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Abstract: The gas turbine engine is a widely used thermodynamic system for aircraft. The demand
for quantifying the uncertainty of engine performance is increasing due to the expectation of reliable
engine performance design. In this paper, a fast, accurate, and robust uncertainty quantification
method is proposed to investigate the impact of component performance uncertainty on the perfor-
mance of a classical turboshaft engine. The Gaussian process model is firstly utilized to accurately
approximate the relationships between inputs and outputs of the engine performance simulation
model. Latin hypercube sampling is subsequently employed to perform uncertainty analysis of the
engine performance. The accuracy, robustness, and convergence rate of the proposed method are
validated by comparing with the Monte Carlo sampling method. Two main scenarios are investigated,
where uncertain parameters are considered to be mutually independent and partially correlated, re-
spectively. Finally, the variance-based sensitivity analysis is used to determine the main contributors
to the engine performance uncertainty. Both approximation and sampling errors are explained in the
uncertainty quantification to give more accurate results. The final results yield new insights about
the engine performance uncertainty and the important component performance parameters.

Keywords: Gaussian process model; Latin hypercube sampling; turboshaft engine; uncertainty
quantification; variance-based sensitivity analysis

1. Introduction

As a typical thermodynamic system, the gas turbine engine has been widely used to
provide propulsion or power to various aircrafts, for example, to provide propulsion to
civil airliners and power to helicopters. The operation of the engine is primarily based on
the principle of the thermodynamic cycle [1,2]. A cycle generally consists of a sequence
of thermodynamic processes, involving the transfer of work and heat. Taking a single-
spool turbojet engine as an example, its ideal cycle is mainly comprised of an isentropic
compression process, an isobaric heating process, and an isentropic expansion process.
In practice, these processes can be implemented through three mechanical components
of the engine, namely, the compressor, the combustor, and the turbine. Since the engine
performance depends largely on the cycle, it is an important fundamental task for engine
designers to complete the overall performance design of engine using thermodynamic
cycle calculation in the preliminary design stage. The task yields the final decisions of the
component performance and other essential thermodynamic parameters.

However, even with a well-controlled manufacturing process, geometric differences
between individual engines are unavoidable due to the natural presence of manufacturing
deviation. For instance, the produced blade profiles always deviate somewhat from their
nominal values [3,4]. In terms of the production engine, the geometries are randomly
distributed within given tolerances, causing a performance scatter in the engine produc-
tion [5]. The performance scatter often leads to a limited understanding of the performance
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level of the production engine. If the effect of the manufacturing uncertainty is ignored,
there may be a high risk of design failure when a new engine is designed. Therefore, it
is essential to investigate the effects of uncertain variables on the engine performance in
the early design stage as the decisions must be made to some crucial design parameters at
this stage.

In the context of the overall performance design of the engine, a number of studies
have been reported to investigate the influence of uncertain variables on the engine perfor-
mance [6–11]. Zhang et al. [6] performed uncertainty analysis for an advanced adaptive
cycle engine by coupling Monte Carlo sampling (MCS) with linear models. The authors
quantified the effects of uncertain flow capacity and adiabatic efficiency of rotating com-
ponents on the engine performance. Chen et al. [7] directly employed MCS to explore the
impact of the uncertainty in component performance on the overall performance of a tur-
boshaft engine. Cao et al. [8] quantified the effect of component performance uncertainty on
a turbofan engine using an artificial neural network-based MCS. Tai et al. [9] also integrated
the artificial neural network and the MCS to quantify the impact of efficiencies of the fan
and high-pressure compressor on the performance of a turbofan engine. Lamorte et al. [10]
proposed a polynomial response surface-based MCS to investigate the effects of uncertain
aerothermoelastic deformations on the performance of a scramjet engine. Zheng et al. [11]
applied MCS to propagate the effects of uncertain deformations of forebody, splitter, and
cowl to the performance of an advanced turbine-based combined cycle engine. It can be
found that most studies are focused on using the probabilistic methods to perform uncer-
tainty analysis in the literature of uncertainty quantification of engine performance. MCS
is the most commonly used method. Generally, MCS is commonly used as the baseline
reference due to its advantage of simplicity and accuracy [12]. The results of MCS do
not depend on the number of input variables, but highly rely on the number of samples.
Therefore, MCS becomes computationally intensive to ensure the accuracy of the results.
When it comes to the time-consuming simulation models, MCS may not be applicable
due to the computational burden. To solve this problem, several studies built surrogate
models to replace the time-consuming physical simulation model [6,8–10]. However, the
surrogate model inevitably leads to approximation error since it cannot perfectly substitute
the simulation model. The approximation error should be explained when employing
surrogate models in the uncertainty analysis. In addition, the non-probabilistic methods
are employed to perform uncertainty analysis of engine performance in only a few studies.
Chen et al. [13] applied an interval analysis method based on Taylor series expansion to
analyze the effect of component performance uncertainty on an adaptive cycle engine.
The interval analysis methods are often used in the problems where the precise statistical
information of uncertain variables cannot be obtained. However, the probabilistic meth-
ods have advantages over the non-probabilistic methods in accuracy and precision [14].
Moreover, the probabilistic methods can provide some statistics, e.g., the mean and the
standard deviation, about the uncertain variables. This information is very useful for
engine designers to better understand and reduce the engine performance uncertainty.
Therefore, this paper concentrates on the development of the probabilistic method.

The overall performance of the engine is generally simulated by a nonlinear component-
level model. The model incorporates the calculation of thermodynamic processes and
the match of various thermodynamic parameters and component performance. A set
of appropriate values can be determined through an iterative process when introducing
several physical constraints. The constraints are usually associated with the aerodynamic
and mechanic connections in the engine. To perform uncertainty quantification with such
a model, an improved uncertainty quantification method is developed to significantly
reduce the computational burden. Firstly, a more efficient sampling method, called Latin
hypercube sampling (LHS), is proposed to perform uncertainty quantification. Compared
with MCS, LHS improves the sampling strategy to achieve a significant reduction in sample
size but equally accurate result [15]. In general, LHS is a kind of stratified sampling, and
the key is to stratify the probability distributions of input variables. Due to this feature,
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LHS can uniformly distribute the sample points in the parameter space, leading to a faster
convergence than MCS [16]. Moreover, the Gaussian process model (GPM) is used to
substitute the performance simulation model of the engine. In general, GPMs are widely
used as surrogate models to substitute ex-pensive simulation models [17–19]. A GPM
represents a prior for the input–output relation of a simulator. When the training data
are obtained, usually by the space-filling design, the prior Gaussian process (GP) can be
updated using the data. Thus, a posterior GP can be established for prediction. The GPM
is a nonlinear interpolation model. Due to the inherent nature of the GPM, the prediction
error at any new point can be directly derived. Thus, it is feasible to fit the overall per-
formance simulation model and convenient to evaluate the effect of approximation error
on the predicted results. A combination of GPM and LHS, i.e., the GPM-based LHS, has
advantages over the traditional simulation-based MCS in the rate of convergence and the
robustness of the uncertainty quantification results. In addition, the GPM-based LHS can
quantify the effect of approximation error on the uncertainty quantification results thanks
to the feature of the GPM.

