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Abstract: The aim of this work is to present the numerical results of the influenza disease nonlinear
system using the feed forward artificial neural networks (ANNs) along with the optimization of the
combination of global and local search schemes. The genetic algorithm (GA) and active-set method
(ASM), i.e., GA-ASM, are implemented as global and local search schemes. The mathematical
nonlinear influenza disease system is dependent of four classes, susceptible S(u), infected I(u),
recovered R(u) and cross-immune individuals C(u). For the solutions of these classes based on
influenza disease system, the design of an objective function is presented using these differential
system equations and its corresponding initial conditions. The optimization of this objective function
is using the hybrid computing combination of GA-ASM for solving all classes of the influenza disease
nonlinear system. The obtained numerical results will be compared by the Adams numerical results
to check the authenticity of the designed ANN-GA-ASM. In addition, the designed approach through
statistical based operators shows the consistency and stability for solving the influenza disease
nonlinear system.

Keywords: influenza disease system; Adams methods; artificial neural networks; active-set method;
genetic algorithms; statistical performances

1. Introduction

There are various serious diseases produced by viruses, of which influenza is one
of them that primarily attacks the upper respiratory portions, bronchi, nose, throat and
sometimes disturbs the lungs. The influenza is not a fatal illness, and most people recover
within one to two weeks without medical care. This disease is a serious risk to older
people or those with serious illnesses such as cancer, diabetes, heart, kidney problems
and lung disease. Among these people, infection can lead to serious problems of primary
diseases, such as pneumonia causing death. The epidemic rate of influenza is reported as
between 5% and 15% per year of the population, which is affected by upper respiratory tract
infections. Worldwide, the annual epidemics are witnessed between 3 and 5 million cases
of serious illness and the number of deaths is reported to be around 250,000 and 500,000 [1].
Many mathematical epidemiological models are illustrated by the ordinary nonlinear
autonomous differential systems, which designate the assumptions of the model that the
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parameters are time independent. In such systems, variables refer to recovered, infected,
transmitted and susceptible disease vectors.

Astuti et al. [2] suggested a step-by-step differential transformation approach to solv-
ing the disease-resistant influenza virus model. Erdem et al. [3] presented mathematical
investigations of a susceptible–infectious–quarantine–recovered (SIQR) influenza model
with imperfect quarantine. Alzahrani and Khan [4] introduced a numerical technique
to solve a fractional pandemic influenza model. Sun et al. [5] presented multi-objective
optimization models for allocating patients during a pandemic influenza outbreak. Ghan-
bari et al. [6] provided an analysis of two models of avian influenza outbreaks relating
fractal-fractional derivatives with power and memorabilia from Mittag-Leffler. González-
Parra et al. [7] designed and discussed a fractional epidemiological model for simulating
influenza A outbreak. Tchuenche et al. [8] researched the impact of media coverage on
human influenza transmission dynamics. Schulze-Horsel et al. [9] discussed the dynamics
of infection and virus-induced apoptosis in the production of influenza vaccines in cellular
culture. Hovav et al. [10] presented a network flow system for managing inventory and
distributing influenza vaccines in a healthcare supply chain. Patel et al. [11] used genetic al-
gorithms to discuss the optimal vaccination plans for pandemic influenza. Kanyiri et al. [12]
introduced the optimum control applications for influenza and pulmonary congestion with
antiviral resistance.

The influenza disease nonlinear system has four categories, susceptible (S(u)), infec-
tious (I(u)), recovered (R(u)) and cross-immune (C(u)). The mathematical design of the
nonlinear influenza disease system is written as follows [13]:

S′(u) = µ− (βI(u) + µ)S(u) + γC(u), S(0) = a1,
I′(u) = β(S(t) + σC(u))I(u)− (α + µ)I(u), I(0) = a2,
R′(u) = αI(u) + β(1− σ)C(u)I(u)− (µ + δ)R(u), R(0) = a3,
C′(u) = δR(u)− (γ + βI(u) + µ)C(u), C(0) = a4,

, (1)

where β shows the transmission rate for the susceptible to the infected individual, and a1, a2,
a3 and a4 are the initial conditions. The infected, infectious and cross-immune are signified
as γ−1, δ−1 and α−1, respectively. σ shows the exposed cross-immune individuals, who are
shifted in a unit time to transmittable subpopulations [14]. The recently reported studies
addressing the different aspect of influenza nonlinear modelling can be seen in [15–19].

The aim of this work is to solve the above nonlinear influenza disease model using
the stochastic capabilities of artificial neural networks (ANNs), genetic algorithms (GA)
and the active set method (ASM), i.e., ANN-GA-ASM. Stochastic numerical methods have
been implemented to solve a great number of applications, such as singular fractional
models, COVID-19-based susceptible–infectious–treatment–recovered (SITR) dynamics,
the delay singular functional model, the prey–predator model, singular higher order
nonlinear models, the dengue fever nonlinear system, multi-singular differential models
and the mosquito release nonlinear system based on the heterogeneous environment
(please see [20,21] and citation therein). Based on these well-known applications, the
authors are interested in solving the nonlinear influenza system using the ANN-GA-ASM.
Few key factors of the ANN-GA-ASM are briefly given as:

• The proposed ANN-GA-ASM provides effective solutions of the nonlinear influenza
system.

• Consistent, stable and reliable outcomes from the nonlinear influenza system validate
the value of the proposed ANN-GA-ASM.

• The absolute error (AE) values are in the good agreements, indicating the reliability of
the proposed ANN-GA-ASM.

