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Abstract: Omnidirectional honeybee traffic is the number of bees moving in arbitrary directions in
close proximity to the landing pad of a beehive over a period of time. Automated video analysis of
such traffic is critical for continuous colony health assessment. In our previous research, we proposed
a two-tier algorithm to measure omnidirectional bee traffic in videos. Our algorithm combines
motion detection with image classification: in tier 1, motion detection functions as class-agnostic
object location to generate regions with possible objects; in tier 2, each region from tier 1 is classified
by a class-specific classifier. In this article, we present an empirical and theoretical comparison
of random reinforced forests and shallow convolutional networks as tier 2 classifiers. A random
reinforced forest is a random forest trained on a dataset with reinforcement learning. We present
several methods of training random reinforced forests and compare their performance with shallow
convolutional networks on seven image datasets. We develop a theoretical framework to assess the
complexity of image classification by a image classifier. We formulate and prove three theorems on
finding optimal random reinforced forests. Our conclusion is that, despite their limitations, random
reinforced forests are a reasonable alternative to convolutional networks when memory footprints
and classification and energy efficiencies are important factors. We outline several ways in which the
performance of random reinforced forests may be improved.

Keywords: image classification; random forests; convolutional networks; reinforcement learning;
random reinforced forests; electronic beehive monitoring; machine learning; video processing; image
datasets; apis mellifera

1. Introduction

Continuous electronic beehive monitoring (CEBM) uses various sensors to extract
information on honeybee (Apis Mellifera) colony behavior and phenology. Automated
video analysis is an important component of CEBM because it provides bee traffic as-
sessment without much disturbance to colonies and reduces fatigue and transportation
costs associated with human beehive monitoring. Unlike other methods used in CEBM
(e.g., continuous weight monitoring or individual bee tagging), video methods are not as
expensive and do not interfere with natural colony cycles.

We use the terms bee and honeybee interchangeably to refer to the Apis Mellifera honey-
bee and to no other bee species. We use the terms hive and beehive to refer to a Langstroth
hive [1] hosting a live Apis Mellifera colony. We use the phrases omnidirectional bee traffic
and omnidirectional traffic to refer to the number of bees moving in arbitrary directions in
close proximity to the landing pad of a hive over a given period of time.

Bee traffic is an indicator of how bee colonies react to foraging opportunities, weather
events, pests, and diseases. Commercial and amateur apiarists use bee traffic in proximity
of hives to estimate the state of their colonies, because such traffic contains information on
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colony behavior. Bee traffic may also indicate colony exposure to stressors such as failing
queens, predatory mites, and airborne toxicants.

In our previous article [2], we proposed a two-tier (2T) algorithm to measure levels
of omnidirectional traffic in videos taken from the top of a hive. The algorithm combines
class-agnostic motion detection with class-specific image classification. Tier 1 segments
a video into frames and, in each frame, produces motion regions where moving objects
may be present; tier 2 applies class-specific classifiers to the image regions from tier 1 to
detect the presence or absence of specific objects (e.g., bees) in each region. The algorithm
outputs a bee motion count (i.e., the number of motion regions classified as BEE) for each
input video. In tier 1, we experimented with three motion detection algorithms: KNN [3],
MOG [4], and MOG2 [5]. In tier 2, we used support vector machines (SVMs) [6], random
forests (RFs) [7], and convolutional networks (ConvNets) [8].

In this article, we continue our systematic investigation of tier 2 classifiers for 2T video
analysis of omnidirectional traffic. It is critical for video-based CEBM to find classifiers that
approach the classification accuracy of ConvNets without requiring equally large memory
footprints and power levels. Tier 1 methods are beyond the scope of this article.

Our article proceeds as follows. In Section 2, we review investigations directly relevant
to our research and outline the contributions to video-based CEBM we make in this article.
In Section 3, we describe the image datasets we used in our experiments. In Section 4,
we define a random reinforced forest (RRF) as a random forest (RF) trained on a dataset
with reinforcement learning (RL) [9] and present several RRF construction methods. In
Section 5, we present our concept of shallow convolutional network (SCN): a convolutional
network is defined as shallow, if its size on disk, after it is persisted, is smaller than a
domain-dependent threshold in acceptable memory units. Our definition of shallowness is
different from the definition of shallowness in the ConvNet literature where shallowness
is defined in terms of the number of layers in a ConvNet (e.g., [10]). In Section 6, we
develop a theoretical framework for the complexity analysis of image classification with
SCNs and RFs. This analysis is fundamental not only to physical run-time performance
of these classifiers, but also to their energy consumption. In Section 7, we describe our
experiments with SCNs and RRFs on seven image datasets. In Section 8, we formulate
and prove three theorems on finding optimal RRFs. These theorems provide a theoretical
basis for explaining some experimental results. In Section 9, we discuss our findings and
present our conclusions.

2. Related Work

Several investigations on video-based CEBM are related to our research. In this section,
we briefly review these investigations and outline the contributions reported in this article.

Estivill-Castro et al. [11] present a color segmentation algorithm to track bees pollinat-
ing macadamia trees. The algorithm computes the absolute differences of the Minkowsky
metric [12] between the R-, G-, and B-channels of consecutive frames. The researchers re-
port that the Minkowsky metric shows greater differences when frames contain bees flying
against clear, static background and smaller values with frames that contain bees flying
behind flowers. The channel differences are used to detect flying bees. The researchers
claim that their algorithm can detect motions of leaves and flowers. The proposed method
does not distinguish small stigmas or vibrating leaves from bees or bees flying over flowers.

Kimura et al. [13] propose a vector quantization method to segment bee bodies in
video frames. The methods identifies bee body regions with vector quantization. Two types
of regions, named single honeybee region (SHR) and plural honeybee region (PHR), are
extracted with morphological information such as body size and body shape. The method
works on 30 frames per second (fps) videos with a resolution of 720 × 480 and is reported
to detect over 500 bees per frame. In the reported experiments, the method successfully
identified 72% of the bees. The proposed method appears to work best to track motions in
large masses of bees inside the hive, not outside of it.
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Chen et al. [14] propose a computer vision system to monitor the beehive’s in-and-out
activity. The system uses an infrared LED camera, an infrared LED light source, and a
personal computer to process images. A large sample of forager bees is captured and placed
in a freezer where the bees are rendered temporarily motionless due to low temperature.
A circular character encoding tag is glued to each motionless bee’s thorax. The tags are
used to recognize the bees’ flight orientations in images. Hough transform [15] is used
to detect tags and classify them with an SVM. The researchers report the orientation
classification accuracy of ≈98% and claim that their method avoids the disadvantages of
heavier RFID tags and does not require external readers emitting electromagnetic waves.
Placing RFID tags on bees interferes with natural life cycles of bees and is not practical for
commercial apiarists.

Ghadiri [16] proposes a video bee traffic monitoring system whose camera is placed in
front of or on top of a hive. The system estimates bee traffic by detecting changes between
the current image and the average image of the preceding eleven images. The change mask
contains segments, each of which is assumed to correspond to a single bee. The sum of
these segments constitutes a bee count. The reported research appears to offer insufficient
detail on the accuracy of the proposed method.