In this paper, the proposed GPM-based LHS method is adopted to investigate the
overall performance uncertainty of a typical turboshaft engine. According to the relevant
literature, the uncertainty regarding the component performance is taken into account in
this study. Two objectives of this study are to quantitatively describe the characterization
and propagation of the component performance uncertainty in the engine, and additionally
determine the principal contributors to the performance uncertainty of the engine. To
this end, a model is firstly built to simulate the turboshaft engine performance based on
thermodynamic cycle. Six important component performance parameters are chosen as
the uncertain parameters to be investigated. Each uncertain parameter is characterized
with a suitable probability density function. Moreover, three performance metrics (PMs)
of the engine are also determined considering the general acceptance requirements of
customers. To reduce the computational cost, three independent GPMs associated with the
PMs are built to substitute the expensive simulation model. The accuracies of the models
are examined considering the effects of run size and sampling error. Based on the GPMs
with better prediction performance, uncertainty analysis is performed by applying LHS
to propagate the component performance uncertainty to the engine performance. The
accuracy of the uncertainty analysis result is analyzed considering both approximation and
sampling errors. A detailed comparison between the GPM-based LHS and the simulation-
based MCS is performed to validate the accuracy, robustness, and convergence rate of
the proposed method. Two different scenarios are investigated and compared, where six
uncertain parameters are considered to be mutually independent and partially correlated,
respectively. Eventually, the key uncertain parameters are determined by implementing
the variance-based sensitivity analysis. Similarly, the effects of approximation error and
sampling error are explained in the sensitivity analysis.

The paper is organized as follows. Firstly, the configuration, operating principle,
and simulation model of the turboshaft engine under investigation are described. Next,
the methodologies employed in this study are introduced. After that, the uncertainty
quantification of the engine performance is reported in detail. Finally, concluding remarks
are given.

2. Modeling of the Turboshaft Engine Performance
2.1. The Configuration and Operating Principle of the Turboshaft Engine

The turboshaft engine in this paper is a widely used thermodynamic system to provide
power to helicopters. It uses air as working medium to continuously generate power by
converting thermal energy into mechanical energy [1,2]. The configuration of the engine is
presented in Figure 1. There are five main components in the engine, i.e., inlet, compressor,
combustor, turbine, and nozzle. The compressor is a combination of a three-stage axial
compressor and a single-stage centrifugal compressor. The turbine is divided into two
parts, including a high-pressure turbine (HPT) and a low-pressure turbine (LPT). These two
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parts play different roles in the engine. The HPT is used to drive the combined compressor,
whereas the LPT is used to provide useful power. In general, the compressor, the HPT and
a connecting shaft constitute the high-pressure rotor (HPR). The LPT is connected to the
helicopter rotor through machine driven system.
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Figure 1. The configuration of the turboshaft engine.

The engine runs in a continuous working cycle. A working cycle of the engine incor-
porates three main processes, i.e., compression, combustion, and expansion. The path of air
through the engine is indicated by the blue arrows shown in Figure 1. When the engine is
running, the air is firstly drawn into the engine from the inlet. Then, the air is compressed
in the compressor. During the compression process, the pressure and temperature of
the air increase due to the work done by the rotating compressor. Meanwhile, there is a
corresponding decrease in volume. Next, the high-pressure air is mixed with the fuel in
the combustor and the fuel is burnt to rise the temperature of gas (i.e., mixture resulting
from combustion). The process can considerably increase the volume while remaining the
pressure almost constant. After that, a large quantity of thermal energy is taken from the
expanding gas stream by the turbine and then turned into mechanical power. A proportion
of power is used to drive the compressor while the residual power is the available power
to drive the rotor. During the expansion process, there is a significant decrease in tempera-
ture and pressure with a corresponding increase in volume. Finally, the remainder of the
thermal energy is discharged to the atmosphere with the gas.

2.2. Turboshaft Engine Performance Simulation Model

Since this paper focuses on the performance of the turboshaft engine, a component-
level model is established to simulate the engine performance. The model is based on the
thermodynamic cycle and the match of different components. In the simulation model,
each component is considered as a “black box” and its performance is represented by the
characteristic map or empirical formula. When the component performance is specified,
the thermodynamic relations between inlet and outlet can be built to simulate the variation
of the gas state [20–22]. In this situation, if the thermodynamic parameters at the inlet are
known, the parameters at the outlet can be derived. The usual parameters of interest are
mass flow, pressure (total or static), temperature (total or static), Mach number, fuel-air
ratio, etc. Once all the cycle parameters are determined, the engine performance can be
obtained. To improve the accuracy of the model, several factors that affect the properties
of the gas are involved in this model, such as temperature and humidity. In addition,
the effects of bleed air and turbine cooling are also taken into consideration. Various
applications have shown that the component-level model is accurate enough to predict the
engine performance [23–26].
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The model consists of two simulation modules. The first one is used for thermody-
namic cycle calculation at the design point of the engine and the other one is applied
to calculate the cycles at other operating points. The former is called the design point
module and the latter is called the off-design module. For the design point, the operating
condition of the engine is fixed and a high level of performance is usually specified for
each component. Moreover, the match of cycle parameters and component performance
should also be reasonable. In this case, the design point module can determine the key flow
areas and other essential thermodynamic parameters of the engine. Thus, the design cycle
serves as a cycle reference point to perform off-design cycle calculation at other operating
points. In the off-design module, several suitable component maps are required to predict
the component performance at the operating point that deviates from the design point,
especially for the compressor and turbines. However, in most cases, the genuine maps are
not available. Thus, some standard maps are often chosen as substitutes for the genuine
maps. To adapt the standard maps to the simulation model, the standard maps are coupled
with the design values of component performance in order to adjust the characteristic
values of the maps.

Taking the crucial compressor map as an example, shown in Figure 2, there are three
characteristic parameters to represent the compressor performance, namely, the pressure
ratio (πcom), the corrected mass flow (wcom,cr), and the adiabatic efficiency (ηcom). Another
important parameter in the map is relative corrected spool speed (Ncom,cr) which reflects
the operating condition of the compressor. The map indicates the variations of πcom and
ηcom over wcom,cr under each Ncom,cr. To facilitate reading the data from the map, the
characteristic parameters are often defined as follows:

wcom,cr = f1(Ncom,cr, Zcom)
πcom = f2(Ncom,cr, Zcom)
ηcom = f2(Ncom,cr, Zcom)

, (1)

where Zcom denotes the location of the compressor operating point in the compressor
map. By introducing the parameter Zcom, the map can be conveniently integrated into
the simulation model. In this situation, two parameters, Ncom,cr and Zcom, are essential to
determine the compressor performance since the compressor performance only depends
on Ncom,cr and Zcom. In general, given Ncom,cr and Zcom, the values of wcom,cr, πcom, and ηcom
are obtained by interpolation.
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To adjust the standard map of the compressor, three coupling factors regarding the
characteristic parameters are defined as follows:

Cw = w(des)
com,cr/w(map)

com,cr

Cπ =
(

π
(des)
com − 1

)
/
(

π
(map)
com − 1

)
Cη = η

(des)
com /η

(map)
com

, (2)

where Cw, Cπ , and Cη denote the coupling factors of corrected mass flow, pressure ratio, and

adiabatic efficiency, respectively; w(des)
com,cr, π

(des)
com , and η

(des)
com denote the design values of the

compressor performance; w(map)
com,cr, π

(map)
com , and η

(map)
com denote the corresponding interpolated

values obtained from the map at given Ncom,cr and Zcom. The coupling factors reflect the
relationships between the design performance of the compressor and the standard map of
the compressor. Based on these coupling factors, any points on the standard map can be
adapted to the simulation model.