• The performance is certified through ANN-GA-ASM using different statistical obser-
vations to solve the nonlinear influenza system for thirty independent trials.

• The designed ANN-GA-ASM is effortlessly implemented to solve the nonlinear in-
fluenza system with smooth operations, inclusive and easy to understand.



Appl. Sci. 2021, 11, 8549 3 of 16

The other paper parts are as follows. Section 2 shows the methodology and statistical
measures. Section 3 demonstrates the simulation of the outcomes. Section 4 provides the
final remarks and future research remarks.

2. Methodology

The methodology of the proposed ANN-GA-ASM structure to solve the nonlinear
influenza system is defined in two steps: an objective function is designed to solve the
ANN parameters and some crucial settings are provided to improve the objective function
based on the GA-ASM.

2.1. ANN Structure

In this section, the mathematical design is presented to solve each category of the
susceptible (S), infectious (I), recovered (R) and cross-immune (C) groups based on the
influenza disease system. The proposed outcomes of these classes are Ŝ, Î, R̂ and Ĉ given as:

[Ŝ(u), Î(u), R̂(u), Ĉ(u)] =


m
∑

k = 1
pS,kv(wS,ku + qS,k),

m
∑

k = 1
pI,kv(wI,ku + qI,k),

m
∑

k = 1
pR,kv(wR,ku + qR,k),

m
∑

k = 1
pC,kv(wC,ku + qC,k)

,

[Ŝ′(u), Î′(u), R̂′(u), Ĉ′(u)] =


m
∑

k = 1
pS,kv′(wS,ku + qS,k),

m
∑

k = 1
pI,kv′(wI,ku + qI,k),

m
∑

k = 1
pR,kv′(wR,ku + qR,k),

m
∑

k = 1
pC,kv′(wC,ku + qC,k)

,

(2)

where m is number of neurons, and W is the unknown weight vector, with its compo-
nents for S, I, R and C are defined as WS, WI, WR and WC, respectively, and are given
mathematically as follows:

W = [WS, WI , WR, WC ], for WS = [pS, wS, qS], WI = [pI , wI , qI ], WR = [pR, wR, qR] and
WC = [pC , wC , qC ], for

pS = [pS,1, pS,2, . . . , pS,m], pI = [pI,1, pI,2, . . . , pI,m], pR = [pR,1, pR,2, . . . , pR,m],
pC = [pC,1, pC,2, . . . , pC,m], wS = [wS,1, wS,2, . . . , wS,m], wI = [wI,1, wI,2, . . . , wI,m],

wR = [wR,1, wR,2, . . . , wR,m], wC = [wC,1, wC,2, . . . , wC,m], qS = [qS,1, qS,2, . . . , qS,m],
qI = [qI,1, qI,2, . . . , qI,m], qR = [qR,1, qR,2, . . . , qR,m], qC = [qC,1, qC,2, . . . , qC,m].

(3)

The updated form by applying the log-sigmoid function v(µ) = (1 + exp(−µ))−1 is
provided in Appendix A for the interested readers. To find the optimization measures, an
error based objective function becomes:

E = E1 + E2 + E3 + E4 + E5, (4)

E1 =
1
N

N

∑
k=1

[
Ŝ′k − µ +

(
β Îk + µ

)
Ŝk − γĈk

]2, (5)

E2 =
1
N

N

∑
k=1

[
Î′k − βŜk Îk + µ Îk + σ Îk − σCk Îk

]2, (6)

E3 =
1
N

N

∑
k=1

[
R̂′k − α Îk − β(1− σ)Ĉk Îk + (µ + δ)R̂k

]2, (7)

E4 =
1
N

N

∑
k=1

[
Ĉ′k − δR̂k + (γ + β Îk + µ)Ĉk

]2, (8)

E5 =
1
4

[(
Ŝ0 − a1

)2
+
(

Î0 − a2
)2

+
(

R̂0 − a3
)2

++
(
Ĉ0 − a4

)2
]
, (9)
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where Ŝk = S(uk), Îk = I(uk), R̂k = R(uk) and Ĉk = C(µk). In the above network E1, E2,
E3 and E4 indicate the objective functions related to system (1), while E5 is designed on the
basis of the initial conditions of system (1).

2.2. Optimization Performances: GA-ASM

In this section, the ANN-GA-ASM performance is presented for solving the influenza
disease nonlinear system. The designed ANN structure through GA-ASM for solving
the influenza disease nonlinear system is depicted in Figure 1. The block structure of the
proposed methodologies is illustrated by defining the problem, mathematical modeling,
the formulation of the fitness function on mean square error sense, the workflow of GA
and ASM.

In this study, the global search GA is one of optimization process that is executed to
solve the influenza disease nonlinear system. GA is pragmatic to standardize the specific
population for solving the various complicated models using the optimal training. To
achieve the best system outcomes, GA operates through a selection operator, a crossover
process, reproduction practice and a mutation procedure. Recently, GA has been applied
in the hospitalization expenditure system [22], for feature assortment in cancer microar-
ray [23], brain tumor images [24], air blast prediction [25], monorail vehicle dynamics [26],
cloud service optimization [27] and liver disease prediction [28].