Babic et al. [17] proposed a system for detecting pollen bearing honeybee in videos
at the entrance of a hive. The system’s raspberry pi camera is placed in a box above the
hive entrance. A glass plate is placed on the bottom side of the box, 2 cm above the landing
pad. This configuration forces the bees entering or leaving the hive to crawl ≈11 cm.
The training dataset consisted of 50 images of pollen bearing honeybees and 50 images of
honeybees without pollen. The test dataset consisted of 354 honeybee images. Since the
bees in the camera’s field of view cannot fly, the system’s design may interfere with natural
bee cycles. The experimental results are not replicable insomuch as the test datasets do not
appear to be public.

Rodriguez et al. [18] designed a system for pose detection and tracking of insects and
animals. The researchers used their system to monitor the traffic of honeybees and mice. A
deep neural network was trained to detect and associate body parts into whole insects or
animals. The network returns a set of 2D confidence maps of present body parts and a set
of vectors of part affinity fields. Greedy inference is used to compile the parts into larger
insects or animals. Trajectory tracking is used to distinguish entering and leaving bees at
smaller bee traffic levels. blueUnlike the datasets used in our investigation, the dataset
used to evaluate the proposed system consisted of 100 fully annotated frames, where each
frame contained 6–14 honeybees.

In this article, we contribute to the body of video-based CEBM research by presenting
two methods of training RFs on image datasets with reinforcement learning (RL). We call
these classifiers random reinforced forests (RRFs). RRFs can be used in the second tier of
2T algorithms to count omnidirectional bee motions in bee traffic videos. They can also
be used in other video-based CEBM algorithms (e.g., [13]) that identify if a given region
contains a bee before processing it with more sophisticated techniques. We compare the
performance of RRFs with SCNs on seven image datasets.

Another contribution we make to video-based CEBM is a theoretical framework for
assessing the complexity of image classification. This framework may appeal to machine
learning (ML) researchers working on image classification. We formulate and prove three
theorems on finding optimal RRFs. Our main finding is that, despite their limitations, RRFs
present a reasonable alternative to ConvNets when memory footprints, image classification
efficiency, and energy efficiency are important factors (e.g., in embedded systems with
limited power supplies).

3. Image Datasets

In this section, we briefly describe the BEE1, BEE2_1S, BEE2_2S, and BEE3 datasets
obtained in the course of our video-based CEBM research in 2014–2020, because these
datasets were used in this investigation. We refer interested readers to our previous
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article [19] for details on how these datasets were curated. All images were obtained
from 30 s 24-frames-per-second videos obtained with BeePi monitors deployed on live bee
hives [2]. Each dataset is split into training, testing, and validation subsets. The training and
testing datasets include the images used for model fitting (i.e., for training and periodically
testing classifiers); the validation datasets include the images not used either in training or
testing, but only in the final model selection.

BEE1 includes 54,391 32× 32 images obtained in 2017. If an image contains at least
one complete bee, it is labeled as BEE; if it contains no complete bee or only a small part
of a complete bee, it is labeled as NO_BEE. The training dataset includes 19,082 (35%)
BEE and 19,057 (35%) NO_BEE images; the testing dataset includes 6362 (12%) BEE and
6362 NO_BEE (12%) images; the validation dataset consists of 1801 (3%) BEE and 1718 (3%)
NO_BEE images.

BEE2 contains 112 879 images obtained in 2018. We call a video 1-super when it is
captured by a camera mounted on a hive that consists of one deep super. We refer to
a video as 2-super when it is captured by a camera mounted on a hive that consists of
two deep supers. BEE2 is split into two subsets: BEE2_1S (58,201 150 × 150 images) and
BEE2_2S (54,674 90 × 90 images). All images are labeled as BEE or NO_BEE. In BEE2_1S,
8266 (14%) BEE and 27 108 (46%) NO_BEE images are selected for training; 2828 (5%) BEE
images and 9035 (16%) NO_BEE images—for testing; and 8298 (14%) BEE images and 2666
(5%) NO_BEE images—for validation. In BEE2_2S, 12 982 (24%) BEE images and 15,983
(29%) NO_BEE images are for training; 4194 (8%) BEE images and 5327 (10%) NO_BEE
images—for testing; and 6823 (12%) BEE and 9369 (17%) NO_BEE images—for validation.

BEE3 contains 65,023 64 × 64 images obtained in 2019. All images are labeled as BEE,
NO_BEE, and SHADOW_BEE. The category SHADOW_BEE includes images that, in the
judgment of a human classifier, contains shadows of bees. In BEE3, 12,948 (20%) BEE,
12,857 (20%) NO_BEE, and 12,006 (18%) SHADOW_BEE images were randomly selected
for training; 4236 (7%) BEE, 4242 (6%) NO_BEE, and 3993 (6%) SHADOW_BEE—for
testing; and 5187 (7%) BEE, 5204 (8%) NO_BEE, 4350 (8%) SHADOW_BEE—for validation.
In this article, we refer to BEE3 datasets without SHADOW_BEE images as BEE3_NS (i.e.,
BEE3_NO_SHADOW), and to the complete BEE3 dataset with SHADOW_BEE images as
BEE3_S (i.e., BEE3_SHADOW).

BEE4 is a new dataset which we have not previously published. This dataset was
obtained from BEE2_2S in 2021 by re-labeling 996 (1.8%) images in BEE2_2S, because
during a 2020 labeling verification a human evaluator decided that these images were
mislabeled: some bee images were mislabeled as NO_BEE and some images with bee
shadows were mislabeled as BEE. Table 1 shows the distribution of images in BEE4.

Table 1. BEE4 image distribution per category.

BEE NO_BEE Total

Training 12,696 (23%) 16,269 (30%) 28,965 (53%)

Testing 4142 (7%) 5379 (10%) 9521 (17%)

Validation 7243 (14%) 8949 (16%) 16,192 (30%)

Total 24,081 (44%) 30,597 (56%) 54,678 (100%)

We also used the CIFAR-10 dataset [8] to test our algorithms on a more general image
dataset. CIFAR-10 consists of 60,000 32× 32 color images distributed among 10 differ-
ent classes. We used the testing subset of CIFAR-10 that includes 10,000 images with
1000 images per class for model selection, and randomly divided the training set into
40,000 training images (4000 images per class) and 10,000 testing images (1000 images per
class) for model fitting.
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4. Random Reinforced Forests

A random reinforced forest (RRF) is a random forest (RF) trained on a dataset with
reinforcement learning (RL). RL involves an agent that executes a finite set of actions in an
environment to learn which action to execute in which state of the environment. When an
agent performs an action, it receives a positive or negative reward from an interpreter that
executes the agent’s action in the environment, evaluates the next state of the environment,
and gives the agent feedback according to a reward function. The agent is assumed to be
interested in maximizing the reward.

In our case, the agent learns how to construct an RF for an image dataset. The agent’s
actions are confined to adding different decision trees (DTs). A state of the environment
is an RRF’s representation specifying which DTs the RRF contains. For example, if there
are n DTs out of which the agent can construct RRFs, an RRF can be represented as a set of
DT identifiers. Alternatively, it can be represented as a n-bit string where a 1 bit signals
the presence of a corresponding tree and a 0-bit signals its absence. We combined the
interpreter and the environment into a Python script that evaluates an RRF on a validation
dataset and gives the agent feedback based on the RRF’s accuracy.