The off-design point performance of engine is highly dependent on the component
performance. Due to the changes in ambient condition or operating condition of the
engine, the operating points of various components may deviate from their corresponding
design points, which results in the variation of component performance, especially for
the compressor and turbines. For instance, the increase of the ambient temperature often
results in the decrease of the corrected spool speed of the compressor, leading to a decrease
in efficiency and mass flow. The variation of component performance leads to the rematch
of the thermodynamic cycle. In this situation, the component performance and other
key thermodynamic parameters are needed to be decided by the equilibrium running
principles [26], which are listed as follows:

(1) Flow continuity in the interrelated components;
(2) Power balance for the components in a rotor;
(3) Rotational speed equality for the components in a rotor;
(4) Pressure balance at the flow mixed sections.

To simulate the off-design point performance, a vital task is to identify the component
performance and the key thermodynamic parameters. In this model, there are four unde-
termined parameters, as presented in Table 1. Zcom, ZHPT, and ZLPT are used to identify the
performance of compressor, HPT, and LPT, respectively. The values of component perfor-
mance are read from the component maps, which has been explained in the mentioned
compressor example. Generally, the relative corrected spool speed Ncr is also an essential
parameter to determine the component performance. However, considering the control
scheme, the relative corrected spool speed can be directly derived by:

Ncr =
Nact

Ndes

√
Tdes

in
Tact

in
, (3)

where Nact is the actual spool speed of the rotational component (including compressor
and turbine), Ndes is the design spool speed of the rotational component provided by the
design module, Tact

in is actual total temperature at the inlet of the component, and Tdes
in is the

design total temperature provided by the design module. In this model, the actual spool
speed Nact is specified according to the control scheme and the actual total temperature
Tact

in can be obtained by thermodynamic calculation. The fuel flow W f is another important
thermodynamic parameter to calculate the total temperature at the outlet of combustor
and is also affected by the control scheme.
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Table 1. The undetermined parameters in the simulation model.

No. Notation Undetermined Parameters

1 Zcom The location of the operating point of compressor
2 ZHPT The location of the operating point of HPT
3 ZLPT The location of the operating point of LPT
4 W f The fuel flow

Based on equilibrium running principles, four independent constraint equations can
be built to recognize the suitable values of the undetermined parameters. The details of the
equations are presented as follows:

(1) The power balance equation for compressor and HPT is:

PHPTηHPR = PCOM, (4)

where PHPT denotes the power provided by the HPT, Pcom denotes the power required
by the compressor, and ηHPR is the mechanical efficiency of the HPR.

(2) The flow continuity equation for compressor and HPT is:

WCOM = WHPT , (5)

where Wcom denotes the mass flow in the compressor, and WHPT denotes the mass
flow in the HPT.

(3) The flow continuity equation for HPT and LPT is:

WHPT = WLPT , (6)

where WLPT denotes the mass flow in the LPT.
(4) The pressure balance equation at the outlet of nozzle is:

PNOZ = Pamb, (7)

where PNOZ denotes the static pressure at the outlet of the nozzle, and Pamb denotes
the ambient pressure.

Given the ambient condition, operating condition, control scheme and undeter-
mined parameters, all the parameters in Equations (4)–(7) can be obtained by performing
calculation of the thermodynamic cycle. Let e1, e2, e3, and e4 denote the residuals of
PHPTηHPR − PCOM, WCOM −WHPT , WHPT −WLPT , and PNOZ − Pamb, respectively. Thus,
the problem of choosing Zcom, ZHPT, ZLPT, and W f is mathematically formulated as follows:

E = f (xD) = 0 (8)

where xD = [Zcom, ZHPT , ZLPT , W f ]
T denotes a vector of undetermined parameters,

E = [e1, e2, e3, e4]
T denotes a vector of residuals, and f (·) denotes the thermodynamic

cycle calculation model. Since the analytical solutions of Equation (8) cannot be derived, a
numerical method, i.e., the multi-dimensional Newton–Raphson iteration method [6,27], is
employed to obtain the optimal solutions. With the optimal values of the undetermined
parameters, the off-design point performance of the turboshaft engine, such as output
power and specific fuel consumption (SFC), can be obtained.
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3. Methodologies
3.1. Gasussian Process Model

The GPM generally treats the response Y(x) as a realization of a stationary GP super-
imposed on a regression model. The prior for the functional relationship between inputs
and output can be defined by [17–19]:

Y(x) =
p

∑
j=1

β j f j(x) + Z(x) = F(x)T β + Z(x), (9)

where x ∈ [0, 1]d is a vector of normalized inputs, d is the number of scalar inputs,
F(x) =

(
f1(x), f2(x), . . . , fp(x)

)T is a p × 1 vector of known regression functions, β =(
β1, β2, . . . , βp

)T is a p× 1 vector of unknown regression coefficients, and Z(x) is a zero
mean stationary GP with covariance function Cov(·, ·). Given any two points xi and xj, the
covariance function of Y(xi) and Y

(
xj
)

is given by Cov
[
Y(xi), Y

(
xj
)]

= Cov
[
Z(xi), Z

(
xj
)]

=

σ2
z R
(
xi, xj

)
, where σ2

z is the process variance, R(·, ·) is the correlation function.
For a stationary GP, the correlation between Z(xi) and Z

(
xj
)

only depends on the
difference between xi and xj, which means the correlation function R(·, ·) is a function of
xi − xj, i.e., R

(
xi, xj

)
= R

(
xi − xj

)
. It is noticed that a valid correlation function must be

nonnegative for all inputs and satisfy R(0) = 1 [19,28]. This is due to the fact that Y(xi)
and Y

(
xj
)

should be similar if xi and xj are sufficiently close. The correlation function is
the most important term in the GPM since it gives the GPM the properties of interpolation
and spatial correlation [29]. Moreover, it has a direct impact on the smoothness of Y(x). In
general, the power exponential correlation function and the Matérn correlation function
are two commonly used correlation functions. These two types of correlation functions
with d-dimensional inputs x are given by:

R
(
xi, xj |θ

)
= exp

{
−

d

∑
k=1

θkhpk
k

}
, (10)

R
(
xi, xj|v, θ

)
=

d

∏
k=1

1
Γ(v)2v−1

(
2
√

vhk
θk

)v

Kv

(
2
√

vhk
θk

)
, (11)

where θ = (θ1, θ2, . . . , θd)
T is a vector of scale parameters with θk ≥ 0, p = (p1, p2, . . . , pd)

T

is a vector of power parameters with 0 < pk ≤ 2, hk =
∣∣∣xik − xjk

∣∣∣, xik is the kth element of xi,
v is the smoothness parameter, Kv(·) is the modified Bessel function of order v and Γ(·) is
the Euler Gamma function. For the power exponential correlation function, Equation (10)
provides the exponential correlation function with pk = 1 and the Gaussian correlation
function with pk = 2. As for the Matérn correlation function, two most interesting cases for
the GPM are v = 3/2 and v = 5/2:

R
(

xi, xj

∣∣∣∣32 , θ

)
=

d

∏
k=1

(
1 +

√
3hk
θk

)
exp

(
−
√

3hk
θk

)
, (12)

R
(

xi, xj

∣∣∣∣52 , θ

)
=

d

∏
k=1

(
1 +

√
5hk
θk

+
5h2

k
3θ2

k

)
exp

(
−
√

5hk
θk

)
, (13)

Equation (9) just reflects the prior knowledge about the relationship between inputs
and output of a simulator. It must be updated using the observation data. In general, the

output data are collected at a series of design sites D =
{

x(1), x(2), . . . , x(n)
}T

which are
usually selected based on a certain criterion, e.g., the maximin criterion. According to the
design sites D, a vector of observed outputs Yn can be obtained by running the simulator.
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Considering the assumptions of the GPM, Yn follows a multivariate normal distri-
bution N