The active-set method is one of the rapid local search optimization approaches that
works to solve the constrained/unconstrained models broadly. ASM is executed in nu-
merous optimizations models of numerous complex and non-stiff systems. Recently, ASM
is applied to execute the real-time optimal control [29], the pricing of American better-of
option on two assets [30], the pressure-dependent model of water distribution systems [31],
overcurrent relays in microgrid optimization [32], embedded model predictive controls [33]
and elastodynamic frictional contact problems [34]. To control the slowness of GA, the
process of hybridization into GA-ASM is provided in Table 1 for training or learning of
the decision variables, i.e., the unknown weights of ANNs, while the parameter settings of
GA and ASM are handled using the ‘optimset’ routine of the Matlab optimization toolbox.
The setting of the parameters, i.e., fitness function tolerance (TolFun), constraints tolerance
(TolCon), population size (PopSiz), generations, Stall generation limits (StallLimit), decision
variable tolerance (TolX), iteration and maximum number of fitness function evalutions
(MaxFunEvals), is done with care to avoid the premature convergence of the optimization
mechanism.

2.3. Performance Measures

The mathematical representations using the statistical operators containing “variance
account for (VAF)”, “mean absolute deviation (MAD)”, “semi-interquartile (S.I.R)” and

“Theil’s inequality coefficient (TIC)” along with their Global representations are pre-
sented to solve the influenza disease nonlinear model and are provided in Appendix B.
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Table 1. Pseudocode of optimization through ANN-GA-ASM to solve the influenza disease
nonlinear system.

GA process starts
Inputs: Select the chromosomes with the same numbers as decision variable of
ANN models for solving influenza disease system:
W = [a, w, b]
Population: The chromosomes set is given as:
W = [WS, WI , WR, WC], for WS = [pS,ωS, qS], WI = [pI ,ωI , qI ],
WR = [pR,ωR, qR] and WR = [pR,ωR, qR]
Output: Global vectors are WB-GA
Initialization: For variables selection, modify the weight vector.
Fitness calculation: Determine the fitness E of each member of the population
(P) using Equations (4)–(9)
• Stopping standards: Terminate if [E = 10−21], [TolCon = TolFun = 10−21].

[StallLimit = 140], [PopSize = 210] and [Generations = 120] are achieved.
Move to storage

Ranking: Rank precise weight vector in the designated population based on
appropriateness on fitness E, i.e., better the fitness more be the rank of the
individual.
Storage: Save WB-GA, iterations, FIT, function counts and time.

End of GA

ASM
Inputs: WB-GA.
Output: WGA-ASM is the best GA-ASM weight vectors.
Initialize: WB-GA, iterations, assignments and other values.
Termination: Stop if [E = 10−20], [Iterations = 1200], [TolX = TolCon = 10−20]
[TolFun = 10−21] and [MaxFunEvals = 279,000] meets.
Evaluation of FIT: Calculate W and E using networks 4–9.
Adjustments: Adjust ‘fmincon’ for ASM, calculate E using 4–9 systems.
Accumulate: Transmute WGA-ASM, function counts, time iterations and FIT

ASM End

3. Simulations and Results

The relative presentations of the results obtained using the Adams method are used to
certify or analyze the accuracy of the ANN-GA-ASM. Moreover, the statistical performance
is testified for the precision, reliability and accuracy of the proposed structure. The updated
form of the nonlinear model of influenza illness using the appropriate parameters as
defined in reported study [13]:

S′(u) = 0.02− (50I(u) + 0.02)S(u) + 0.5C(u), S(0) = 0.8,
I′(u) = 50(S(t) + 0.05C(u))I(u)− 73.02I(u), I(0) = 0.1,
R′(u) = 73I(u) + 47.5C(u)I(u)− 1.02R(u), R(0) = 0.04,
C′(u) = R(u)− (0.52 + 50I(u))C(u), C(0) = 0.06,

(10)

The fitness function for the influenza disease system (10) becomes:

E = 1
N

N
∑

i=1


[
Ŝ′i − 0.02 + 50Ŝi Îi + 0.02Ŝi − 0.5Ĉi

]2
+
[
Î′i − 50Ŝi Îi − 2.5Ĉi Îi i + 73.02 Îi

]2
+
[
R̂′i − 73 Îi − 47.5Ĉi Îi + 1.02R̂i

]2
+
[
Ĉ′i − R̂i + 0.52Ĉi − 50 ÎiĈi

]2


+ 1

4

[(
Ŝ0 − 0.8

)2
+
(

Î0 − 0.1
)2

+
(

R̂0 − 0.04
)2

+
(
Ĉ0 − 0.06

)2
]
.

(11)
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Performance by optimization is demonstrated for the nonlinear influenza disease
model using the proposed ANN-GA-ASM for 30 independent runs, i.e., sufficiently large
multiple autonomous executions, having 30 numbers of hidden neurons in ANN models
in set (3). The routine for the fitness function as given in Equations (4)–(9) is developed
in the Matlab software package while the optimization is conducted as per procedure of
pseudocode in Table 1 using the ‘GA’ and ‘fmincon’ routines of the optimization toolbox.
The proposed solutions of the nonlinear influenza disease model are specified in the best
weight vector form shown in the Equations (12)–(15) for each nonlinear influenza disease
model. The graphical illustrations of these weight vectors are shown in Figure 2.