A DT in an RRF is uniquely determined by its depth (i.e., the length of the longest
path from the root to a leaf) and its local receptive field (LRF). An LRF is an area in an
image whose pixels a DT uses to classify images. Formally, a DT is denoted as TS,D, where
S refers to the DT’s LRF and D is the DT’s depth. An RRF F of n DTs is a set of trees
{TS1,D1

, TS2,D2
, ..., TSn ,Dn

}.
Figure 1 illustrates how we constructed LRFs for this investigation. All RGB images

are grayscaled and resized to 64× 64. We defined 20 different LRFs, each of which covers
a specific area of the input image (See Local Receptive Fields in Figure 1). We refer to
the process of superimposing an LRF on an image as LRF overlap. Although, in principle,
LRFs may have arbitrary shapes, we confined our investigation to circles and squares of
specific radii and side lengths. Given a radius of 32 and a side length of 32, a circle’s center
and a square’s top left corner are shifted left to right across a 64× 64 image in increments
of 16 pixels and their intersections with the image are taken to represent 9 LRFs defined
by the intersections of the image with the shifting circle of radius 32 and another 9 LRFs
defined by the intersections of the image with the shifting square with side 32. LRF 19 is
the intersection between the image and the circle of radius 16 placed in the center of the
image. LRF 20 is the intersection between the image and the square with side 16 placed in
the center of the image. Each LRF, when overlapped with an image, may contain a whole
bee, part of a bee, or no bee (See Resultant Images in Figure 1).

Figure 1. LRF construction: (1) RGB image is grayscaled; (2) 20 LRFs are overlapped with grayscale image.

4.1. RRF Construction

Bootstrap aggregation is a process of randomly picking n samples with replacement
from a dataset. These n in-bag samples are used to train one DT. An RRF is an ensemble of
multiple DTs trained through bootstrap aggregation (aka bagging) of samples.

Given an image dataset, our RRF construction algorithm generates 200 bootstrap sam-
ples {B1, B2, . . . , B200}. There are 20 LRFs {S1, S2, S3, . . . , S19, S20} and 10 predefined depths
measured in pixels {D1, D2, . . . , D10}, where D1 = 5 and Dj = Dj−1 + 5, 1 < j < 11. All
200 possible DTs {TS1,D1

, . . . , TS20,D10
} are trained on the bootstrap samples. The trained
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DTs are persisted and used by the algorithm to construct RRFs. The total number of possi-
ble RRFs, excluding the empty one, that can, in principle, be constructed is 2200− 1. Figure 2
shows how RRFs are constructed with the RL methods explained in Section 4.2 below.

Figure 2. RRF construction with hidden Q-learning (HQL) and dynamic Q-learning (DQL) described
in Section 4.2.

4.2. Hidden and Dynamic Q-Learning

Q-Learning is an RL algorithm used in many ML applications. This algorithm starts
with the initialization of the so called Q-Table (aka the Q-Matrix) with 0’s. The Q-Table
rows are the states of the environment and the columns are the actions that the agent can
execute. Each cell in the Q-Table specifies the cumulative reward (aka q-value) the agent
receives if it executes the corresponding action in the corresponding state.

The agent chooses an action by means of (1) exploitation (i.e., the maximum value in the
current row is chosen and the action specified by the corresponding column is executed) or
(2) exploration (i.e., a random action is chosen). The extent of exploration and exploitation
is controlled by the ε parameter (aka the ε-value). The greater the ε-value, the higher the
degree of exploration. A best practice is to aggressively explore early on and gradually
switch to exploiting the acquired knowledge later (i.e., gradually decay ε from 1 to 0).

After the agent takes an action a in a state s and receives a reward r, the entry for s and
a in the Q-Table (i.e., Q(s, a)) is updated according to Equation (1), where α is the learning
rate, γ is the discount factor, and max{Q(s′, a′)} is the maximum Q-value over all possible
actions a′ available to the agent in the next state s′ to which the environment transitions
after a is executed in s.

Q(s, a) = (1− α)Q(s, a) + α(r + γ ·max{Q(s′, a′)}) (1)

We designed two Q-Learning methods (hidden Q-Learning (HQL) and dynamic Q-
Learning (DQL)) for our RRF construction algorithm. Both methods take as input a list
of DTs trained on bootstrap samples from a given dataset. Specifically, both methods are
given a list of 200 DTs trained on 200 bootstrap samples from a given dataset. The trained
DTs are enumerated from 1 to 200.

In HQL, the agent has 200 actions (i.e., a1, a2, ..., a200), where ak, 1 ≤ k ≤ 200, denotes
adding the k-th trained DT TSi ,Dj

to a given RRF. There are 200 states (i.e., s1, s2, ..., s200),
each of which specifies the DT last added to the RRF. Thus, s1 signals that DT 1 is last
added to the RRF; s2 signals that DT 2 is last added to the RRF, etc. Equivalently, we can
interpret sk to mean that the RRF contains at least one instance of k-th DT. The initial state
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sk is chosen by randomly selecting integer k from [1, 200] and adding the k-th DT to the
initially empty RRF. We called this method HQL, because the RRF itself is not explicitly
specified in the Q-Table (i.e., it is a hidden variable); the RRF is used by the algorithm to
compute action rewards every time a DT is added to it.

HQL runs for 1000 episodes with 100 steps each. These numbers are arbitrary and
can be increased or decreased as required. At each step of an episode, after a DT is added
to the RRF, the RRF’s validation accuracy is evaluated and the reward is computed as
the difference of the current validation accuracy and the previous validation accuracy.
The initial validation accuracy is set to the validation accuracy of the initial RRF (i.e.,
the accuracy of its only randomly selected DT) and becomes the previous validation
accuracy. The current validation accuracy is recomputed after the addition of each new
DT to the RRF. If at some step of an episode, the RRF’s validation accuracy is ≥90%, RL
stops and the RRF is constructed from the Q-Table and persisted. Appendix A.1 gives a
step-by-step example of how HQL method works to construct an RRF out of four DTs.

In DQL, the states are represented as 200-bit vectors. If bit k is toggled, the k-th DT is
in the RRF; if bit k is untoggled, the k-th DT is not in the RRF. The initial state is a 200-bit
vector where a randomly selected bit is toggled. The DQL agent also has 200 actions (i.e.,
a1, a2, ..., a200), where ak, 1 ≤ k ≤ 200, denotes adding the k-th DT TSi ,Dj

to a given RRF.
However, the RRF is not hidden insomuch as each state (i.e., row) in the Q-Table explicitly
specifies an RRF. We called this method DQL, because the initial Q-Table contains exactly
one row; the other rows are added dynamically during RL.

DQL runs for 1000 episodes with 100 steps each. At each step of an episode, after a
DT is added to the RRF, the RRF’s validation accuracy is evaluated. The DQL reward is
computed either as (1) the difference of the current validation accuracy and the previous
validation accuracy or as (2) the difference between the current validation accuracy and a
given validation accuracy threshold. We refer to DQL where reward is computed according
to rule 1 as DQL 1 and to DQL where reward is computed according to rule 2 as DQL 2.
The initial validation accuracy is set to the validation accuracy of the initial RRF with one
randomly chosen DT and becomes the previous validation accuracy in the next iteration.
The current validation accuracy is recomputed after the addition of each new DT to the
RRF. As in HQL, if at some step of an episode, the validation accuracy of the RRF is ≥90%,
RL stops and the RRF is constructed from the Q-Table and persisted. Appendix A.2 gives a
step-by-step example of how DQL method works to construct an RRF out of four DTs in
two episodes to show learning transfer (i.e., access to previous states).