(
FD(x)

T β, ΣD

)
, where FD(x) =

[
F
(

x(1)
)

, F
(

x(2)
)

, . . . , F
(

x(n)
)]

is a matrix of re-

gression functions, ΣD = σ2
z RD is the covariance matrix, and RD =

(
R
(

x(i), x(j)
))

i,j=1,2,...,n
is defined in terms of the correlation function R(·, ·). Let β have a noninformative prior
p(β) ∝ 1. Given a new site x∗, a joint probability distribution can be expressed as:

P
(

Yn, Y(x∗)|β, σ2
z , θ
)
∼ N

([
FD(x)

T

F(x∗)T

]
β, σ2

z

[
RD r(x∗)

r(x∗)T 1

])
, (14)

where r(x∗) =
(

R
(

x(1), x∗
)

, R
(

x(2), x∗
)

, . . . , R
(

x(n), x∗
))T

. By conditioning Equation (14)
on the sample data, a conditional normal distribution can be derived to be:

P
(

Y(x∗)|Yn, β, σ2
z , θ
)
∼ N

(
µ
(

Y(x∗)|Yn, β, σ2
z , θ
)

, var
(

Y(x∗)|Yn, β, σ2
z , θ
))

, (15)

where,
µ
(

Y(x∗)|Yn, β, σ2
z , θ
)
= F(x∗)T β− r(x∗)TRD

−1
(

Yn − FD(x)
T β
)

, (16)

var
(

Y(x∗)|Yn, β, σ2
z , θ
)
= σ2

z

(
1− r(x∗)TRD

−1r(x∗)
)

, (17)

When considering multiple new sites, a posterior GP can be derived to be [30]:

Y(·)
∣∣∣(Yn, β, σ2

z , θ
)
∼ GP

(
µ
(
·|Yn, β, σ2

z , θ
)

, cov
(
·, ·|Yn, β, σ2

z , θ
))

, (18)

where µ
(
· |Y n, β, σ2

z , θ
)

has the same expression as Equation (16) and cov
(
·, · |Y n, β, σ2

z , θ
)

is
given by:

cov
(

xi, xj|Yn, β, σ2
z , θ
)
= σ2

z

(
R
(
xi, xj

)
− r(xi)

TRD
−1r
(
xj
))

. (19)

It can be observed that the conditional mean and covariance functions given by
Equations (16), (17), and (19) depend on the unknown parameters β, σ2

z , and θ. Based on
the collected sample data, a classical maximum likelihood estimation (MLE) method is
employed to estimate the unknown parameters. Given the multivariate normal assumption
for Yn, the likelihood function can be written as:

L
(

Yn
∣∣∣β, σ2

z , θ
)
=

(
2πσ2

z
)−n/2√
|R|

exp

−
(

Yn − F(x)T β
)T

R−1
(

Yn − F(x)T β
)

2σ2
z

, (20)

where |R| denotes the determinant of R. For convenience, the log likelihood of Yn except
for constant terms can be given by:

L = −1
2

nln
(

σ2
z

)
+ ln(|R|) +

(
Yn − F(x)T β

)T
R−1

(
Yn − F(x)T β

)
σ2

z

. (21)

If θ is specified, the MLE of β is just the generalized least squares estimation:

β̂ =
(

FTR−1F
)−1

FTR−1Yn, (22)

and the MLE of σ2
z is given by:

σ̂2
z =

1
n

(
Yn − FT β̂

)T
R−1

(
Yn − FT β̂

)
. (23)
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Plugging β̂ and σ̂2
z into Equation (21) and omitting the constant term, the log likelihood

can be derived to be:

L
(

Yn
∣∣∣β̂, σ̂2

z , θ
)
= −1

2

[
nln
(

σ̂2
z (θ)

)
+ ln(|R(θ)|)

]
. (24)

Thus the likelihood function explicitly depends on θ since β̂ and σ̂2
z are only functions

of θ. It turns out that the MLE θ̂ of θ is obtained by maximizing L
(

Yn
∣∣∣β̂, σ̂2

z , θ
)

, which is
equivalent to minimizing:

g(θ) = nln
(

σ̂2
z (θ)

)
+ ln(|R(θ)|). (25)

A suitable numerical optimization method can be used to obtain θ̂ and then a model pre-
diction at new site x∗ can be performed by replacing β, σ2

z , and θ with β̂, σ̂2
z , and θ̂, respectively.

3.2. Gaussian Process Model-Based Latin Hypercube Sampling

In this study, the LHS is employed to perform uncertainty quantification. In general,
the LHS is a kind of stratified sampling, the key of which is to stratify the probability
distributions of input variables [31,32]. Considering an input variable that follows a certain
distribution, the CDF of the variable is firstly stratified into a set of nonoverlapping intervals
with the same length. The stratification can be projected to the variable through the inverse
CDF. Thus, the variable can also be divided into the same number of equiprobable intervals.
Note that these intervals are not necessarily with equal length. Next, one random value is
needed to be selected from each equiprobable interval and a series of random values can
then be obtained for the variable. For multiple input variables, each variable corresponds
to a list of random values. After randomly combining the values from different variables
with each other, a set of sample points can be obtained and each sample point contains a
group of random values from different variables. Since the LHS spreads the random values
more evenly across all possible values within the ranges of variables, it is more efficient
than the MCS in most instances.

Let X ∈ [0, 1]d denote a d-dimensional vector of normalized continuous random
variables, and F(·) = {F1(·), F2(·), . . . , Fd(·)} denote a d-dimensional vector of CDFs of
X. Assuming that a sample size of n is specified, a general procedure of the LHS can be
summarized as follows:

(1) Stratify the vertical axis on the plot of Fi(·) of Xi into n nonoverlapping intervals
with the same length: [Vi,0, Vi,1 ), [Vi,1 , Vi,2), . . . , [Vi,n−1 , Vi,n], where Vi,j = Fi(0) +
j(Fi(1)− Fi(0))/n, i = 1, 2, . . . , d, j = 0, 1, . . . , n;

(2) Map the boundary values Vi,j on the vertical axis to the values of Xi defined on the
horizontal axis using the inverse CDF Fi

−1(·);
(3) Stratify the random variable Xi using the mapped values and obtain intervals:[

0, Fi
−1(Vi,1)

)
,
[
Fi
−1(Vi,1) , Fi

−1(Vi,2)
)
, . . . ,

[
Fi
−1(Vi,n−1) , 1

]
;

(4) Select a random value from each interval of Xi and generate a n× d matrix where the
ith column contains n random values of Xi;

(5) Order the values in every column of the matrix randomly and complete the LHS.

When performing uncertainty quantification by coupling LHS with GPM, a set of
samples are firstly generated according to the CDFs of inputs. Then, the response variable
can be evaluated for every sample through the GPM. With the evaluated values, the
statistics of response variable, such as mean and variance, can be obtained. Since posterior
distribution of the response variable can be predicted by the GPM, the statistics can then be
viewed as random variables and their distributions can also be derived. In this situation,
the expectation can be regarded as the estimation of the statistic, while the variance can
be used as an indicator of the estimation accuracy. Thus, it is possible to directly estimate
the uncertainties of the two statistics (mean and variance) resulting from the surrogate
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model uncertainty. The estimation of model uncertainty is an advantage of the GPM over
other models.