Ŝ(u) =
0.6622

1 + e−(−10.636u−1.1152)
− 1.3369

1 + e−(−3.6682u−7.9483)
− . . . +

0.3752
1 + e−(−0.096u−4.1269)

, (12)

Î(u) =
−14.9676

1 + e−(0.7029u−16.7745)
− 4.1637

1 + e−(−15.649u−16.512)
− . . .− 15.4637

1 + e−(−19.7976u−1.1137)
, (13)

R̂(u) =
3.2898

1 + e−(−1.6034u−7.6633)
− 1.6034

1 + e−(−8.138u−11.8697)
− . . .− 6.3094

1 + e−(−1.456u−10.9883)
, (14)

C(u) =
−0.8800

1 + e−(0.4167u−11.3515)
− 0.8127

1 + e−(−0.8127u−11.351)
− . . .− 5.8006

1 + e−(−16.500u−4.6960)
. (15)

The proposed outputs are obtained using the above systems ((12)–(15)) as provided in
Appendix C for the 0–1 range with a 0.1 step size to present the solutions for each influenza
disease category. The plots of the best weight vectors are derived in the Figure 2a–d. The
mean and best results, i.e., the outcomes of the proposed methodology based on the av-
erage and best fitted weights of ANNs, compared with the reference solutions, i.e., the
outcomes of the systems calculated with the Adams numerical technique, to get the nonlin-
ear influenza disease models are also plotted in Figure 2e–h. The solutions obtained by
the ANN-GA-ASM coincided with the Adams solutions to present the solutions for each
category of influenza disease. These results are consistent with the perfection and precision
of the proposed ANN-GA-ASM. Figure 3 shows the AE values to provide solutions for
each influenza category. One may observe that the AE best values for the susceptible (S),
infectious (I), recovered (R) and cross-immune (C) groups based on the influenza disease
model lie in the ranges of 10−2–10−4, 10−3–10−6, 10−2–10−4 and 10−2–10−4, respectively.
Meanwhile, the AE mean values for the above categories of susceptible, infectious, re-
covered and cross-immune lie around 10−1–10−3, 10−2–10−4, 10−1–10−3 and 10−1–10−2,
respectively. Figure 4 represents the performances based on the EVAF, MAD and TIC
operators to solve each category of the influenza disease nonlinear model. It is designated
that the best EVAF, MAD and TIC presentations of the susceptible category lie around
10−2–10−4, 10−2–10−3 and 10−6–10−8 for EVAF, MAD and TIC, respectively. The infectious
best category lies in the range of 10−2–10−4, 10−3–10−4 and 10−7–10−8 for EVAF, MAD and
TIC, respectively. The recovered best category lies in the range of 10−3–10−4, 10−2–10−3

and 10−6–10−8 for EVAF, MAD and TIC, respectively. The cross-immune best category lies
in the range of 10−2–10−4, 10−2–10−3 and 10−7–10−8 for EVAF, MAD and TIC, respectively.
These indications make it possible to affirm that the designed ANN-GA-ASM is precise
and accurate.



Appl. Sci. 2021, 11, 8549 8 of 16

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 17 
 

best category lies in the range of 10−02–10−04, 10−03–10−04 and 10−07–10−08 for EVAF, MAD and 

TIC, respectively. The recovered best category lies in the range of 10−03–10−04, 10−02–10−03 

and 10−06–10−08 for EVAF, MAD and TIC, respectively. The cross-immune best category lies 

in the range of 10−02–10−04, 10−02–10−03 and 10−07–10−08 for EVAF, MAD and TIC, respectively. 

These indications make it possible to affirm that the designed ANN-GA-ASM is precise 

and accurate. 

The graphical representations based on the statistical procedures to authenticate the 

convergence performance are given in Figure 5 to solve the nonlinear influenza disease 

model. In the performance through TIC values using thirty trials to solve the nonlinear 

influenza disease model, it is seen that most of the trials based on the susceptible, infec-

tious, recovered and cross-immune for the TIC values lie around 10−05–10−07, 10−06–10−08, 

10−05–10−08 and 10−05–10−07, respectively. For the EVAF values, the performances of the sus-

ceptible, infectious, recovered and cross-immune lie around 10−01–10−03. For the MAD val-

ues, the performances of the susceptible, infectious, recovered and cross-immune lie 

around 10−02–10−04. These best presentations of the executions using the ANN-GA-ASM 

are calculated as suitable for the TIC, EVAF and MAD operators. 

The statistical presentations are shown in Tables 2–5 using the operators Minimum 

(Min), Mean, standard deviation (SD), S.I.R, Median (Med) and Maximum (Max) to vali-

date the accurateness and precision for solving each category of the influenza disease non-

linear model. The Min values for the susceptible, infectious, recovered and cross-immune 

based influenza disease model lie around 10−03–10−05, 10−03–10−07, 10−03–10−06 and 10−03–10−05, 

respectively. The Max values for the susceptible, infectious, recovered and cross-immune 

based influenza disease model lie around 10−01–10−03, 10−02–10−04, 10−01–10−02 and 10−02–10−03, 

respectively. The Med, Mean and S.I.R values for the susceptible, infectious, recovered 

and cross-immune based influenza disease model lie around 10−02–10−04, 10−02–10−05, 10−02–

10−04 and 10−03–10−04, respectively. The SD values for the susceptible, infectious, recovered 

and cross-immune based influenza disease model lie around 10−02–10−03, 10−02–10−04, 10−02–

10−03 and 10−02–10−04, respectively. These calculated small values indicate the worth of the 

ANN-GA-ASM to solve each class of the nonlinear influenza disease model. One can ob-

serve through these obtained measures that the designed ANN-GA-ASM is precise, accu-

rate and stable. 