Since DQL runs for 1000 episodes, each of which has 100 steps, the total number of
states that can theoretically be explored by DQL is 105. However, if DQL explores (i.e.,
visits) all these states, there is no knowledge transfer from previous states. To estimate the
amount of knowledge transfer from previous states, we executed 26 experiments with DQL
1 and 26 experiments with DQL 2. Each experiment consisted of a method (i.e., DQL 1
or DQL 2) executed for 1000 episodes with 100 steps each, as described above. In each
experiment, we recorded the number of states in each Q-Table and computed the maximum,
the minimum, and the mean number of states across all experiments. Each row in Table 2
records these numbers.

The state re-visitation statistics (in %) are shown in the last column of Table 2. Each
revisitation statistic is computed as (Mean—100,000)/100,000. For example, the DQL 1
revisitation statistic is (78,630–100,000)/100,000 ≈ 0.21370 = 21.37%. The mean revisitation
statistic for for DQL 1 and DQL 2 is 21.368%, which indicates that not all possible states (i.e.,
100,000 states) are explored and knowledge transfer from previous states does take place.
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Table 2. DQL state visitation experiments on all seven image datasets (BEE1, BEE2_1S, BEE2_2S,
BEE3_S, BEE3_NS, BEE4, CIFAR-10); Min is minimum number of states in Q-Table in all experiments;
Max is maximum number of states in Q-Table in all experiments; Mean is mean number states in
Q-Table in all experiments; Mean % Revisit shows mean percent of states that are revisited; DQL
method is described in Section 4.1.

Min Max Mean Num. Experiments % Mean Revisit

DQL1 78,352 78,779 78,630 28 21.370
DQL2 78,480 78,834 78,633 28 21.367
Total 78,352 78,834 78,632 56 21.368

5. SCNs

A convolutional network (ConvNet) is said to be shallow, if its size on disk, after it is
persisted, is ≤ θ, where θ is an application-dependent threshold measured in acceptable
memory units (e.g., MB). Given a dataset, we define a ConvNet to be a shallow ConvNet
(SCN) for the dataset if its memory footprint is less than or equal to the footprint of the
largest RRF trained on the same dataset. In our investigation, we set θ = 50 MB, because the
memory footprints of all trained RRFs for all datasets we used in our comparative experi-
ments described below (i.e., BEE1, BEE2_1S, BEE2_2S, BEE3, and BEE4, and CIFAR) had a
median footprint of 50 MB.

The SCN architecture we used in this study is shown in Figure 3. In addition to the
input and output layers, the architecture consists of a convolutional layer (CL), max-pooling
layer (MPL), and a fully connected layer (FCL). We fixed the node activation function to
ReLU and incremented the number of filters in the CL and MPL and the number of nodes
in the FCL until the persisted trained SCNs (i.e., instances of the SCN architecture) satisfied
the shallowness criterion to have the memory footprint of ≤50 MB.

Figure 3. SCN architecture used in this investigation.

6. Complexity Analysis of Image Classification with RRFs and SCNs

Image classifiers are typically compared in terms of accuracy, precision, recall, F-1,
and ROC curves, etc. The complexity analysis of image classification by various trained
classifiers remains relatively unexplored. Yet, this type of analysis is fundamental not only
to physical run-time performance, but also to energy consumption [20]. In this section, we
define a theoretical framework for doing the complexity analysis of image classification
with SCNs, RFs, and RRFs. In our analysis, we assume that number addition, subtraction,
multiplication, division, and comparison are performed in constant time. For example,
the activation of ReLU, which is the maximum of 0 and the output, requires 2 operations,
because it is one if-then-else statement.

6.1. RRFs

A DT is a full binary tree of height H. If each node involved in classifying a given
image is a parameter, then the maximum number of nodes involved in the classification of
single image is equal to exactly H (See Figure 4). Each DT has a specific LRF overlapped
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with an image before the actual classification along a specific path begins. If IMGh and
IMGw denote the height and width of the input image, then the number of parameters
used in its classification is IMGh · IMGw, in the worst case.

Figure 4. Number of DT parameters in classification of single image.

A trained DT T is a full binary tree of height H. Thus, the maximum number of nodes
in T is ∑H

i=0 2i. When T is used as an image classifier it thresholds exactly one pixel value
along a specific path from the root to a leaf to determine the class of the image. Since
thresholding requires 2 basic operations, the total number of operations T takes to classify
an image is 2H, because at each node along the path a threshold decision is made on the
value of a single pixel to go left or right (See Figure 4).

Let us assume that an RRF F contains n DTs T1, ..., Tn each of which has been trained to
classify images into C classes with a specific LRF. Given an input h×w image (i.e., of height
h and width w), for each DT in F, the image is overlapped with the DT’s LRF. To perform
the overlap, each pixel in the image is checked to see if it is present in the LRF’s pixels,
which requires h · w operations. LRF overlapping is analogous to masking, because all
pixels covered by the LRF retain their original values, whereas all other pixels are set to 0.
If F contains n DTs, the number of overlap operations is n · h · w.

After LRF overlapping is done, F classifies the masked image with each Tj, 1 ≤ j ≤ n,
to obtain n probability lists L1, ..., Ln, where Lj contains C probabilities computed by the
corresponding Tj as the proportion of the training data covered by Tj’s leaf node reached on
the input image from its root along a specific path (See Figure 4). The mean probability of
each class, i.e., µ{Lj}, is computed, which requires n− 1 additions and 1 division, and the
maximum µ{Lj} is returned.

If the maximum DT height in F is Hmax, then, in the worst case, the number of
operations required to classify an image with F, ORF, is given in Equation (2).

ORF = nhw + 2nHmax + nC + 2C = n(hw + 2Hmax) + (n + 2)C (2)

6.2. SCNs

As shown in Figure 3, we assume that an SCN consists of an input layer (IL), a
convolutional layer (CL), a max pooling layer (ML), and a fully connected layer (FC), which
coincides with the output layer (OL). The SCN uses ReLU as the activation function for
all nodes.

Let the input dimensions to the CL be RI × CI × LI and suppose that the CL has
NF filters, each of which has dimensions RF × CF. The formula for the total number of
parameters in the CL, PCL, is given in Equation (3) as the sum of the numbers of the shared
weights in the filters and the number of biases, the latter being equal to the number of
the filters.

PCL = RF · CF · LI · NF + NF = NF(RF · CF · LI + 1) (3)

The ML does not add any additional parameters, because the feature maps obtained
from the CL are downsampled, i.e., converted into the feature maps of lower dimensions
with such functions as maximum, mean, etc.
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Let the FC have NI input nodes and suppose the number of nodes in the FC itself is
NFC. The total number of parameters in the FC, PFC, is given in Equation (4) as the sum of
the number of weights connected between the layers and and number of biases.

PFC = NI NFC + NFC (4)

Let the input dimension to the convolutional layer be RI × CI × LI and use NF filters,
where each filter’s dimensions are RF × CF. A single convolution contains RF · CF · LI
multiplications while the filter is overlapped with the LRF, RF · CF · LI − 1 additions to
sum the multiplications, 1 bias addition, and 2 operations for ReLU activation. Thus,
there are 2 · RF · CF · LI + 2 operations in a single convolution (See Figure 5). The total
number of operations happening in the CL, OCL, for an output size of Ro × Co is shown in
Equation (5).

OCL = (2 · RF · CF · LI + 2) · Ro · Co · NF (5)

Figure 5. Graphic representation of convolution.

