
two-hand (caulking gun) test.
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3.3. Procedure

Participants were positioned near the table where all the paper materials and glue
gun or caulking gun were prepared. Once a participant was given a tool, they proceeded
to draw the line on the paper. All participants were instructed to draw the lines onto the
prepared red drawings as fast and precisely as possible. Choosing either higher precision
or speed was completely up to them. It just needed to be done to the best of their abilities.
During the test, the experimenter would hold the paper so that it did not move and also
measured the time with a stopwatch. After each drawing, the time to finish the drawing
and the test type (1 or 2) were written down beside each drawing. Then the paper was either
changed or turned to continue the process until all the drawings were finished. Overall,
the whole process could take around 5 min, depending on the participant’s decision to go
either for speed or accuracy.

3.4. Calculations

Although the experiment on the paper measured the same factors as in VR, doing the
calculations here in the same way as with the VR data would be a huge challenge or maybe
even impossible. Therefore, a different route was chosen. In order to measure the accuracy
of the paper drawings, a transparent plastic sheet was prepared on which was printed
each type of shape with multiple points on them, which used as a reference to check if the
drawings went through them or not. These covers then were placed onto the actual paper
drawing results, and the points were counted. Only the points that touched the drawing
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made by the participant were counted. If the drawn shape (grey) and the red figure had
some white space in between, the point was counted as a miss. Below you can see all 3
covers for each drawing. The line cover had 52 points, the circle 112 points, and the sinus
81 points.

Using this transparent sheet (see Figures 19–21), it was possible to accurately calculate
the number of points that were present on the drawn lines of the participants. These
calculations required the manual tracking of all the points and adding them to the data
table. The VR experiment, wherein data was automatically gathered in a Json file, required
less manual work. Due to the calculations being done manually, the number of points
(density) calculated for the RW paper tests was limited. All the calculations were done by a
single person in an objective manner.
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4. Results

Precision in the RW tests was calculated differently from in VR. The more points
present on the drawn shape, the higher the score. Figures 22–26 show that the time
measurements in seconds are the same as for the VR measurements, but when it comes to
precision measurements, we count the number of points that are positioned correctly on
the predefined visual shapes on the paper (line, circle, sine).
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Results from the RW experiments, which were only done twice, on the first and on the
last day of the experiment, indicate improvements only in the time variable, whereas the
accuracy of the drawing worsened compared to the first attempt. One of the interesting
changes that could be incorporated in such an experiment would be adding one more RW
test in between the 7 VR tests to see if the results would be the same. Although there are
multiple factors, some of the reasons why these results were as they are could be forgetting
the RW task, the type of the test itself, lack of motivation, etc.

5. In-Depth Statistical Evaluation

MATLAB R2017a software was used for the statistical evaluation. The main goal was
to decide if there was a difference between the first and last attempt (VR and paper), in
order to see if the participants improved after the process of training in VR.

5.1. Methodology of Statistical Eevaluation

Statistical hypothesis testing was used for the statistical processing of the experimen-
tal data. A statistical hypothesis is a statement that relates to an unknown property or
parameters of the probability distribution of a random variable. In statistical testing, we
always have two types of hypotheses:

Hypothesis 1 (H1). Null hypothesis H0 means the hypothesis, the validity of which we verify
using a test.

Hypothesis 2 (H2). Alternative hypothesis HA means the hypothesis that denies the validity of
the null hypothesis.

To test the null hypothesis, we must always choose a significance level α, which is
the probability of rejection of a true null hypothesis (type I error). We always require this
probability to be small, so we choose, according to our habit, to be α = 0.05. The decision
to reject/not-reject the null hypothesis is made using the p-value of the test. We reject the
null hypothesis if the p-value of the test is less than the level of significance. More about
hypothesis testing can be found in [37].

Statistical tests are used to verify the validity of the null hypothesis. There are
parametric and nonparametric tests. Parametric tests are those for which we must know
the distribution of data, and they usually assume a normal distribution. Nonparametric
tests do not require this assumption. Three tests were used in this work:

1. Jarque–Bera test
2. Paired-sample t-test
3. Wilcoxon signed ranked test

Jarque–Bera test
First, the data obtained were tested for normality using the Jarque–Bera [38] test

in order to decide whether we should use parametric or non-parametric statistical tests.
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Parametric tests can only be used for data with normal distribution; non-parametric tests
are used for data with different distributions [37].

The Jarque–Bera test tested the null hypothesis that the measured data follow a
normal distribution against the alternative hypothesis that the measured data do not follow
a normal distribution.