Considering a n-dimensional response variables Yn = (y1, y2, . . . , yn)
T , a multivariate

normal distribution of Yn, where Yn ∼ N(µ, Σ), can be obtained based on the GPM. Since
the mean and variance of Yn are two random variables, the expectations and variances of
these two random variables are given by:

E

(
1
n

n

∑
i=1

yi

)
=

1
n

n

∑
i=1

µ(yi), (26)

V

(
1
n

n

∑
i=1

yi

)
=

1
n2

(
n

∑
i=1

var(yi) + 2 ∑
i,j,i<j

cov
(
yi, yj

))
, (27)

E

(
1
n

n

∑
i=1

(yi − y)2

)
= trace[ΛΣ] + µTΛµ, y =

1
n

n

∑
i=1

yi, (28)

V

(
1
n

n

∑
i=1

(yi − y)2

)
= 2trace[ΛΣΛΣ] + 4µTΛΣΛµ, (29)

where, E(·) denotes the expectation of the variable, V(·) denotes the variance of the
variable, var(·) denotes the variance of the response variable shown in the diagonal of the
covariance matrix Σ, cov(·, ·) denotes the covariance of the response variable shown in the
matrix Σ, trace[·] denotes the trace of a matrix, and Λ is a symmetric matrix derived from
the quadratic form of the variance of the Yn.

3.3. Variance-Based Sensitivity Analysis

The variance-based sensitivity analysis (also called Sobol indices or the Sobol method)
is a kind of global sensitivity analysis approach [33,34]. Based on the basic principle of
variance decomposition, the total variance of the model output can be decomposed into
fractions which are induced by the uncertain inputs and sets of inputs. Let a model output
Y(x) be a function of uncertain inputs x = {x1, x2, . . . , xd}, where x ∈ [0, 1]d. It should be
noted that Y is a scalar output. Assuming that the elements of x are mutually independent,
a decomposition of the total variance of Y can be expressed as [35]:

Var(Y) =
d

∑
i=1

Vi +
d

∑
i<j

Vi,j +
d

∑
i<j<k

Vi,j,k + . . . + V1,2,...,d, (30)

where Vi = Var(E(Y|xi )), Vi,j = Var
(
E
(
Y
∣∣xi, xj

))
−Vi−Vj, and so on. The term Var(E(Y|xi ))

implies the expected reduction in the total variance of Y when the value of xi is fixed. Similarly,
Var
(
E
(
Y
∣∣xi, xj

))
is the expected reduction in the total variance of Y given both xi and xj. In this

case, Equation (30) allows us to partition the total variance of Y into terms that are associated with
inputs and interaction effects between them. Consequently, the quantities Vi and Vi,j can be used to
measure the sensitivities of xi and the interaction between xi and xj, respectively. In general, both
measures Vi and Vi,j are often converted into scale-invariant versions, as follows:

Si =
Vi

Var(Y)
=

Var(E(Y|xi ))

Var(Y)
, (31)

Si,j =
Vi,j

Var(Y)
=

Var
(
E
(
Y|xi , xj

))
−Var(E(Y|xi ))−Var

(
E
(
Y
∣∣xj
))

Var(Y)
, (32)

where Si is called the first-order sensitivity index (or main effect) and Si,j is referred to
as the second-order sensitivity index (or two factor interaction). The index Si describes
the fractional contribution of xi to the total variance while xi,j exhibits the fractional
contribution of the interaction between xi and xj to the total variance. It is noticed that
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higher-order sensitivity indices are usually not considered since the high-order effects are
usually not as predominant as the first-order and the second-order effects.

To evaluate the sensitivity indices, an effective index estimator based on pick-freeze
method is proposed to estimate those indices. The estimator is given by [36]:

SX,N =

1
N ∑N

i=1 YiYX
i −

(
1
N ∑N

i=1 Yi

)(
1
N ∑N

i=1 YX
i

)
1
N ∑N

i=1 Y2
i −

(
1
N ∑N

i=1 Yi

)2 , (33)

where SX,N is the sensitivity index of X, X ∈ {x1, x2, . . . , xd}, Yi (for i = 1, 2, . . . , N) is
a deterministic function value with all sampled inputs x, and YX

i (for i = 1, 2, . . . , N) is
also a deterministic function value with all resampled inputs except X. In practice, the
computation of SX,N usually involves hundreds or thousands of evaluations of the model
output. If the model is implemented by a complicated computer code, the estimation of
SX,N will be time-consuming. To reduce the computational cost, the simulation model is
approximated by the GPM in this study. Thus, the formula of SX,N can be rewritten as:

S̃X,N =

1
N ∑N

i=1 ỸiỸX
i −

(
1
N ∑N

i=1 Ỹi

)(
1
N ∑N

i=1 ỸX
i

)
1
N ∑N

i=1 Ỹ2
i −

(
1
N ∑N

i=1 Ỹi

)2 , (34)

where Ỹi follows a conditional GP, i.e., Ỹi ∼ GP
(
µ
(
·
∣∣Yn, β, σ2

z , θ
)
, cov

(
·, ·
∣∣Yn, β, σ2

z , θ
))

.
After substituting Ỹi for Yi, both the mean and variance of Ỹi can be taken into account in
Equation (34). Therefore, the sensitivity index S̃X,N can be viewed as a random variable.
Its expectation is the regular sensitivity index, implying the estimation of SX,N . Meanwhile,
its variance can be used to evaluate the estimation accuracy of SX,N . Considering a sample

set of S̃X,N , denoted by
{

S̃(i)
X,N , i = 1, 2, . . . , q

}
, the unbiased estimates of the mean and

variance of S̃X,N can be derived to be

µ̂S̃X,N
=

1
q

q

∑
i=1

S̃(i)
X,N , (35)

and

σ̂S̃X,N
=

1
q− 1

q

∑
i=1

(
S̃(i)

X,N − µ̂S̃X,N

)2

, (36)

where µ̂S̃X,N
denotes the expectation of S̃X,N , and σ̂S̃X,N

denotes the variance of S̃X,N . It
should be noted that the quantity σ̂S̃X,N

also represents the uncertainty of sensitivity index
arising from the GPM. Thus, the uncertainty of estimating sensitivity indices by the GPM
can be quantified. Moreover, the sampling error can also be investigated by considering the
impact of sample size n on the sensitivity indices in this framework. It should be noted that
the quantity n is associated with the sampling error due to the feature of the pick-freeze
method, i.e., estimating the indices with a finite set of samples.

4. Results and Discussion

In this section, the application of the proposed method to quantify the performance
uncertainty of the turboshaft is presented in detail. First of all, the performance baseline is
determined using the simulation model. The overall performance parameters of interest
are chosen and the uncertain parameters are defined, which is a fundamental work to
build the GPMs and perform uncertainty quantification. After that, the GPMs associated
with the overall performance are then established considering the effects of sampling
variability in the experimental design and run size of the simulation model. Based on the
GPMs, a detailed comparison of the proposed GPM-based LHS with MCS is discussed to
explain the advantages of the proposed method. The effects of independent and correlated
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uncertain parameters are also compared to illustrate the rationality of the independence
assumption. Based on the above analysis, the effects of uncertain parameters are then
investigated under the assumption of independence. Eventually, the important uncertain
parameters to the engine performance uncertainty are identified using the variance-based
sensitivity analysis.