Let the input dimension to the ML be RI × CI × LI and let the filter dimensions be
RF × CF. In a single max-pooling operation, there are a maximum of 2 · RF · CF operations
(See Figure 6). The total number of operations happening in the OL, OMP, for an output
size of Ro × Co is given in Equation (6).

OML = (2 · RF · CF) · Ro · Co · LI (6)

Figure 6. Graphic representation of max-pooling.

Let the number of input nodes to the FL be NI and the number of nodes in the
fully connected layer be NFL. For a single node in the FL, there are NI multiplication to
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multiply the inputs and the respective weights, NI − 1 additions to compute the sum of
the input and weight multiplications, 1 bias addition, a maximum of 2 operations for ReLU
activation. Thus, there are 2NI + 2 operations for a single node in the FL. The total number
of operations happening in in the FL, OFL, is given in Equation (7).

OFL = (2NI + 2) · NFL (7)

Let the number of nodes in the FL be NFC and number of nodes in the output layer
(number of classes) be NOL. The activation used in the output layer is softmax which
calculates the probabilities based on the weighted output calculated before the activation.
In addition to the operations happening for the multiplications and additions, there are
NOL operations to sum all weighted outputs, NOL operations to normalize the weighted
outputs and 2NOL operations to calculate the maximum activation to define the class of the
input. The total number of operations in the OL, OOL, is given in Equation (8) and the total
number of operations in the SCN, OSN , is given in Equation (9).

OOL = 2NFC NOL + 4NOL (8)

OSN = OCL + OML + OFL + OOL (9)

7. Experiments and Results

In this section, we describe our experiments with six different models on the datasets.
The best validation accuracies of the various methods on each of the datasets are reported
in Table 3. The six classification models we used in our experiments are described below.

The first classifier is the HQL RRF. We performed a grid search of α values of 0.7,
0.8, and 0.9 and γ values of 0.1, 0.2, and 0.3. The ε value was updated by the the rule
ε = ε · 0.998 after each learning episode. The Q-Matrix obtained with the HQL method is
used to generate the sequence S of DTs to generate the RRFs. Initially, S contains the 2 DTs
that correspond to the state and action of the maximum q-value in the Q-Matrix. After the
addition of the 2 DTs, the Q-Matrix cell with the maximum q-value is set to zero and the
reconstruction recursively continues from the last action performed. Recall that the last
action specifies the number of the last DT added. Specifically, the reconstruction goes to the
corresponding state and performs the action of adding the DT whose number is specified
in the column of the maximum q-value for the row. After the DT is added, the Q-Matrix
cell with the maximum q-value is set to 0. The process continues until the number of the
added DTs reaches 200. The HQL RRF was trained on the grayscaled images of all datasets.

Let S = (T1, T2, ..., T200) be the sequence of DTs added to the RRF according to the
maximum q-values in the Q-Matrix. In other words, T1 is added first, then T2, etc. After the
addition of each DT Tj, the validation accuracy of the RRF, were it to be constructed from
the DTs in S, is computed. Thus, if the initial sequence S contains T1, then the validation
accuracy v1 of the RRF that contains only T1 is computed and recorded. If T2 is the second
DT in S, then the validation accuracy of v2 of the RRF that contains (T1, T2) is computed
and recorded. Formally, the sequence Vhql = ((S1, v1), (S2, v2), ..., (S200, v200)) is computed,
where Si is the subsequence of S that starts with T1 and ends with Ti. The HQL RRF is
constructed from the pair (Si, vi), where vi is the maximum of v1, ..., v200. Put another way,
the HQL RRF is constructed from the minimal subsequence of DTs in Vhql that has the
maximum validation performance.

The second and third classifiers are the the DQL 1 and DQL 2 RRFs. We performed a
grid search of α values of 0.8, and 0.9 and γ values of 0.1 and 0.2. The ε value was updated
by the the rule ε = ε · 0.998 after each learning episode. The DQL 1 and DQL 2 RRFs were
trained on the grayscaled images of all datasets.

We call the fourth classifier the performance RF (PRF). To generate the PRF, the trained
DTs are sorted in the descending order of their validation accuracies. Let this sequence
be Vpr f = ((T1, v1), ..., (T200, v200)), where Ti is a DT and v1 is the maximum validation
accuracy and v200 is the minimal accuracy. The sequence Vpr f is used in construction of the
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PRF in the same way as the sequence Vhql is used in the construction of the HQL RRF. Put
another way, the PRF is constructed from the minimal subsequence of DTs added in the
order of the DTs in Vpr f that has the maximum validation performance. The PRFs were
trained on the grayscaled images of all datasets.

The fifth classifier is the base case random forest classifier constructed with the Ran-
domForestClassifer class of the scikit-learn library [21]. For each dataset, we trained the
RFs with 50, 100, and 150 DTs using the Gini function both on the color and grayscale
images of each dataset. These classifiers were trained on both grayscaled and color images
of all datasets.

The sixth classifier is the SCN in Figure 3. We trained this architecture on the training
and testing data of each dataset and persisted all trained models. A grid search of the
parameters such as learning rate, weight decay, and dropout percentage was performed on
each dataset. In the grid search, the learning rate α was confined to the values 0.001, 0.01,
and 0.1; the L2 weight decay was confined to 0.0001, 0.001, 0.01, and 0; the dropout was
confined to 0, 0.2, 0.3, 0.4, and 0.5.

The model training used the model checkpoint to save the best model based on the
lowest testing loss in all epochs. All SCNs were trained on the color images of all datasets.

The validation accuracies for the overall best models for each dataset are given in
Table 3. While the SCNs performed better than the RRFs on four datasets BEE1, BEE2_1S,
BEE3_NS, and BEE3_S, the RRFs outperformed the SCNs on the more challenging datasets
BEE2_2S and BEE4. These datasets are more challenging, because the camera is positioned
above the second super of the Langstroth beehive. Thus, the average number of pixels
per honey bee is smaller. The HQL and DQL 2 RRFs performed on par on all datasets,
except for BEE2_2S, where DQL 2 slightly outperformed HQL. The performance of the
DQL 1 RRFs was the worst on all datasets. On CIFAR-10, SCNs outperformed all RFs:
the performance of the SCN exceeded the performance of SK_RFC by 18.45% and the
performance of the HQL RRF by 23.95%.

Table 3. Validation accuracies (in %) of classifiers on all datasets; SKL_RF is scikit-learn Random-
ForestClassifier trained on grayscale images; SKL_RFC is the scikit-learn RandomForestClassifier
trained on color images; BEE3_NS is BEE3 dataset with SHADOW_BEE images removed; BEE3_S is
BEE3 dataset with SHADOW_BEE images; green cells indicate best accuracies.

HQL DQL1 DQL2 PRF SKL_RF SKL_RFC SCN
BEE1 91.92 84.89 89.88 91.35 93.31 93.79 97.00
BEE2_1S 78.12 68.93 79.68 80.10 76.09 63.00 89.16
BEE2_2S 78.92 71.63 79.05 78.78 77.76 74.46 76.29
BEE4 81.71 73.72 81.10 80.95 79.68 74.61 77.85
BEE3_NS 87.07 77.77 87.22 86.91 87.54 81.74 90.52
BEE3_S 84.08 70.97 83.35 83.77 83.83 83.35 88.08
CIFAR-10 41.62 25.45 40.56 43.11 41.90 47.07 65.56

It is instructive to inspect the validation accuracy curves of the HQL RRFs and PRFs
on various datasets with the values of α and γ parameters (See Equation (1)) used in the
grid search. Figure 7 indicates that on BEE1 all RFs kept improving performance until
the number of the DTs in them reached 30, after which their validation accuracy varied
between 90% and 95%. The PRF’s accuracy reached its peak performance of 91% when the
number of DTs in it was 20, after which it started slowly declining until its number DTs
exceeded 75, after which the rate of decline accelerated.
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Figure 7. Validation accuracy (in %) vs. number of DTs of HQL RRFs and PRF on BEE1.