If the p-value is greater than the significance level α = 0.05, we do not reject the
null hypothesis of data normality and we can use a parametric test (paired-sample t-
test). Otherwise, we reject the null hypothesis of data normality, and we have to use a
non-parametric test (Wilcoxon signed rank test).

Paired-sample t-test
This paired-sample t-test [39] is parametric and can only be used for data that comes

from a normal distribution.
We test the null hypothesis that the distribution of the observed variable (time/distance/

accuracy) is identical in both groups (first and last attempt) and has the same mean
(expected value) against the alternative hypothesis that the distribution of the observed
variables is not identical in both groups and has a different mean.

We reject the null hypothesis if the p-value of the test is less than the significance
level α = 0.05, which means that there is a statistically significant difference between
the first and last attempt. If we do not reject the null hypothesis, there is no statistically
significant difference.

Wilcoxon signed rank test
If data does not come from a normal distribution, in the next step, we use the para-

metric Wilcoxon test for two paired samples [40]. It is the non-parametric equivalent of
the paired-sample t-test. We test that the null hypothesis data in both groups (first and
last attempt) are samples from continuous distributions with equal medians against the
alternative that they are not.

The method of evaluation and conclusions are the same as for the paired-sample t-test.

5.2. VR Experiment

Here these two hypotheses were verified:

Hypothesis 3 (H3). Distance-reducing trend (increasing drawing accuracy) for VR testing is to
be expected.

Hypothesis 4 (H4). Time-reducing trend (increasing drawing speed) for VR testing is to be expected.

We tested the statistically significant difference between the first and seventh (last)
attempt. First, the normality test was done. In Tables 1 and 2, we can see the p-values
of the test for both observed variables (distance and time) and for all six versions of the
experiment.

Table 1. VR distance—Jarque–Bera test.

VR Distance One Hand Line One Hand Circle One Hand Sine both Hands Line both Hands Circle both Hands Sine

Attempt 1 7 1 7 1 7 1 7 1 7 1 7

p-value 0.001 0.500 0.035 0.500 0.246 0.416 0.390 0.500 0.056 0.024 0.234 0.391

Table 2. VR time—Jarque–Bera test.

VR Time One Hand Line One Hand Circle One Hand Sine both Hands Line both Hands Circle both Hands Sine

Attempt 1 7 1 7 1 7 1 7 1 7 1 7

p-value 0.002 0.041 0.500 0.018 0.500 0.323 0.500 0.369 0.173 0.255 0.153 0.051

As can be seen, the p-value was in some cases lower than the significance level
α = 0.05. This means that not all the data sets come from a normal distribution. Therefore,
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the non-parametric Wilcoxon signed rank test was used. It was tested whether there was a
difference in significance level between the first and last attempt of the VR experiment for
all the variants (one hand/both hands, line/circle/sinus wave).

In Table 3, we can see the results for the distance variable. The p-value is lower than
the significance level α = 0.05 for all variants. This means that we reject the null hypothesis
and that there is a statistically significant difference between the first and last attempt.
We know from Figures 8–13 that the average values of the distance variable decreased.
This test confirmed this change with a significance level α = 0.05, and this means that the
drawing accuracy increased, and Hypothesis H1 is confirmed.

Table 3. VR Distance—Wilcoxon signed rank test.

VR Distance One Hand Line One Hand Circle One Hand Sine both Hands Line both Hands Circle both Hands Sine

p-value 0.002 0.001 0.004 0.006 0.002 0.001

Table 4 shows the results for the time variable. Again, in all cases the p-value was
lower than the significance level α = 0.05. This means that we reject the null hypothesis
and that there is a statistically significant difference between the first and last attempt. As
we know from Figures 8–13, this difference is the shorter time in the last attempt than in
the first. This confirms Hypothesis H2 about the expected time-reducing trend (increasing
drawing speed) for VR testing.

Table 4. VR time—Wilcoxon signed rank test.

VR Time One Hand Line One Hand Circle One Hand Sine both Hands Line both Hands Circle both Hands Sine

p-value 0.030 0.023 0.024 0.026 0.006 0.026

Real world experiment
In the real world experiment, these two hypotheses were verified:

Hypothesis 5 (H5). Accuracy-increasing trend for RW tests (on paper) is to be expected.

Hypothesis 6 (H6). Time-reducing trend (increasing drawing speed) for RW tests (on paper) is to
be expected.

As in the VR experiment, the difference was tested between the first and last (second)
attempts. First, the normality test was done. The results of the normality test can be seen in
Tables 5 and 6 for all versions of the experiment.

Table 5. Paper accuracy—Jarque–Bera test.