4.1. Engine Performance Baseline and Uncertain Parameters

This paper focuses on the uninstalled, sea level static performance of the turboshaft
engine. The maximum power is chosen as the design point of the engine. The ambient
conditions, operating conditions, and control variables at the design point are summarized
in Table 2. The thermodynamic cycle for the design point is calculated through the design
point module. A set of desired values of the thermodynamic parameters is determined.
Some important parameters serve as references to calculate the off-design point perfor-
mance, such as component performance, throat area of the nozzle, mechanical efficiency
and so on. The design point performance is treated as the performance baseline of the
engine. Three key performance metrics (PMs) are analyzed in this study, including the
output power (denoted as Pe), the SFC, and the total temperature at the outlet of the HPT
(denoted as T45). Due to confidentiality concerns, the design values of parameters and the
performance baseline are not presented in this paper. It is noticed that the values of the
PMs shown in this paper are the ratios of the actual PMs to their baseline values. Based on
the results of design point calculation and given the values of control variables, the PMs
at any other operating points can be calculated using the off-design point module. In this
study, the off-design module is used to establish the GPMs for the three PMs.

Table 2. The ambient conditions, working conditions, and control variables.

Parameter Value Unit

Ambient temperature 288.15 K
Ambient pressure 101,325 Pa

Height 0 km
Mach number 0 –

Relative spool speed of HPR (control variable) 0.97 –
Relative spool speed of LPT (control variable) 1 –

In this paper, the effects of flow capacity and adiabatic efficiency of the rotational
component are investigated. This is due to the fact that the deviations of the component
performance often lead to significant variations of the three PMs [37,38]. Table 3 gives a
detailed description of the uncertain parameters. The variation range (from low level to
high level) over which each of the six uncertain parameters can be varied in this study is
also summarized in Table 3. It should be noted that the ranges represent relative deviations
from their design values.

The range (−0.02 to 0.02) is adequate for the performance uncertainty quantification
purpose since the anticipated variability in the actual component performance is strictly
controlled. In addition, the six uncertain parameters are all assumed to follow truncated
Gaussian distributions around their design values. The distributions are truncated by the
range [µ− 3σ, µ + 3σ], where, µ and σ are the mean value and standard deviation of the
Gaussian distribution, respectively. This means that the actual component performance
falls into the range [µ− 3σ, µ + 3σ] with a probability of 99.73%. It makes sense that the
variation of the component performance is restricted within a certain range in practice.
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Table 3. The description of the uncertain parameters.

Component Uncertain Parameter Notation High Level Low Level Probabilistic Distribution

Compressor Flow capacity wCOM 0.02 −0.02 Truncated Gaussian distribution
Adiabatic efficiency ηCOM 0.02 −0.02 Truncated Gaussian distribution

HPT
Flow capacity wHPT 0.02 −0.02 Truncated Gaussian distribution

Adiabatic efficiency ηHPT 0.02 −0.02 Truncated Gaussian distribution

LPT
Flow capacity wLPT 0.02 −0.02 Truncated Gaussian distribution

Adiabatic efficiency ηLPT 0.02 −0.02 Truncated Gaussian distribution

4.2. Gaussian Process Modeling for the Turboshaft Engine Performance

Since it is time-consuming to perform uncertainty analysis based on the simulation
model, the functional relationships between three PMs and the uncertain parameters are
fitted by three GPMs using the training data from a carefully designed experiment. Firstly,
the maximin Latin hypercube design (LHD) is employed to obtain the experimental design.
The reason for using the maximin LHD is that it can uniformly scatter the points across
the experimental region. Thus, the constructed GPM can make predictions with a small
prediction error. In most instances, the maximin LHD is often chosen as the standard design
for fitting the GPM [19]. Secondly, the run size of the experimental design is another key
factor that has a large influence on the prediction accuracy of the GPM. A recommendation
shows that the run size of an effective LHD should be at least 10 times the dimension
of input parameters [39]. In this study, there are six input parameters involved in the
GPMs. Thus, a suitable design requires at least 60 points. In terms of the GPMs of Pe, SFC
and T45, the prior processes of these PMs are assumed to be independent, which implies
the GPMs are constructed respectively. For the GPM of each PM, a constant prior mean
function and the Matérn (v = 5/2) correlation function are used. This is because the
training data obtained from the simulation experiments do not show any strong trend over
the experimental region and the Matérn correlation function can give better fitting and
prediction performance. Finally, the posterior GPMs are estimated with the training data.

To evaluate the influence of the run size, several maximin LHDs of different sizes <,
where < ∈ {60, 90, 120, 150, 180}, are compared using two performance criteria: normal-
ized root mean squared error (NRMSE) and predictivity coefficient (Q2). These two criteria
are defined as follows:

NRMSE =
1

Ybase

√√√√ 1
n

(
n

∑
i=1

(
Y
(
x(i)
)
− Ŷ

(
x(i)
))2)

, (37)

Q2 = 1−
∑n

i=1

(
Y
(

x(i)
)
− Ŷ

(
x(i)
))2

∑n
i=1
(
Y
(
x(i)
)
−Y

)2 , Y =
1
n

n

∑
i=1

Y
(

x(i)
)

, (38)

where Ŷ
(

x(i)
)

denotes the predicted mean value provided by the GPM, Y
(

x(i)
)

denotes
the simulated value given by the simulation model, and Ybase denotes the baseline value of
the PM. Generally, the closer Q2 is to 1 and the smaller NRMSE is, the more accurate the
GPM is.

To assess the accuracy of the GPMs with different LHDs, a maximin LHD of size 50
is generated as the validation data. Moreover, for each size in <, the design is repeated
30 times to investigate the effect of sampling variability in the LHD. To illustrate the
effects of run size and sampling variability, six boxplots regarding NRMSE and Q2 for the
GPMs of three PMs are presented in Figure 3. It is seen that all the results show a good
convergence. More specifically, from Figure 3a,c,e, it can be observed that the NRMSEs
decrease obviously as the run size varies from 60 to 180. Meanwhile, the Q2s approach to 1
as the size varies from 60 to 180, as shown in Figure 3b,d,f. In addition, the variations of
these two criteria resulting from sampling variability also decrease as the run size increases
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gradually. Table 4 gives the mean values of NRMSE and Q2 with respect to the LHD
size. It can be found that the maximum mean value of NRMSE is only 0.001237, while
the minimum mean value of Q2 is very close to 1, confirming that the three GPMs are of
high accuracy. After making a tradeoff between the computational cost and the prediction
accuracy, the final choice of the LHD is of size 180. Three GPMs with better prediction
performance are established. The validation shows that the criteria of the final three GPMs
are all better than the mean values shown in Table 4.
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Table 4. Mean values of NRMSE and Q2 for GPMs of three PMs obtained by 30 LHD replications for each size in <.