Figure 8 indicates that on BEE2_1S, as the number of DTs in the HQL RFs was increas-
ing, their accuracy was varying between 68% and 70%. The accuracy of the PRF was highest
when the number of DTs in it was 5 and then kept declining. The BEE2_1S validation
curves suggest that for this dataset, the RFs with smaller numbers of DTs performed better
in that their validation accuracy was above 70% and, in the case of the PRF, reached 80%.

Figure 8. Validation accuracy (in %) vs. number of DTs of HQL RRFs and PRF on BEE2_1S.

On BEE2_2S (see Figure 9), one of the two most challenging datasets, all RFs kept
improving their performance until the number of DTs in them reached 100, after which
their accuracy stabilized around 78%. The PRF’s accuracy did not decline with the addition
of new DTs.
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On BEE4 (see Figure 10), the second of the two most challenging datasets, the topology
of the validation curves is similar to the topology on BEE2_2S. All RFs kept improving
their performance until the number of DTs in them reached 100, after which their accuracy
stabilized around 82%. The PRF’s accuracy did not decline as rapidly as on BEE1 and
BEE2_1S with the addition of new DTs, but showed a slight decline after the number of
DTs exceeded 125.

Figure 9. Validation accuracy (in %) vs. number of DTs of HQL RRFs and PRF on BEE2_2S.

Figure 10. Validation accuracy (in %) vs. number of DTs of HQL RRFs and PRF on BEE4.

On BEE3 (see Figures 11 and 12), the topology of the validation curves was similar.
The accuracy spread was wider on BEE3 without SHADOW_BEE images after the number
of DTs exceeded 50 and the accuracy varied between 85 and 87%. The accuracy spread was



Appl. Sci. 2021, 11, 8141 15 of 24

narrower on BEE3 with SHADOW_BEE images after the number of DTs exceeded 50 and
the accuracy stayed at ≈83%.

Figure 11. Validation accuracy (in %) vs. number of DTs of HQL RRFs and PRF on BEE3_NS.

Figure 12. Validation accuracy (in %) vs. number of DTs of HQL RRFs and PRF on BEE3.

One reason for the relative underperformance of DQL RRFs, especially DQL 1 RRFs,
is the difficulty in finding optimal RRF with DQL, which we formulated and proved as
Random Reinforced Forest Theorem 1 (RRFT 1) in Section 8 below. Another reason for
the better performance of the SCNs may be their over-parameterization of the problem
space [20], which allows them to generalize better with multiclass datasets that have
relatively small numbers of training examples in each class. As the accuracies in the
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SKL_RF and SKL_RF (Color) indicate, the addition of color to images did not improve the
performance of the scikit-learn RFs.

8. Random Reinforced Forest Theorems

In this section, we formulate three theorems on finding optimal RRFs for various
datasets. These theorems provide a theoretical basis for explaining some experimental
DQL results reported in Section 7. The proofs of these theorems are given in Appendix A.3
for readers interested in technical details.

Let {T1, T2, T3, . . . , Tk} be the set of trained DTs using k bootstrap samples from
a dataset. There are 2k − 1 possible RFs. Since each RF is a possible state in the DQL,
the maximum number of possible states, M, is M = 2k − 1. An RRF is said to be a optimal
random forest if and only if its performance (i.e., validation accuracy) is greater than a
given threshold θ (e.g., theta = 0.95). In the theorems below, we use the terms random
forest and state interchangeably, because in DQL, each state (i.e., a row in the Q-Table)
corresponds to exactly one random forest and vice versa.

Theorem 1 (Random Reinforced Forest Theorem 1 (RRFT 1)). Let M be a total number of
possible RFs (i.e., possible states), of which B are optimal. If B ≪ M (i.e., B is considerably small
than M), then the probability of not finding any optimal RRF with DQL is ≈1.

An immediate corollary of this theorem is that the probability of not finding any
optimal state in N trials, PN,B, is

PN,B =
(M−B

N )

(M
N)

. (10)

If we assume that there is at least one optimal state, given a set of DTs, out of which
RRFs are constructed, i.e., B = 1, then PN,1 is

PN,1 =
(M−1

N )

(M
N)

=
M− N

M
=

(
1− N

M

)
.

Thus, if there are 200 DTs, out of which RRFs can be constructed, then M = 2200 − 1
and N = 105, PN,1 = 0.9 ≈ 1. Is there such a value of B < M for which the probability
of not finding any optimal RRF in N trials is ≈0? The next theorem gives an answer to
this question.

Theorem 2 (Random Reinforced Forest Theorem 2 (RRFT 2)). Let B = M/2, where B is
the number of optimal states (i.e., optimal RFs) and N is the number of trials (i.e., the number of
explorable states in DQL). Then, if N and M are large, the probability of not finding any optimal
state is

(M−M/2
N )

(M
N)

≈ 2−N ≈ 0. (11)

As a function of B, PN,B increases as B decreases. The third theorem answers the
question, what is the threshold for B that makes the probability of finding at least one
optimal RRF less than 50%.

Theorem 3 (Random Reinforced Forest Theorem 3 (RRFT 3)). Let M be a total number of
possible RFs (i.e., possible states), of which B are optimal. Let N be the number of explored states in
DQL (i.e., the number of trials) such that N < M/4. There exists a threshold value x for B that
makes the probability of finding at least one optimal RRF less than 50%.

If there are 200 DTs, then M = 2200 − 1 and N = 105, then the threshold is ≈8 · 1054

(See Equation (A6)). Thus, even if we have a large numberof optimal RRFs, the probability
of not finding any optimal RRF is greater 50%.
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9. Discussion and Conclusions

The SCNs performed better on four bee datasets BEE1, BEE2_1S, BEE3_S, BEE3_NS
with validation accuracies of 97.0%, 89.16%, 90.52%, 88.08%, respectively. The datasets
BEE2_2S and BEE4 are more challenging than the other bee datasets, because the images
are taken from videos captured by the camera positioned above the second deep super of
the Langstroth beehive, which makes individual bees smaller (in terms of the average bee
size in pixels). On these two datasets BEE2_2S and BEE4, all RRFs, except for the DQL 1
RRF, performed better than the SCNs.

On CIFAR-10, the SCNs outperformed all RRFs, which indicates that on datasets with
multiple categories and small numbers of images per category, the SCNs may generalize
better than RRFs. As shown in Figure 13, all RRFs (except DQL 1) performed in the same
ballpark of ≈43% on CIFAR-10. while the best SCN had an accuracy of 65.56%. Another
possible implication is that on datasets such as CIFAR-10 it is the over-parameterization of
the problem space [20] typical of convolutional networks that allows them to generalize
better, although it is possible that a different set of LRFs may allow them to generalize better.

Figure 13. Validation accuracy (in %) vs. number of DTs of HQL RRFs and PRF on CIFAR-10.