Paper
Accuracy One Hand Line One Hand

Circle One Hand Sine both Hands
Line

both Hands
Circle both Hands Sine

Attempt 1 2 1 2 1 2 1 2 1 2 1 2

p-value 0.043 0.500 0.016 0.435 0.488 0.162 0.035 0.500 0.135 0.500 0.371 0.185

Table 6. Paper time—Jarque–Bera test.

Paper
Time One Hand Line One Hand

Circle One Hand Sine both Hands
Line

both Hands
Circle both Hands Sine

Attempt 1 2 1 2 1 2 1 2 1 2 1 2

p-value 0.089 0.086 0.471 0.144 0.500 0.209 0.052 0.224 0.358 0.118 0.206 0.143
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In the case of the accuracy variable, see Table 5. The p-value was in some cases lower
than the significance level α = 0.05. This means that not all of the data sets come from a
normal distribution. Therefore, the non-parametric Wilcoxon signed rank test was used.

In the case of the time variable, see Table 6. All p-values were greater than the
significance level α = 0.05; we do not reject the null hypothesis of data normality, and we
can use the paired-sample t-test.

In Table 7, we can see the results for the accuracy variable. The p-value was lower than
the significance level α = 0.05 in the case of the one-hand line and circle and the both-hands
line. This means that, in these cases, there was a statistically significant difference between
the first and second attempt. As we know from Figures 22–24, this difference was in the
reduction in accuracy. This is the opposite of what we assumed. In the other versions of the
experiment, we did not reject the null hypothesis, so there was no statistically significant
difference between the first and second attempt. This means that accuracy did not decrease
significantly in these cases, but neither did it improve. Hypothesis H1 was therefore
not confirmed.

Table 7. Paper accuracy—Wilcoxon signed rank test.

Paper
Accuracy

One Hand
Line

One Hand
Circle

One Hand
Sine

both Hands
Line

both Hands
Circle

both Hands
Sine

p-value 0.011 0.034 0.083 0.020 0.063 0.095

Table 8 shows the results (p-values) of the paired-sample t-test for the time variable.
Based on the results, we can say that there is a significant difference between attempts 1
and 2 in the case of the one-hand circle, sinus wave, and both-hands line, circle, and sinus
wave, with a significance level α = 0.05 %. There is not a significant difference between the
first and second attempt in the experiment with the one-hand line at the significance level
α = 0.05 % (but there is at the level 0.1%). As we know from Figures 23–27, the trend of the
time variable declined in all cases. This means that we have confirmed Hypothesis H2 in
all versions of the experiment with the exception of the one-hand line at the significance
level α = 0.05 %. However, even in this case, it can be seen from Figure 22 that some
improvement has taken place, so we can confirm the Hypothesis H2 for this version as
well but at the significance level of 0.1 (a higher level of uncertainty).

Table 8. Paper time—paired-sample t-test.

Paper Time One Hand
Line

One Hand
Circle

One Hand
Sine

both Hands
Line

both Hands
Circle

both Hands
Sine

p-value 0.091 0.021 0.041 0.016 0.018 0.014
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6. Discussion

The main point of this work was to discover the effects/benefits of using virtual
reality for training. The training was focused on improvements to the precision of hand
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movements using a specific type of VR simulation that would allow users/participants
to perform similar movement tasks over a prolonged period of time (approximately one
month). As VR is said to be a very effective technology in this sphere, we created a VR
simulation using the Unity3D game engine for this experiment. This engine proved itself to
be very powerful and easy to use, as it had already been used for other types of simulations
prior to this.

The simulation for this work took several months to prepare and conduct. In addition
to VR tests, RW experiments also took place. VR tests took place in seven sessions, whereas
there were only two RW tests, on the start and end dates of the experiment. This was
done to analyse the effects of training not only in VR itself but also the transfer of skills to
the RW.

Once the experiment was done, the data were collected. VR data was gathered inside
the Unity3D game engine during the test process itself. Then the data about precision (in
Json format) were exported to Excel, where they were processed in pre-prepared macro
templates. RW data on performing the line movements (line, circle, sine wave) was
processed at the end of the experiment. Lastly, RW data was exported to Excel templates,
and the precision results were calculated and analysed using specific macros.

The results suggest very positive outcomes for VR training in particular. As the partic-
ipants had to perform on each of seven sessions four attempts of each type of simulation
(six overall: one hand/two hands, line/circle/sine wave); in the end, the results improved
drastically, and they actually improved from the start to the end. It was pointed out that
possibly only four training sessions for this type of training could be sufficient as, after the
fourth attempt, although there were improvements, they were not that impressive.