LHD Size
T45 Pe SFC

NRMSE Q2 NRMSE Q2 NRMSE Q2

60 0.000508 0.999573 0.001237 0.999121 0.000761 0.997458
90 0.000451 0.99966 0.001118 0.999278 0.000696 0.997864

120 0.000417 0.999686 0.000999 0.999427 0.000620 0.998322
150 0.000398 0.999705 0.000900 0.999536 0.00059 0.998464
180 0.000378 0.999715 0.000826 0.999609 0.000538 0.998723

4.3. Uncertainty Quantification of the Turboshaft Engine Performance
4.3.1. Comparison of the GPM-Based LHS with the Simulation-Based MCS

In this study, the propagation of the component performance uncertainty is imple-
mented by LHS. Given each set of uncertain parameters, the engine performance is pre-
dicted using the built GPMs. Thus, it is essential to validate the GPM-based LHS. To this
end, the uncertainty analysis results under different sample sizes are firstly compared
with those obtained by applying MCS into the simulation model. To this end, all the
uncertain parameters are assumed to be independent identically distributed. As mentioned
in Section 4.1, each uncertain parameter follows a truncated Gaussian distribution. The
mean value is set to 0 and three times the standard deviation is set to 0.01. After that, a
detailed comparison between the proposed GPM-based LHS and the classical simulation-
based MCS is given in Figure 4 by varying the sample size from 1000 to 20,000. With the
simulation-based MCS, the mean and variance of each PM are obtained for each given
sample size, whereas, the distributions of these two statistics of each PM are estimated
through the GPM-based LHS. As shown in Figure 4, the blue dashed lines represent the
MCS results with different sample sizes, including the mean and variance of each PM, and
the green solid lines represent the mean values of the two statistics estimated by the GPM-
based LHS. Moreover, Figure 4 also provides the 0.005-quantiles and 0.995-quantiles of the
distributions of the statistics, as represented by the red dotted lines. It can be observed that
the proposed method shows a much better convergence in mean estimates than the MCS, as
indicated by Figure 4a,c,e. The maximum relative difference of the mean estimates between
the MCS and the GPM-based LHS is only about 0.028% when the sample size is larger than
10,000. This validates the accuracy of the GPM-based LHS in estimating the mean values of
the PMs. When the sample size is less than 10,000, the proposed method also outperforms
the MCS in the robustness of mean estimates and maintains the equal accuracy. In addition,
the narrow prediction intervals (between 0.005-quantile and 0.995-quantile) also indicate
the mean estimates are credible.

In the meantime, it can be observed in Figure 4b,d,f that the sample size seems
to have a significant influence on the variance estimates of the PMs for both methods.
The convergences of the variance estimates do not perform well like those of the mean
estimates in the GPM-based LHS method. However, the proposed method still gives
a better convergence than the MCS. For the GPM-based LHS, as the sample size varies
from 10,000 to 20,000, the maximum variations of the variance estimate for T45, Pe, and
SFC are 9.83 × 10−7, 1.87 × 10−6, and 4.08 × 10−7, respectively. As a comparison, the
corresponding results for the MCS are 1.31 × 10−6, 3.11 × 10−6, and 5.43 × 10−7. Recall
that the above results are based on the normalized sample data. Moreover, taking the
results of the MCS as a baseline, the maximum relative errors of the variance (or standard
deviation) estimated by the GPM-based LHS are 3.58% (or 1.77%), 3.73% (or 1.85%), and
3.04% (or 1.51%) for T45, Pe, and SFC, respectively. The differences between these two
methods are very small in terms of the variance estimates, which demonstrates the high
prediction accuracy of the proposed method. Additionally, the estimation accuracy of
the variance is desired due to the narrow prediction interval. Therefore, the proposed
GPM-based LHS method for uncertainty analysis is validated. The method is more robust
than the MCS method since the variations of mean estimates and variance estimates are all
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smaller than the MCS results as the sample size varies. Eventually, a reasonable sample
size of 10,000 is determined for the following uncertainty analysis after balancing the
computational cost and the prediction accuracy.
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4.3.2. Comparison of Effects of the Independent and Correlated Uncertain Parameters

To illustrate the rationality of the independence assumption, two specific scenarios
are compared in this section. The first one is that six uncertain parameters are mutually
independent, and the other one is that correlations between some uncertain parameters are
considered. For the first scenario, six uncertain parameters are assumed to be independent
identically distributed. As for the second scenario, a strong correlation between the flow
capacity and the adiabatic efficiency of the compressor is additionally assumed, whereas
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the flow capacity and adiabatic efficiency of the HPT and the LPT are still independent. In
each scenario, the uncertain parameters follow the truncated Gaussian distribution with
zero mean. Three different standard deviations, i.e., 0.002, 0.003, and 0.004, are considered
to investigate the impact of the uncertain parameters. In addition, a correlation efficiency
of 60% is specified to represent the correlation between the flow capacity and adiabatic
efficiency of the compressor in the second scenario. Thus, a joint Gaussian distribution
regarding the two uncertain parameters is generated. Under these assumptions, the
distributions of three PMs in each case are predicted through the validated GPM-based
LHS method. The results are presented in Figure 5. The blue solid lines represent the
distributions of the PMs obtained under the assumption of independence, while the red
dashed lines represent those obtained by considering the correlation of partial parameters.
It should be noted that the mean and variance of the distribution are predicted by their
mean estimates. It can be observed that there is no significant difference in mean estimates
between the two cases and the difference is negligible. This can also be found from
the summarized results in Table 5. The maximum relative deviation is only 0.003923%.
However, the correlation between flow capacity and adiabatic efficiency of the compressor
has an impact on the standard deviations of the PMs, especially for the output power Pe.
The standard deviation of Pe changes by around 6.6–8.7% as the standard deviation of the
uncertain parameters varies within given ranges. As for the other two PMs, the change is
about 2.3–4.2% for T45 and 3.0–3.7% for SFC. Moreover, it can be observed in Table 5 that
the correlation has a negative effect on the standard deviations of T45 and Pe, but a positive
effect on that of SFC. In this situation, if the effect of correlation is ignored, the performance
scatter of T45 and Pe may be somewhat overestimated and that of SFC be underestimated
to some extent. In practice, the correlation largely depends on the design of the compressor.
Thus, it is difficult to obtain a specific correlation between the flow capacity and adiabatic
efficiency of the compressor in the preliminary design stage of the engine. In this case, one
may preliminarily make an assumption about the correlation based on the engineering
experience or directly assume that the parameters are independent of each other. Since the
effect of correlation appears weak, the assumption of independence can be acceptable in
the early design of the engine.

Table 5. The relative deviations between the two scenarios for three PMs under different standard deviations of the
uncertain parameters.

Performance Parameters Distribution Parameters Relative Deviation
(σ = 0.002)

Relative Deviation
(σ = 0.003)

Relative Deviation
(σ = 0.004)

T45
Mean −0.000175% −0.000876% −0.001247%
Std * −2.337830% −4.218916% −3.548779%

Pe
Mean 0.001091% 0.002451% 0.003923%
Std * −6.624252% −8.693671% −8.350732%

SFC
Mean −0.000679% −0.001874% −0.003072%
Std * 3.716896% 2.997669% 3.738209%

* Std denotes the standard deviation of the parameter.

4.3.3. Uncertainty Analysis of the Turboshaft Engine Performance

In this section, the effects of six uncertain parameters on three PMs of the turboshaft
engine is analyzed considering the independence assumption of the parameters. As
presented in Figure 5, an apparent phenomenon is that the scatter of each PM becomes
larger as the standard deviations of the uncertain parameters increase. In this paper,
the performance scatter is defined as six times the standard deviation of the PM, which
corresponds to the range [µ− 3σ, µ + 3σ] of the PM distribution. The ±3σ-quantile can be
approximated as the maximum (positive and negative) deviations from the nominal design
value of the PM since the mean value of the PM distribution is very close to the design
value. From Table 5, it can be found that the uncertain parameters have a larger influence
on Pe than on T45 as well as SFC. Specifically, when the standard deviations of the uncertain
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parameters is set to the low level (0.002), the performance scatter of Pe is 0.04348, whereas
those of T45 and SFC are 0.02653 and 0.01678, respectively. Furthermore, the performance
scatters almost double when the standard deviations of the uncertain parameters increase
to the high level (0.004). For turboshaft engine designers, the minimum Pe, maximum T45,
and maximum SFC are three important performance indices that need to be paid attention
to in the overall performance design. The results of this study indicate that the uncertainties
(standard deviation of 0.002) in the component performance may lead to a 1.3% increase
in T45, a 0.84% increase in SFC, and a 2.2% decrease in Pe. These deviations nearly double
as the uncertainties become greater (standard deviation of 0.004). Therefore, the engine
designers should reserve sufficient performance margins for engine performance (T45, Pe,
and SFC) to compensate for the effect of the component performance uncertainty.
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4.4. Sensitivity Analysis of the Turboshaft Engine Performance