The global performances of (G-TIC), (G-MAD) and (G-EVAF) operators for 30 trials 

to solve the proposed ANN-GA-ASM is shown in Table 6 to solve the nonlinear influenza 

disease model. These global MAD, TIC and EVAF performances based on Min lie around 

10−02–10−03, 10−06–10−07 and 10−01–10−02, respectively, while the global performances based on 

S.I.R lie around 10−02 to 10−03, 10−07–10−08 and 10−01–10−02 for each category of the influenza 

disease nonlinear model. These close ideal values obtained through global measures indi-

cate the precision, correctness and accuracy of the designed ANN-GA-ASM. 

  
(a) Best weights for ( )S u  (e) Results for class ( )S u  

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 17 
 

  
(b) Best weights for ( )I u  (f) Results for class ( )I u   

  
(c) Best weights for ( )R u  (g) Results for class ( )R u  

  
(d) Best weights for ( )C u  (h) Results for class ( )C u  

Figure 2. Best set of weight vectors and comparison of proposed and reference solutions obtained by using Adams and 

optimization algorithm to solve the influenza nonlinear disease model. 

 
(a) AE for the category ( )S u  

Figure 2. Best set of weight vectors and comparison of proposed and reference solutions obtained by
using Adams and optimization algorithm to solve the influenza nonlinear disease model.



Appl. Sci. 2021, 11, 8549 9 of 16

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 17 
 

  
(b) Best weights for ( )I u  (f) Results for class ( )I u   

  
(c) Best weights for ( )R u  (g) Results for class ( )R u  

  
(d) Best weights for ( )C u  (h) Results for class ( )C u  

Figure 2. Best set of weight vectors and comparison of proposed and reference solutions obtained by using Adams and 

optimization algorithm to solve the influenza nonlinear disease model. 

 
(a) AE for the category ( )S u  

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17 
 

 
(b) AE for the category ( )I u  

 
(c) AE for the category ( )R u  

 
(d) AE for the category ( )C u  

Figure 3. AE values based on best and mean solutions for each category of the influenza disease 

nonlinear model. 

 

Figure 4. Performances of EVAF, MAD and TIC operators to solve the influenza disease model. 

Figure 3. AE values based on best and mean solutions for each category of the influenza disease
nonlinear model.



Appl. Sci. 2021, 11, 8549 10 of 16

The graphical representations based on the statistical procedures to authenticate the
convergence performance are given in Figure 5 to solve the nonlinear influenza disease
model. In the performance through TIC values using thirty trials to solve the nonlinear
influenza disease model, it is seen that most of the trials based on the susceptible, infec-
tious, recovered and cross-immune for the TIC values lie around 10−5–10−7, 10−6–10−8,
10−5–10−8 and 10−5–10−7, respectively. For the EVAF values, the performances of the
susceptible, infectious, recovered and cross-immune lie around 10−1–10−3. For the MAD
values, the performances of the susceptible, infectious, recovered and cross-immune lie
around 10−2–10−4. These best presentations of the executions using the ANN-GA-ASM
are calculated as suitable for the TIC, EVAF and MAD operators.
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The statistical presentations are shown in Tables 2–5 using the operators Minimum
(Min), Mean, standard deviation (SD), S.I.R, Median (Med) and Maximum (Max) to validate
the accurateness and precision for solving each category of the influenza disease nonlinear
model. The Min values for the susceptible, infectious, recovered and cross-immune based
influenza disease model lie around 10−3–10−5, 10−3–10−7, 10−3–10−6 and 10−3–10−5,
respectively. The Max values for the susceptible, infectious, recovered and cross-immune
based influenza disease model lie around 10−1–10−3, 10−2–10−4, 10−1–10−2 and 10−2–10−3,
respectively. The Med, Mean and S.I.R values for the susceptible, infectious, recovered and
cross-immune based influenza disease model lie around 10−2–10−4, 10−2–10−5, 10−2–10−4

and 10−3–10−4, respectively. The SD values for the susceptible, infectious, recovered and
cross-immune based influenza disease model lie around 10−2–10−3, 10−2–10−4, 10−2–10−3

and 10−2–10−4, respectively. These calculated small values indicate the worth of the ANN-
GA-ASM to solve each class of the nonlinear influenza disease model. One can observe
through these obtained measures that the designed ANN-GA-ASM is precise, accurate
and stable.

Table 2. Statistical measures for the nonlinear influenza disease model based S(u).

u
S(u)

Min Max Med Mean S.I.R SD

0 5.6403 × 10−5 1.0752 × 10−2 6.4347 × 10−4 2.1832 × 10−3 9.2647 × 10−4 3.1586 × 10−3

0.1 8.6933 × 10−3 1.0204 × 10−1 9.9764 × 10−2 8.0571 × 10−2 1.7817 × 10−2 3.2865 × 10−2

0.2 5.0136 × 10−3 1.0330 × 10−1 1.0171 × 10−2 8.2758 × 10−2 1.5101 × 10−2 3.3698 × 10−2

0.3 5.0721 × 10−3 1.0168 × 10−1 1.0031 × 10−2 8.1157 × 10−2 1.3434 × 10−2 3.3551 × 10−2

0.4 4.9908 × 10−3 1.0007 × 10−1 9.6958 × 10−2 7.9023 × 10−2 1.2838 × 10−2 3.2084 × 10−2

0.5 4.4433 × 10−3 9.7345 × 10−2 9.3189 × 10−2 7.6406 × 10−2 1.2362 × 10−2 3.0706 × 10−2

0.6 4.2461 × 10−3 9.3883 × 10−2 9.0095 × 10−2 7.3296 × 10−2 1.2040 × 10−2 2.9743 × 10−2

