
applied  
sciences

Article

Autonomous Penetration Testing Based on Improved
Deep Q-Network

Shicheng Zhou 1,2 , Jingju Liu 1,2,*, Dongdong Hou 1,2, Xiaofeng Zhong 1,2 and Yue Zhang 1,2

����������
�������

Citation: Zhou, S.; Liu, J.; Hu, D.;

Zhong, X.; Zhang, Y. Autonomous

Penetration Testing Based on

Improved Deep Q-Network. Appl. Sci.

2021, 11, 8823. https://doi.org/

10.3390/app11198823

Academic Editor: Luis Javier Garcia

Villalba

Received: 16 July 2021

Accepted: 15 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Electronic Engineering, National University of Defense Technology, Hefei 230000, China;
zhoushicheng@nudt.edu.cn (S.Z.); houdong1992@gmail.com (D.H.); zhongxiaofeng17@nudt.edu.cn (X.Z.);
zhangyue@nudt.edu.cn (Y.Z.)

2 Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation,
Hefei 230037, China

* Correspondence: jingjul@aliyun.com

Abstract: Penetration testing is an effective way to test and evaluate cybersecurity by simulating
a cyberattack. However, the traditional methods deeply rely on domain expert knowledge, which
requires prohibitive labor and time costs. Autonomous penetration testing is a more efficient and
intelligent way to solve this problem. In this paper, we model penetration testing as a Markov
decision process problem and use reinforcement learning technology for autonomous penetration
testing in large scale networks. We propose an improved deep Q-network (DQN) named NDSPI-
DQN to address the sparse reward problem and large action space problem in large-scale scenarios.
First, we reasonably integrate five extensions to DQN, including noisy nets, soft Q-learning, dueling
architectures, prioritized experience replay, and intrinsic curiosity model to improve the exploration
efficiency. Second, we decouple the action and split the estimators of the neural network to calculate
two elements of action separately, so as to decrease the action space. Finally, the performance of
algorithms is investigated in a range of scenarios. The experiment results demonstrate that our
methods have better convergence and scaling performance.

Keywords: penetration testing; reinforcement learning; cybersecurity; DQN algorithm

1. Introduction

Penetration testing (short PT or pentesting) is active and authorized simulated cy-
berattack, aiming at assessing cybersecurity and discovering the hidden vulnerabilities.
Currently, pentesting plays a crucial role in strengthening the defense of computer systems
against cyberattacks, as digital assets are more frequently exposed to hackers’ persistent,
varied, and complex threats than ever before.

However, the traditional pentesting methods mainly rely on highly skilled cybersecu-
rity experts with domain-specific knowledge and experience, which requires prohibitive
labor and time costs. Consequently, pentesting is conducted infrequently in many or-
ganizations. Autonomous pentesting can be a solution to this problem. Compared to
the human-based method, performing pentesting autonomously is a more efficient and
intelligent way. It can realize regular security testing without expensive specialists and
make the pentesting process accessible to those nonexperts.

Researches on autonomous pentesting originate from the attack tree [1] and attack
graph [2]. Both methods offer interpretable and formal models for evaluating system
security and discovering potential attack paths. The limitation of them is that they need
complete information of the target topology and all hosts’ configuration, which is un-
realistic from the perspective of real-world attackers. They cannot be applied to large
network scenarios due to the state space explosion and their complex modeling process.
Another approach to autonomous pentesting is the partially observable Markov decision
process (POMDP) model [3–6]. Using the POMDP method allows modeling the incomplete
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knowledge characteristic of the real-world hackers and accounting for the uncertainty in
the pentesting process. However, the POMDP-based method is computationally expensive
in large-scale network scenarios.

Currently, remarkable success has been achieved by reinforcement learning (RL),
and in some games, the RL-based agents have outperformed human players, such as
AlphaGo [7], OpenAI Five [8], Alpha Star [9], and MOBA AI [10]. Similar to many game
rules, pentesting is also a process of dynamic decision making based on the state of the
environment. Expressing the pentesting process in terms of a game is a promising way to
realize autonomous pentesting. The RL-based pentesting agent can be trained to observe
the network environment and learn the optimal policy using the trial-and-error method [11].
One of the main advantages of using the reinforcement learning approach is that the agent
can learn without assumed prior knowledge for any given scenario.