After analyzing the engine performance uncertainty, a next important task is to explain
the contributions of the uncertain parameters to the performance uncertainties of the PMs
and determine the important uncertain parameters. To this end, a variance-based sensitivity
analysis which is described in Section 3.3 is implemented for each PM. In this section, all
the uncertain parameters are assumed to be independent identically distributed and follow
the truncated Gaussian distribution N

(
0, 0.012/32). As demonstrated in Section 3.3, the

estimation of the sensitivity index (i.e., S̃X,N) is mainly affected by the approximation error
and sampling error. The former results from the function values predicted by the GPMs
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and the latter is caused by the finite sample size. Thus, it is essential to firstly investigate
the effects of these two kinds of errors.

To investigate the approximation error, the sample size n in the formula of S̃X,N is
set to 20,000. For each sample, the distributions of three PMs are predicted by using the
built GPMs. Moreover, for each predicted distribution, 100 samples are sampled. Note
that all the sampling are based on the LHS method. Figure 6 presents the boxplots of the
first-order sensitivity indices of six uncertain parameters. The first-order sensitivity indices
of six uncertain parameters are denoted as S1, S2, S3, S4, S5, and S6, which corresponds
to the order of the parameters in Table 3. This study focuses on the first-order sensitivity
index since the first-order sensitivity indices of six uncertain parameters can account for
almost 100% of the total variability in each PM, which will be illustrated in the following
analysis. As shown in Figure 6, the variation of each sensitivity index is so small that it can
be negligible in this study. It also shows the interquartile range for each boxplot, which is
displayed above the corresponding boxplot. The small interquartile ranges indicate that
the approximation error has a very weak effect on the sensitivity indices.
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To analyze the sampling error, the mean values and the standard deviations of the
sensitivity index S̃X,N under different sample size n are compared, ignoring the effect of
the approximation error. The sample size varies from 2000 to 20,000 with a step of 2000.
To estimate the mean value and standard deviation, the calculation of sensitivity indices
is repeated 30 times for each sample size. The mean estimates of sensitivity indices with
respect to sample size are presented in Figure 7a,c,e. It can be seen that the mean estimates
do not change much when the sample size increases from 2000 to 20,000. Thus, mean
estimate of sensitivity index is insensitive to the sample size. Since the mean estimate
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predominantly reduces the influence of sampling error, it can be adopted to perform
sensitivity analysis for the three PMs of the turboshaft engine. In Figure 7b,d,f, a significant
decrease in standard deviations can be clearly observed as the sample size increases,
which means the sample error can be significantly reduced by taking a large sample size.
Eventually, the sample size is chosen as 20,000 and the mean value of S̃X,N is used to
estimate the sensitivity index.
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The final sensitivity analysis results for the turboshaft engine performance are shown
in Figure 8. It should be noted that the value of each sensitivity index is marked above the
corresponding bar. The first-order sensitivity indices of six uncertain parameters nearly
account for 100% of the total variabilities of the three PMs, more specifically, 99.48% of
the total variability in Pe, 99.38% of the total variability in T45, and 99.68% of the total
variability in SFC. Only a very small proportion of total variability is attributed to the sum
of high-order sensitivity indices. The results imply that the main effects of six uncertain
parameters have much larger influence on the PMs than the interaction effects do. Recall
that S1, S2, S3, S4, S5, and S6 denote the first-order sensitivity indices of flow capacity of
the compressor (wcom), adiabatic efficiency of the compressor (ηcom), flow capacity of the
HPT (wHPT), adiabatic efficiency of the HPT (ηHPT), flow capacity of the LPT (wLPT), and
adiabatic efficiency of the LPT (ηLPT), respectively. From Figure 8, it can be observed that
the six parameters play different roles in the three PMs. For T45, ηHPT is the most important
parameter, which accounts for 37.485% of the total variability in T45. In the meantime,
ηcom, wHPT, and wLPT are also important to T45 as their indices are all greater than 10%. In
particular, wcom and ηLPT are found to have little effect on T45 due to their small indices
(Si ≤ 1%). For Pe, wLPT has the most important effect on Pe comparing to other parameters
since it contributes the highest percentage (35.89%) of the total variability in Pe. The rest
of the parameters except ηLPT are all considered as important parameters for Pe since the
sum of their indices are about 60% and each index exceeds 10%. By contrast, ηLPT is less
important to Pe. As for SFC, there are two most important parameters (wLPT and ηLPT) due
to their large indices. The remaining four parameters are relatively unimportant to SFC. It
should be noticed that wHPT has, particularly, almost no effect on SFC.
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5. Conclusions

The demand for quantifying the uncertainty of engine performance in the preliminary
design is increasing due to the expectation of reliable engine performance design. In
this paper, a GPM-based uncertainty quantification method is proposed to quantify the
effect of component performance uncertainty on the overall performance of a turboshaft
engine. Six uncertain parameters related to the component performance and three PMs
of the engine are determined. To significantly reduce the number of running the time-
consuming simulation model, three GPMs that reflect the functional relationships between
six uncertain parameters and three PMs are constructed. The validation shows that the
GPMs are of high accuracy. LHS is utilized to propagate the uncertainty to the engine
performance and provide the statistical information of the engine performance. The GPM-
based LHS is validated to perform better than the most frequently used simulation-based
MCS. In addition, based on the GPMs, the variance-based sensitivity analysis is employed
to recognize the main contributors to the engine performance uncertainty. According to
the first-order sensitivity index, the important uncertain parameters for three PMs are
determined with the criterion Si ≥ 10%, which is very useful for the engine designers. To
obtain reliable and robust results, both approximation and sampling errors are investigated
in this study. Some useful results are summarized as follows:

(1) A strong correlation (with a correlation efficiency of 60%) between the flow capacity
and adiabatic efficiency of compressor only has a small influence on the standard
deviation of the turboshaft engine performance. Specifically, the standard deviation
of Pe decreases by around 6.6–8.7% as the standard deviation of uncertain parameters
varies from 0.002 to 0.004. Likewise, a reduction of 2.3–4.2% is observed for T45, but
an increase of 3.0–3.7% for SFC. With an assumption of independent parameters,
the maximum T45, minimum Pe, and maximum SFC deviate 1.3%, 2.2%, and 0.84%
from their nominal design values in the unfavorable direction when the standard
deviations of uncertain parameters are equal to 0.002. The deviations almost double
as the standard deviations increase to 0.004.

(2) The first-order sensitivity indices of six uncertain parameters almost account for
100% of the total variabilities of the three PMs, more specifically, 99.48% of the total
variability in Pe, 99.38% of the total variability in T45, and 99.68% of the total variability
in SFC. Only a very small proportion of total variability is attributed to the sum of
high-order sensitivity indices.

(3) The important parameters for T45 are ηcom, wHPT, ηHPT, and wLPT. All the uncertain
parameters other than ηLPT are the important parameters for Pe. Only wLPT and ηLPT
are the important parameters for SFC. In particular, wLPT is important to all the three
PMs of the turboshaft engine.
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