0.7 4.6397 × 10−3 8.9911 × 10−2 8.6530 × 10−2 6.9938 × 10−2 1.1763 × 10−2 2.8846 × 10−2

0.8 5.4428 × 10−3 8.5574 × 10−2 8.2248 × 10−2 6.6416 × 10−2 1.1654 × 10−2 2.7814 × 10−2

0.9 6.3978 × 10−3 8.0976 × 10−2 7.8024 × 10−2 6.2713 × 10−2 1.1469 × 10−2 2.6591 × 10−2

1 7.3410 × 10−3 7.6194 × 10−2 7.3517 × 10−2 5.8825 × 10−2 1.1127 × 10−2 2.5110 × 10−2

Table 3. Statistical measures for the nonlinear influenza disease model based I(u).

u
I(u)

Min Max Med Mean S.I.R SD

0 2.5065 × 10−3 9.9741 × 10−2 9.6765 × 10−2 2.1832 × 10−3 1.8123 × 10−2 3.2534 × 10−2

0.1 2.0358 × 10−4 3.8280 × 10−3 2.6376 × 10−3 8.0571 × 10−2 2.9036 × 10−4 7.8410 × 10−4

0.2 1.0562 × 10−4 1.5922 × 10−3 2.8609 × 10−4 8.2758 × 10−2 9.2734 × 10−5 3.2756 × 10−4

0.3 7.9627 × 10−6 7.5276 × 10−4 1.4348 × 10−4 8.1157 × 10−2 1.0830 × 10−4 1.7174 × 10−4

0.4 5.8824 × 10−6 1.1768 × 10−3 1.4911 × 10−4 7.9023 × 10−2 6.2778 × 10−5 2.5473 × 10−4

0.5 5.2022 × 10−7 8.4523 × 10−4 8.5497 × 10−5 7.6406 × 10−2 5.2659 × 10−5 1.7651 × 10−4

0.6 3.9676 × 10−7 9.6438 × 10−4 6.6933 × 10−5 7.3296 × 10−2 5.8891 × 10−5 1.9772 × 10−4

0.7 1.4420 × 10−6 1.0347 × 10−3 8.1183 × 10−5 6.9938 × 10−2 5.7567 × 10−5 2.2108 × 10−4

0.8 1.3782 × 10−6 1.0473 × 10−3 6.5095 × 10−5 6.6416 × 10−2 5.3914 × 10−5 1.9876 × 10−4

0.9 1.0788 × 10−6 9.9345 × 10−4 6.9847 × 10−5 6.2713 × 10−2 4.8355 × 10−5 1.8417 × 10−4

1 3.7397 × 10−7 8.6629 × 10−4 6.3295 × 10−5 5.8825 × 10−2 3.6254 × 10−5 1.5961 × 10−4
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Table 4. Statistical measures for the nonlinear influenza disease model based R(u).

u
R(u)

Min Max Med Mean S.I.R SD

0 6.2366 × 10−6 1.4851 × 10−2 1.8505 × 10−4 2.1832 × 10−3 3.8502 × 10−4 2.9318 × 10−3

0.1 2.4607 × 10−3 1.9038 × 10−1 1.8634 × 10−1 8.0571 × 10−2 3.2715 × 10−2 6.2894 × 10−2

0.2 2.3532 × 10−3 1.7746 × 10−1 1.7489 × 10−1 8.2758 × 10−2 2.4669 × 10−2 5.9498 × 10−2

0.3 2.3392 × 10−3 1.6039 × 10−1 1.5817 × 10−1 8.1157 × 10−2 2.0756 × 10−2 5.4314 × 10−2

0.4 1.7447 × 10−3 1.4608 × 10−1 1.4106 × 10−1 7.9023 × 10−2 1.8914 × 10−2 4.8288 × 10−2

0.5 1.4329 × 10−3 1.3259 × 10−1 1.2623 × 10−1 7.6406 × 10−2 1.7328 × 10−2 4.3191 × 10−2

0.6 6.3834 × 10−4 1.1983 × 10−1 1.1406 × 10−1 7.3296 × 10−2 1.5985 × 10−2 3.9221 × 10−2

0.7 1.0809 × 10−3 1.0806 × 10−1 1.0395 × 10−1 6.9938 × 10−2 1.4990 × 10−2 3.5981 × 10−2

0.8 9.6811 × 10−4 9.7331 × 10−2 9.4041 × 10−2 6.6416 × 10−2 1.3740 × 10−2 3.3132 × 10−2

0.9 6.8779 × 10−4 8.7620 × 10−2 8.5302 × 10−2 6.2713 × 10−2 1.2596 × 10−2 3.0469 × 10−2

1 3.8749 × 10−4 7.8853 × 10−2 7.7195 × 10−2 5.8825 × 10−2 1.0930 × 10−2 2.7874 × 10−2

Table 5. Statistical measures for the nonlinear influenza disease model based C(u).

u
C(u)

Min Max Med Mean S.I.R SD

0 1.1372 × 10−5 6.9224 × 10−3 2.1165 × 10−4 1.1227 × 10−3 6.5694 × 10−4 1.8441 × 10−3

0.1 1.5570 × 10−4 1.5199 × 10−2 7.0904 × 10−3 7.0882 × 10−3 3.7494 × 10−4 2.5091 × 10−3

0.2 2.3633 × 10−3 2.9209 × 10−2 2.4420 × 10−2 2.0540 × 10−2 4.4120 × 10−3 7.6724 × 10−3

0.3 2.5936 × 10−4 4.1491 × 10−2 3.9420 × 10−2 3.2301 × 10−2 7.0413 × 10−3 1.3088 × 10−2