Recently reinforcement learning algorithms, such as tabular Q-learning and deep
Q-network (DQN), have been applied to solve the pentesting problem in some researches.
Tabular Q-learning has been applied to solving CTF (capture the flag) problems [12] and
exploiting SQL injection vulnerabilities [13], proving the feasibility of applying reinforce-
ment learning to simple and particular autonomous pentesting problems. Compared to the
tabular Q-learning, DQN based methods [14–16] have a natural advantage in dealing with
large state pace problems using the deep neural network for function approximation. How-
ever, the previous DQN-based methods are still troubled in the sparse reward problem [17]
and the large action space caused by the increase in network size. Current research studies
on autonomous pentesting based on reinforcement learning have only been applied in
simple network scenarios, and there is a large room for improvement in convergence and
scaling performance.

On the basis of previous research studies, this paper models pentesting as a Markov
decision process (MDP) problem and analyzes the main challenges of autonomous pentest-
ing in large-scale networks. Then, an improved DQN algorithm is proposed to train the
pentesting agent that can learn the optimal attack policy without prior knowledge. The pro-
posed algorithm has better convergence performance in large-scale networks. Specifically,
five improvements of the DQN algorithm are selected reasonably and combined together
to alleviate the sparse reward problem. Then, in order to decrease the large action space,
we decompose the estimator of DQN to separately output the two elements of the attack
vector. In the end, experiments are implemented with NASim [18], which is an abstract
and simulated experimentation research platform that can be used as the benchmark to
test the RL-based pentesting agents.

The rest of this paper is organized as follows. In Section 2, we introduce the back-
ground of autonomous penetration testing, including the concept and general process of
pentesting and the main challenges of using RL for autonomous pentesting in large-scale
networks. In Section 3, we describe the detailed improvement methods of the proposed
algorithm for the current challenges. Subsequently, in Section 4, we demonstrate the results
and discussion of our experiments, and in Section 5, we draw conclusions and present
future work.

2. Background
2.1. Penetration Testing

Penetration testing is a network security testing and evaluation method that aims
to identify the vulnerabilities in the computer system and discover the possible attack
path of the hackers. MITRE matrix [19] provides a series of tactics and techniques for
pentesting. The process of pentesting can be simply summarized as the information
gathering phase, access gaining phase, and trace erasing phase. Specifically, attackers
have to use scanning tools to further their knowledge of the target. The information they
gather covers the operating system (OS), running services, and other vulnerability-relevant
information. Then, based on the information gathered before, they use the payload to
exploit the discovered vulnerability in the target system with the aim of gaining control
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access. However, the access they gained is usually limited. Attackers sometimes need
privilege escalation to make sure that they can collect as much sensitive data as possible.
Finally, hackers in the real world have to clear their attack traces to remain anonymous.

2.2. Markov Decision Process and Reinforcement Learning

Markov decision process means to be a mathematical framework for describing
multistage decision making (or sequential decision) problems [20], and reinforcement
learning is a technique for solving MDPs problems. An MDP problem can be formally
defined by the tuple: < S ,A,R, T > , where S is the state space representing all the
possible state of the environment, A is the action space representing all the possible actions
of the agent, R is reward function representing the immediate reward after performing
an action, T is the transition function T (s, a, s′) = P(s′|s, a) representing the probability of
environmental state transition after taking an action.

Different from supervised learning and unsupervised learning, reinforcement learning
learns the mapping from state to action through continuous interaction with the uncertain
environment [21]. More specifically, the agent observes the environment and receives the
state st ∈ S at time t; then, the action at ∈ A(st) is selected based on the policy π. As the
result of conducting the selected action, the agent can obtain the reward rt ∈ R from the
environment; meanwhile, the environment state transitions to st+1. The process of the
agent interacting with the environment from st to st+1 is called a step, and the collection
of steps from the initial step to the end is called an episode. The goal of the agent is to
learn the optimal policy π∗ that maximizes the cumulative rewards or average rewards per
episode. The policy is the mapping from state to action, and the optimal policy π∗ can be
expressed as the formula:

π∗ = argmaxπ

T

∑
t=0

γtEπ [rt], (1)

where γ ∈ (0, 1) is a parameter named discount factor measuring the importance of present
rewards to future rewards. The smaller the value, the more shortsighted the agent will be,
and on the contrary, it will pay more attention to future long-term rewards.