The importance of constrained grid search is an important lesson that we learned
during the development of the SCNs. While we knew that grid search is a best practice in
many ML domains including deep learning [22], initially, we tuned the hyper-parameters
and changed the SCN architecture manually, which was neither systematic nor optimal in
terms of performance. After switching to constrained grid search (i.e., finite sets of learning
rates, weight decays, and dropouts), we were able to improve the SCN classification
accuracies much faster. We also observed that systematically changing the hyperparameters
gave us better results than tinkering with the SCN architecture.

The physical training time for the SCNs varied between 30 and 40 min per model per
dataset. In contrast, the physical time for constructing an RRF was ≈10 h per dataset, most
of which was consumed by RL. To understand this time difference, we need to look no
further than the RL reward calculation, which was the largest bottleneck in our experiments.
At each step of HQL or DQL, the reward is based on the validation accuracy of a specific
RRF, which, in turn, depends on the size of the validation dataset of a given dataset. Put
another way, the RRF must classify each image in the validation dataset after the addition
of every DT.
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On the other hand, the trained RRFs are much faster in classifying images at run time
than the SCNs, because they perform, on average, about 5% of the operations performed
by the SCNs and consider only about 2% of the parameters considered by the SCNs. This
fast classification makes the RRFs more appropriate for the deployment on embedded
platforms with limited memory and power resources. In fact, if we assume that each RF
and RRF has 200 DTs of a maximum height of 50 and the SCN architecture is fixed to
the one in Figure 3, then the actual numbers of parameters and operations involved in
classifying a single image into 2 classes (e.g., BEE and NO_BEE) is shown in Table 4.

Table 4. Numbers of parameters and operations in RFs, RRFs, and SCNs involved in classifying an
image into two classes.

RFs RRFs SCNs

Parameters 10,000 91,920 4,195,328
Operations 20,404 839,604 15,991,560

Thus, the answer to the question of whether the SCNs are preferable to the RFs and
RRFs is not as clear-cut as we expected at the beginning of our investigation. While the
RRFs take much longer to train than the SCNs, once the training is over, the trained RRFs
run much faster, because they have fewer parameters and operations to deal with, which
implies they are more energy-efficient after deployment in embedded systems. While the
SCNs outperformed the RRFs by a wide margin on a generic dataset (i.e., CIFAR-10), they
did not significantly outperform them on the domain-specific datasets and performed
worse than the RRFs on more challenging domain-specific datasets (See Table 3).

Our RRF theorems offer some technical insights to help explain why it is difficult for
DQL methods to find optimal RRFs for a given dataset. These theorems should by no
means be construed as stating that the RRFs are, in a general sense, worse than the SCNs,
insomuch as they say nothing about different reward strategies or different LRFs. Nor do
they apply to HQL methods.

Theorems 1 and 2 present a probabilistic argument that when the number of optimal
RRFs for a given dataset is low, the probability of not finding any of them with DQL is
high, and as the number of optimal RFs tends to 0, the probability of not finding any of
them approaches 1. Theorem 3 shows that there is a specific threshold for the number of
optimal RRFs that makes the probability of finding at least one optimal RRF less than 50%
with DQL.

Our research has three practical implications. The first implication is that RRFs may
present a reasonable alternative to ConvNets on domain-specific datasets with smaller
numbers of categories and smaller numbers of examples per category. The second implica-
tion is that LRFs are important for RRFs and formal investigations of possible relationships
between LRFs and datasets may be warranted. The third implication is that it is important
for embedded systems (e.g., EBM systems) to seek energy-efficient models with limited
memory and power resources.

We remain optimistic about the prospects of RRFs, especially for domain-specific
datasets, because it may well be possible with innovative reward strategies and domain-
specific LRFs to find near-optimal (if not optimal) RRFs that perform on par with SCNs.
In our future work, we plan to investigate different reward strategies, improve domain-
specific LRFs for RRFs, and explore relative energy efficiencies of SCNs and RRFs.
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Appendix A

Appendix A.1. HQL

Below is an example for of the HQL method on four DTs. Each learning episode starts
with an empty random forest RF = []. We assume that α = 0.9, γ = 0.1. The initial Q-
Matrix is a 4× 4 matrix of 0’s. The rows represent states, the columns—actions. The initial
state for the episode is state_1 which means DT 1 is added to the random forest.

Step 0: Initial State: state_1, Hidden State RF = [1], previous validation accuracy is
valid_accprev = 68.

add_1 add_2 add_3 add_4
state_1 0 0 0 0
state_2 0 0 0 0
state_3 0 0 0 0
state_4 0 0 0 0

Step 1: Action Taken: add_2; Hidden State RF = [1, 2]; current validation accuracy
valid_acccurr = 70; Reward = validcurr − validprev = 70− 68 = 2; New State: state_2;
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Q(1, 2) = (1− 0.9)× 0 + 0.9× (2 + 0.1× 0) = 1.8.

The updated Q-value matrix is as follows.

add_1 add_2 add_3 add_4
state_1 0 1.8 0 0
state_2 0 0 0 0
state_3 0 0 0 0
state_4 0 0 0 0

Step 2: Action Taken: add_3; Hidden State RF = [1, 2, 3]; valid_acccurr = 72; Reward =
72− 70 = 2; New State: state_3;

Q(2, 3) = (1− 0.9)× 0 + 0.9× (2 + 0.1× 0) = 1.8.

The updated Q-value matrix is as follows.

add_1 add_2 add_3 add_4
state_1 0 1.8 0 0
state_2 0 0 1.8 0
state_3 0 0 0 0
state_4 0 0 0 0

Step 3: Action Taken: add_1; Hidden State RF = [1, 2, 3, 1], valid_acccurr = 71,
Reward = 71− 72 = −1, New State: state_1;

Q(3, 1) = (1− 0.9)× 0 + 0.9× (−1 + 0.1× 0) = −0.9.

The updated Q-value matrix is as follows.

add_1 add_2 add_3 add_4
state_1 0 1.8 0 0
state_2 0 0 1.8 0
state_3 −0.9 0 0 0
state_4 0 0 0 0

Step 4: Action Taken: add_2; Hidden State RF = [1, 2, 3, 1, 2]; valid_acccurr = 72;
Reward = 72− 71 = 1; New State: state_2;

Q(1, 2) = (1− 0.9)× 1.8 + 0.9× (1 + 0.1× 1.8) = 1.242.

The updated Q-value matrix is as follows.

add_1 add_2 add_3 add_4
state_1 0 1.242 0 0
state_2 0 0 1.8 0
state_3 0.9 0 0 0
state_4 0 0 0 0

Appendix A.2. DQL

Below is an example for the DQL method on four trees. Each learning episode starts
with an empty random forest RF = []. The parameters are α = 0.9 and γ = 0.1. The initial
Q-Matrix has four columns, each of which corresponds to the actions add1, add2, add3,
and add4, and the only row [1, 0, 0, 0], i.e., the initial RRF contains DT 1 randomly added to
the RRF.

Episode 1
Step 0: Initial State: [1, 0, 0, 0], RF = [1], valid_acccurrent = 68. The Q-matrix is

as follows.
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add_1 add_2 add_3 add_4
[1, 0, 0, 0] 0 0 0 0

Step 1: Action Taken: add_2; RF = [1, 2]; valid_acccurrent = 70; Reward = 70− 68 = 2;
New State: [1, 1, 0, 0];

Q(1, 2) = (1− 0.9)× 0 + 0.9× (2 + 0.1× 0) = 1.8.