0.4 1.8337 × 10−4 5.4041 × 10−2 5.1929 × 10−2 4.2548 × 10−2 8.7280 × 10−3 1.7298 × 10−2

0.5 1.6757 × 10−3 6.4379 × 10−2 6.2491 × 10−2 5.1205 × 10−2 9.0134 × 10−3 2.0582 × 10−2

0.6 1.7138 × 10−3 7.3162 × 10−2 7.1056 × 10−2 5.8351 × 10−2 9.3617 × 10−3 2.3249 × 10−2

0.7 1.6948 × 10−3 8.0311 × 10−2 7.8098 × 10−2 6.4106 × 10−2 9.7669 × 10−3 2.5506 × 10−2

0.8 1.5227 × 10−3 8.6049 × 10−2 8.3577 × 10−2 6.8593 × 10−2 1.0268 × 10−2 2.7492 × 10−4

0.9 1.1457 × 10−3 9.0577 × 10−2 8.7617 × 10−2 7.1938 × 10−2 1.0876 × 10−2 2.9302 × 10−2

1 5.6992 × 10−4 9.4077 × 10−2 9.1159 × 10−2 7.4264 × 10−2 1.1513 × 10−2 3.1009 × 10−2

The global performances of (G-TIC), (G-MAD) and (G-EVAF) operators for 30 trials to
solve the proposed ANN-GA-ASM is shown in Table 6 to solve the nonlinear influenza
disease model. These global MAD, TIC and EVAF performances based on Min lie around
10−2–10−3, 10−6–10−7 and 10−1–10−2, respectively, while the global performances based on
S.I.R lie around 10−2 to 10−3, 10−7–10−8 and 10−1–10−2 for each category of the influenza
disease nonlinear model. These close ideal values obtained through global measures
indicate the precision, correctness and accuracy of the designed ANN-GA-ASM.

Table 6. Global presentations via G-TIC, G-MAD and G-EVAF operators to solve the nonlinear influenza disease system.

Index
(G-MAD) (G-TIC) (G-EVAF)

Min S.I.R Min S.I.R Min S.I.R

S(u) 8.2308 × 10−2 1.1452 × 10−2 3.5709 × 10−6 5.0771 × 10−7 9.5011 × 10−1 2.7588 × 10−1

I(u) 9.1646 × 10−3 1.6069 × 10−3 1.2032 × 10−6 2.2481 × 10−7 9.3349 × 10−1 2.9071 × 10−1

R(u) 1.1467 × 10−2 1.6332 × 10−2 5.1525 × 10−6 7.5221 × 10−8 8.7737 × 10−1 2.0805 × 10−2

C(u) 5.4491 × 10−2 7.7396 × 10−3 2.5843 × 10−7 3.4476 × 10−7 1.0349 × 10−2 2.1164 × 10−1
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4. Conclusions

This study is associated with the submission of numerical studies of the non-linear
influenza disease system. The influenza disease nonlinear system is dependent on four
categories named as susceptible, infected, recovered and cross-immune. Artificial neural
networks, as well as global and local research approaches, i.e., ANN-GA-ASM, are pro-
posed to address each category of the influenza illness model. For finding numeric results,
an objective function based on the differential system and initial conditions is optimized
by the proposed ANN-GA-ASM. The log-sigmoid works as an activation function and
30 numbers of variables have been proposed to solve the influenza disease nonlinear model.
The obtained numerical results through ANN-GA-ASM have been compared with the
Adams solutions and the matching of the best/mean results have been found in each class
of the nonlinear influenza disease model. The accurate matching of results enhances the
reliability of the proposed ANN-GA-ASM. The precise performance of the ANN-GA-ASM
through the statistical operators EVAF, TIC and MAD are observed using 30 runs to solve
the nonlinear model of influenza disease. These statistical performances achieved higher
accuracy levels to solve the influenza disease nonlinear model. Statistics by Min, SD, Mean,
S.I.R, Max and Median further validate the value of the proposed ANN-GA-ASM. Further-
more, the global performance of the operators in good measures through Min and S.I.R
prove the authenticity of the ANN-GA-ASM for the nonlinear influenza disease model.

In the future, the ANN proposed with the GA-ASM is capable of solving nonlinear
biological models, singular systems of higher order and fluid dynamics models. More-
over, the provided ANN-GA-ASM can be implemented to those problems which are still
considered to be stiff for traditional deterministic computing schemes.
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Nomenclature

ANN Artificial Neural Networks
SIQR Susceptible–infectious–quarantine–recovered
(SITR) Susceptible–infectious–treatment–recovered
ANN-GA-ASM- ANN optimized with GA-ASM
TIC ‘Theil’s inequality coefficient
S.I.R Semi interquartile
Min Minimum
Med Median
G.MAD Mean of MAD
GA Genetic Algorithms
ASM Active-set Algorithm
GA-ASM Hybrid of GA and ASM
MAD Mean Absolute deviation
VAF Variance account for



Appl. Sci. 2021, 11, 8549 14 of 16

EVAF Error in VAF
Max Maximum
G.TIC Mean of TIC
G.EVAF Mean of EVAF

Appendix A

The updated form of the networks as given in set of Equation (2) using the log-sigmoid
function are given as follows:

[Ŝ(u), Î(u), R̂(u), Ĉ(u)] =


m
∑

k=1

pS,k

1+e−(wS,k u+qP,k )
,

m
∑

k=1

pI,k

1+e−(wI,k u+qI,k )
,

m
∑

k=1

pR,k

1+e−(wR,k u+qR,k )
,

m
∑

k=1

pC ,k

1+e−(wC,k u+qC,k )
,

,

[Ŝ′(u), Î′(u), R̂′(u), Ĉ′(u)] =


m
∑

k=1

wS,k pS,ke−(wS,k u+qS,k )(
1+e−(wP,k u+qP,k )

)2 ,
m
∑

i=1

wI,k pI,ke−(wI,k u+qI,k )(
1+e−(wI,k u+qI,k )

)2 ,

m
∑

k=1

wR,k pR,ke−(wR,k u+qR,k )(
1+e−(wR,k u+qR,k )

)2 ,
m
∑

k=1

wC ,k pC ,ke−(wC,k u+qC,k )(
1+e−(wC,k u+qC,k )

)2

.

(A1)

Appendix B

Mathematical relations for performance indices TIC, MAD, VAF and EVAF are given
in this section as follows:

[VAF S, VAFI , VAFR, VAFC] =



(
1− var(Si−Ŝi)

var(Si)

)
× 100,(

1− var(Ii− Îi)
var(Si)

)
× 100,(

1− var(Ii− Îi)
var(Ii)

)
× 100,(

1− var(Ri−R̂i)
var(Ri)

)
× 100


,

[EVAF S, EVAFp, EVAFR, EVAFR] =

[∣∣∣∣ 100−VAFS, 100−VAFI ,
100−VAFR , 100−VAFC

∣∣∣∣].

(A2)

{
S.I.R = − 1

2 (Q1 −Q3),
Q1 = 1st quartile & Q3 = 3rd quartile,

(A3)

[TICS, TICI , TICR, TICc] =



√
1
n

n
∑

i=1
(Si−Ŝi)

2

(√
1
n

n
∑

i=1
Si

2+

√
1
n

n
∑

i=1
Ŝ2

i

) ,

√
1
n

n
∑

i=1
(Ii− Îi)

2

(√
1
n

n
∑

i=1
I2
i +

√
1
n

n
∑

i=1
Îi

2

) ,

√
1
n

n
∑

i=1
(Ri−R̂i)

2

(√
1
n

n
∑

i=1
R2

i +

√
1
n

n
∑

i=1
R̂2

i

) ,

√
1
n

n
∑

r=1
(Ci−Ĉi)

2

(√
1
n

n
∑

i=1
C2

i +

√
1
n

n
∑

i=1
Ĉ2

i

)


, (A4)

[MAD S, MADI , MADR, MADC] =


n
∑

i=1

∣∣Si − Ŝi
∣∣, n

∑
i=1

∣∣Ii − Îi
∣∣,

n
∑

i=1

∣∣Ri − R̂i
∣∣, n

∑
i=1

∣∣Ci − Ĉi
∣∣
. (A5)

In the above system, P̂, Ŝ, Q̂T and Q̂S show the approximate solutions.

Appendix C

The proposed solutions of ANN-GA-ASM are for reproduction of the results.
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Ŝ(u) = 0.6622
1+e−(−10.636u−1.1152) − 1.3369

1+e−(−3.6682u−7.9483) − 2.6556
1+e−( 0.553u−9.2701) − 9.3591

1+e−(0.034u+0.2050)

− 8.6110
1+e−( 0.0851u−9.8015) − 7.1545

1+e−( 3.1236u+7.8750) +
10.4165

1+e−(−20u−2.1186) +
−8.0870

1+e−(−17.6017u−1.7998)

− 1.0581
1+e−(−9.987u−13.1919) +

0.3752
1+e−(−0.096u−4.1269) ,

(A6)

Î(u) = −14.9676
1+e−(0.7029u−16.7745) − 4.1637

1+e−(−15.649u−16.512) − 17.5790
1+e−(−19.755u−1.2481) − 4.8989

1+e−(−10.5358u−10.12)

+ 9.9541
1+e−(−13.11u−19.305) − 10.1789

1+e−(−13.342u−18.201) − 5.6472
1+e−(−10.7019u−8.831) +

12.4043
1+e−(−5.4385u−13.809)

+ 7.5788
1+e−(−9.905u−13.476) − 15.4637

1+e−(−19.7976u−1.1137) ,
(A7)

R̂(u) = 3.2898
1+e−(−1.6034u−7.6633) − 1.6034

1+e−(−8.138u−11.8697) − 6.47733
1+e−(−0.6671u−13.6916) − 12.8102

1+e−(−19.583u−1.9607)

+ 4.8765
1+e−(−7.6164u−14.717) − 7.9570

1+e−(−2.311u−11.1267) − 4.7964
1+e−(−20.00u−0.9233) − −12.2337

1+e−(−14.431u−14.7060)

+ 7.8623
1+e−(−1.0326u−3.398) − 6.3094

1+e−(−1.456u−10.9883) ,
(A8)

C(u) = −0.8800
1+e−(0.4167u−11.3515) − 0.8127

1+e−(−0.8127u−11.351) − 1.6459
1+e−(−2.280u−7.6613) − 2.7450

1+e−(−1.5173u−3.2116)

− 4.3108
1+e−(−12.4865u−3.8263) +

2.4976
1+e−(−0.1237u−7.3027) +

3.9922
1+e−(0.0154u−3.1261) − 4.6329

1+e−(−10.73u−3.4104)

− 1.1761
1+e−(−0.8082u−8.0611) − 5.8006

1+e−(−16.500u−4.6960) .
(A9)
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