There are many reinforcement learning algorithms available for solving MDP prob-
lems. Q-learning is a model-free and value-based algorithm that is widely used. Model-free
means it attempts to learn the optimal policy by trial-and-error experience without the
need of modeling the environment. Value-based means the policy is derived directly
from the value function. For the Q-learning algorithm, the policy can be extracted by the
Q-function Q(st, at) that represents the expected reward if the agent conducts the action at
from the state st. The Q-function will converge with the exploration and exploitation of
the environment, and then the agent can use it to choose the greedy action for a state. The
update equation of the Q-function is:

QNEW(st, at)← Q(st, at) + α(rt + γmaxa(st+1, at)−Q(st, at)), (2)

where α ∈ (0, 1] is the learning rate and γ is the discount factor.
The traditional tabular Q-learning algorithm uses a table to store the state-action pair

values during the training process. This method is simple to implement, though it cannot
be applied to solve the problem with large state space as the table size is limited. Deep rein-
forcement learning (DRL) is the combination of deep learning and reinforcement learning,
which makes it possible to cope with the curse of dimensionality. Minh et al. [22,23] pro-
posed the DQN algorithm that uses the deep neural network as the function approximator
to generate the state-action value. In order to ensure the algorithm can converge, DQN
uses the experience replay mechanism to improve the efficiency of the use of previous
experience and remove the correlation between data by taking random samples from the
memory. To improve the stability of the algorithm, DQN maintains two separate networks
(the Q network with weights θ and the target Q network with weights θ−) to generate the
predicted Q value and target Q value. The target Q network keeps frozen for certain steps;
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then, the weights of the Q network will be assigned to the target Q network. The target Q
value yi at i iteration is calculated as Equation (3), and the loss function of DQN is defined
as Equation (4).

yi = r + γmaxa′Q(s′, a′; θ−i ), (3)

Li(θi) = Eπθi [(yi −Q(s, a; θi))
2], (4)

In recent years, many researchers have made improvements to the DQN algorithm
from different perspectives, and we will review those improved versions in Section 3 in a
detailed manner.

2.3. Modeling Pentesting as an MDP Problem

To use RL for autonomous pentesting, we model pentesting as an MDP problem that is
defined by the tuple < S ,A,R, T >. In the autonomous pentesting task, the state refers to
the information observed by the agent on the network environment, including the configure
knowledge of all hosts and vulnerability information, etc. The size of the state space is
affected by the number of hosts in the network, which is usually exponential [15]. The
action refers to the vulnerability exploitation, scanning, and privilege escalation operations
performed by the agent on the target host. An action a can be seen as an attack vector
defined by < h, o >, which means the agent takes operation o on the host h. At any training
step, the size of the agent’s action space reaches O(M× N), where M is the number of
hosts in the network and N is the number of executable operations for attacking the target.
Reward is the driver of the agent. We define the reward function as the value of all
compromised hosts minus the cost of all actions:

R = ∑
h∈H

value(h)− ∑
a∈A

cost(a), (5)

where H represents the set of compromised hosts, A represents the set of actions the agent
takes, value(h) measures the importance of any hosts and returns the value of compromised
host h, and cost(a) returns the cost of action a. Based on the reward functionR, the goal of
the agent is to compromise the most valuable hosts with the least costly actions as much
as possible, which mimics the hackers in the real world. The transition function certainly
keeps unknown for the reason that we attempt to use the model-free algorithm.