The updated Q-matrix is as follows.

add_1 add_2 add_3 add_4
[1, 0, 0, 0] 0 1.8 0 0
[1, 1, 0, 0] 0 0 0 0

Step 2: Action Taken: add_3; RF = [1, 2, 3]; valid_acccurr = 72; Reward = 72− 70 = 2;
New State: [1, 1, 1, 0];

Q(2, 3) = (1− 0.9)× 0 + 0.9× (2 + 0.1× 0) = 1.8.

The updated Q-matrix is as follows.

add_1 add_2 add_3 add_4
[1, 0, 0, 0] 0 1.8 0 0
[1, 1, 0, 0] 0 0 1.8 0
[1, 1, 1, 0] 0 0 0 0

Step 3: Action Taken: add_1; RF = [1, 2, 3, 1]; valid_acccurr = 71; Reward = 71− 72 =
−1; New State: [1, 1, 1, 0];

Q(3, 1) = (1− 0.9)× 0 + 0.9× (−1 + 0.1× 0) = −0.9.

The updated Q-value matrix is as follows.

add_1 add_2 add_3 add_4
[1, 0, 0, 0] 0 1.8 0 0
[1, 1, 0, 0] 0 0 1.8 0
[1, 1, 1, 0] −0.9 0 0 0

Step 4: Action Taken: add_4; RF = [1, 2, 3, 1, 4]; valid_acccurr = 72; Reward =
72− 71 = 1; New State: [1, 1, 1, 1];

Q(3, 4) = (1− 0.9)× 0 + 0.9× (1 + 0.1× 0) = 0.9.

The updated Q-value matrix is as follows.

add_1 add_2 add_3 add_4
[1, 0, 0, 0] 0 1.8 0 0
[1, 1, 0, 0] 0 0 1.8 0
[1, 1, 1, 0] −0.9 0 0 0.9
[1, 1, 1, 1] 0 0 0 0

Episode 2: This learning episode is run for only one step to show learning transfer
(i.e., access to previous states).

Step 0: Initial State: [0, 1, 0, 0]; RF = [2], valid_acccurr = 69.
The updated Q-matrix is as follows.
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add_1 add_2 add_3 add_4
[1, 0, 0, 0] 0 1.8 0 0
[1, 1, 0, 0] 0 0 1.8 0
[1, 1, 1, 0] −0.9 0 0 0.9
[1, 1, 1, 1] 0 0 0 0
[0, 1, 0, 0] 0 0 0 0

Step 1: Action Taken: add_1; RF = [2, 1]; valid_acccurrent = 70; Reward = 70− 69 = 1;
New State: [1, 1, 0, 0];

Q(5, 1) = (1− 0.9)× 0 + 0.9× (1 + 0.1× 1.8) = 1.062.

The updated Q-value matrix is as follows.

add_1 add_2 add_3 add_4
[1, 0, 0, 0] 0 1.8 0 0
[1, 1, 0, 0] 0 0 1.8 0
[1, 1, 1, 0] −0.9 0 0 0.9
[1, 1, 1, 1] 0 0 0 0
[0, 1, 0, 0] 1.062 0 0 0

Appendix A.3. Random Reinforced Forest Theorems

Theorem A1 (Random Reinforced Forest Theorem 1 (RRFT 1)). Let M be a total number
of possible RFs (i.e., possible states), of which B are optimal. If B ≪ M (i.e., considerably small),
then the probability of not finding any optimal RRF with DQL is ≈1.

Proof. The maximum number of possible states (i.e., possible RFs) explored in DQL is
N = n · ε · s, where ε is the percentage of exploration, n is number of episodes, s is number
of steps per episode of learning.

The probability of not exploring an optimal in the first trial, P1,B, is

P1,B =

(
1− B

M

)
.

Analogously, the probability of not exploring a optimal state in two trials, P2,B, is

P2,B =

(
1− B

M

)(
1− B

M− 1

)
.

If we consider the probability of not finding an optimal in N trials, PN,B, we obtain

PN,B =

(
1− B

M

)(
1− B

M− 1

)
. . .
(

1− B
M− N + 1

)

=

(
M− B

M

)(
M− B− 1

M− 1

)
. . .
(

M− B− N + 1
M− N + 1

)

=

(
(M− B)!

(M− B− N)!

)/(
M!

(M− N)!

)
=

(M−B
N )

(M
N)

.

Let α be a fraction of M that are optimal states. In other words,

α =
B
M

.

As the fraction of optimal states B goes to 0, PN,B approaches 1. Formally,

lim
α→0

PN,B = lim
α→0

(M−αM
N )

(M
N)

= 1.
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Theorem A2 (Random Reinforced Forest Theorem 2 (RRFT 2)). Let M be a total number of
possible RFs (i.e., possible states), of which B are optimal. Let

(
B = M

2

)
and let N be the number

of of explored states in DQL (i.e., the number of trials). Then if N and M are large, the probability
of not finding any optimal state is

(M−M/2
N )

(M
N)

≈ 2−N ≈ 0. (A1)

Proof. Consider the following equality

(M/2
N )

(M
N)

=
(M/2)!

M!
· (M− N)!
(M/2− N)!

. (A2)

Using the Stirling’s approximation, we can rewrite Equation (A2) as

(M/2)!
M!

· (M− N)!
M/2− N!

≈

√
2πM/2

(
M/2

e

)M/2

√
2πM

(
M
e

)M ·

√
2π(M− N)

(
M−N

e

)M−N

√
2π(M/2− N)

(
M/2−N

e

)M/2−N

=

(
1
2

)(M+1)/2( e
M

)M/2
·
(

M− N
e

)M/2√
2

√
1 +

N
M− 2N

(
M− N

M/2− N

)M/2−N

=

(
1
2

)(M+1)/2(
1− N

M

)M/2
· 2(M+1)/2−N

(
1 +

N
M− 2N

)(M+1)/2−N

= 2−N
(

1− N
M

)M/2(
1 +

N
M− 2N

)(M+1)/2−N
.

The expression
(

1− N
M

)M/2
approximates e−N/2, while the

(
1 + N

M−2N

)(M+1)/2−N

approaches eN/2 when M is considerably big. Thus,

(M/2
N )

(M
N)
≈ 2−N .

Theorem A3 (Random Reinforced Forest Theorem 3 (RRFT 3)). Let M be a total number of
possible RFs (i.e., possible states), of which B are optimal. Let N be the number of explored states in
DQL (i.e., the number of trials) such that N < M/4. There exists a threshold value x for B that
makes the probability of finding at least one optimal state less than 50%.

Proof. Consider the inequality

(M−x
N )

(M
N)

=
x−1

∏
k=0

(
1− N

M− k

)
>

1
2

, (A3)

where x denotes the threshold value we seek. Since 1−N/(M− k) decreases as k increases,
we have

x−1

∏
k=0

(
1− N

M− k

)
≥
(

1− N
M− x + 1

)x

=

(
1− N

M− x + 1

)(−M−x+1
N )(− N

M−x+1 )x
.

(A4)
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Due to the properties of
(

1− 1
y

)−y
and the assumption that N < M

4 , we have(
1− N

M− x + 1

)(−M−x+1
N )

< 4.

Therefore, if x satisfies

4−
N

M−x+1 x >
1
2

, (A5)

then the inequality in Equation (A3) holds. However, the inequality in Equation (A5) is
equivalent to the inequality in Equation (A6)

x <
M + 1
2N + 1

. (A6)
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