When it comes to the RW tests, the results suggest that the transfer of skill from VR
to RW was only partial. A study suggested similar results, wherein the training in VR
produced positive results in that virtual scenario, but when it came to transferring the
training to the RW scenario, no significant or no benefits were found [41]. Only the time
value improved from the first attempt compared to the second one. Multiple reasons
were suggested for this, such as participant forgetfulness, noninterest, tiredness, etc. It is
recommended to perform such an experiment with a much bigger pool of participants,
in-depth questionnaires, and possibly perform RW tests more frequently between the VR
tests to remind the participants what they are training for. Additionally, it could also be the
type of simulation that resulted in these outcomes. In order to be sure about some factors
that could cause these non-beneficial effects, more research and experimentation should be
performed on top of this work.

As this experiment and training look very similar to welding training simulations, it
is interesting to point out a couple of studies that delved into training participants in this
field and evaluated the transfer of that training to practical cases.

A study [42] suggests that VR welding simulations are good not only for novice
welders but also for experienced ones as well. The training in VR welding is then used in
practice in RW cases. As the results show some difference in quality between novice and
experienced welders, data also suggests that even experienced welders can struggle with
higher difficulty welds in VR, which can in turn allow them to train and become better at
new levels. Thus, suggesting that there is a positive correlation and transfer of skills from
VR training to the real world depending on the simulation type/difficulty.

On the other hand, research [43] on different types of welding difficulty tasks shows
that, the higher the difficulty of the welding task in VR, the less effective VR training
becomes, thus requiring supplementary RW training. But for easy and medium types of
training difficulty, VR is considered to be a great tool, which suggests a positive outcome
in the transfer of skills.

It is important to note that the weight factor can play some role in the fatigue and
performance of the participants during the tests. In our experiment, all the participants
were young and healthy, thus using controllers in VR and simple common tools which
did not exceed a weight of 1 kg (caulking gun—both hands), with the duration of the
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experiment for a maximum of 15 min with breaks if needed, would not cause a significant
hurdle for the participants to perform the task they were given.

Although the weight of the two controllers and the caulking gun were almost the
same (the caulking gun was slightly heavier), and one controller had almost the same
weight as the glue gun, there was no significant point in conducting the experiment in VR
and RW with identical weights. The experiment was very similar in some ways both in
VR and RW, but some things—weight, controller vs. RW tool, etc.—could not be matched
identically, thus measuring the effect of the weight difference on the result was not one of
our goals. One possibility would be to use a tracker mounted on the tool instead of the
controller, which could give better results, as the grip feeling and weight in VR and RW
tests would be almost identical. The results of such tests would and should definitely give
different results.

This experiment was just a preliminary test of such a type of training in VR. Initially,
the analysis and conclusions may look rough, but to make them more fine-tuned, more
such tests should be performed and in different variations. Those results will then be
compared, and more precise and expanded versions of the outcomes could be discussed.
In this case, seven tests in VR were performed, whereas in the RW, there were only two.
Initially, the idea to perform the RW test on the start date and end date of the VR tests
seemed sufficient, and the results were believed to be more positive. As it came out at the
end, the results in the RW tests were not so satisfactory, which suggests many different
ideas, such as the type of the experiment, lack of repetitions, etc. The only way to answer
those ideas precisely is to repeat the same and different experiments multiple times, with
different variables.

This work suggested using this type of training only in one way. Using information
from this work and performing similar research could eventually result in different out-
comes. Those outcomes then would be used to prove some other important points about
using VR for training and its benefits. As mentioned, the difficulty of the simulation and
supplementary RW training could play a big role in the transfer of skills. Future work
should be targeted at delving into the factors described above more deeply, in order to
prove or disprove the hypothesis.

7. Conclusions

Four hypotheses were tested using statistical hypothesis testing and set out in Section 6.
VR experiment

Hypothesis 3 (H3). Distance-reducing trend (increasing drawing accuracy) for VR testing is to
be expected.

Hypothesis 4 (H4). Time-reducing trend (increasing drawing speed) for VR testing is to be expected.

Results: Both hypotheses were confirmed. There were statistically significant changes
(in terms of improvement) for both the monitored variables (distance, time).

Real world experiment

Hypothesis 5 (H5). Accuracy-increasing trend for RW tests (on paper) is to be expected.

Hypothesis 6 (H6). Time-reducing trend (increasing drawing speed) for RW tests (on paper) is to
be expected.

Results: Only Hypothesis H2 was confirmed for the time variable. There was no
change or a change for the worse for the accuracy variable.
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