The agent is expected to complete the pentesting process autonomously and learn
the optimal attack path that has maximized rewards. The attack path is the sequence of
actions or a series of ordered attack vectors, and the search space of attack paths is affected
by the network scale, thereby affecting the learning efficiency of the agent. Specifically,
when the network size increases, the learning efficiency of the agent is mainly limited by
two challenges:

1. The sparse reward problem. Rewards work as intermediate feedback on progress
towards the goal, without which learning becomes impossible [24]. However, there
exist only a few sensitive hosts with positive value in the network usually, making
rewards become sparse when the network size increases. Thus, the algorithm becomes
difficult to converge.

2. Large action space problem. The agent learns optimal policy through trial and error.
However, at each training step, an action is determined by two dimensions: the
agent not only needs to choose the attack target but also needs to choose the proper
operation. Action space increases with network size, which reduces exploration
efficiency and increases the trial-and-error cost.

3. Methodology

In this section, we introduce our methods for handling the two problems mentioned
above. To alleviate the sparse reward problem, we propose an algorithm named NDSPI-
DQN that integrates five extensions to DQN: the N oisy nets, Dueling network architectures,
Soft Q-learning, Prioritized experience replay, and Intrinsic curiosity module. Furthermore,
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to reduce the action space, we decouple the attack vector and split the estimator of DQN to
calculate two elements of action separately.

3.1. Extensions to DQN

Five extensions to DQN are selected for the reason that they are proved to strengthen
the exploration of the agent from different perspectives and each of them improves the
overall performance.

Soft Q-learning [25] is a method proposed for learning the maximum entropy policies.
It allows for learning diverse strategies and better exploration, and it is proved to perform
better in continuous action tasks. When combining it with DQN to handle discrete action
tasks, the target Q value is calculated as Equation (6), where σ is a parameter used to
measure the relative importance of entropy and reward.

yso f t = r + γ[σlog ∑
a′

exp(
1
σ

Q(s′, a′; θ−))]. (6)

As for the action selection strategy, instead of using the greedy policy in traditional
DQN, soft Q-learning uses a softmax policy as Equation (7), which improves the exploration
by assigning a probability of being selected to each action.

π(a|s) = so f tmaxa(
1
σ

Q(s, a; θ)). (7)

Dueling network [26] improves the performance of policy evaluation by changing the
neural network architecture of DQN. It decomposes the Q value function as the sum of
value function and advantage function:

Q(s, a; ψ) = V(s; θ, β) + [A(s, a; θ, α)− 1
|A|∑a′

A(s, a′; θ, α)], (8)

where θ, α, and β denote respectively the shared network parameters, the value stream
parameters, and the advantage stream parameters, and ψ is their concatenation.

DQN uses experience replay to ensure that samples are independent and identically
distributed, however, the traditional random sampling method ignores the significance of
different samples. In order to make experience replay more efficient, prioritized experience
replay [27] uses temporal difference error (TD error, δ) to measure the significance of
transitions. It samples transition with probability

P(i) =
pα

i
∑
k

pα
k

, (9)

where α denotes how much prioritization is used and p(i) = |δi| + µ is the priority of
transitions with a small positive constant µ.

Noisy net [28] improves efficient exploration by adding parametric Gaussian noise to
the linear layer of DQN. DQN applies ε-greedy policy to select actions greedily based on
the Q function or randomly pick actions with probability ε, compared to which noisy net
has more abundant exploration on problems with large action space. The noisy linear layer
of noisy net is defined as

y = b + bnoisy � εb + (W + Wnoisy � εw)x, (10)

where εb, εw denote the noise random variables, and � represents the elementwise product.
This transformation is used to replace the standard linear y = b + Wx.

Pathak et al. [29] use curiosity as the internal reward signal to drive the agent to
explore in an environment where external rewards are sparse. The external reward is
given by the environment while the internal is generated from the self-supervised intrinsic
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curiosity module (ICM); thus, the goal of the curiosity-driven agent is maximizing the sum
of internal rewards ri and external rewards re. ICM consists of two submodels: the inverse
model is trained to predict the action ât, given the feature vectors φ(st), φ(st+1) that are
encoded by the state st, st+1; the forward model takes as input φ(st), at and predicts the
feature vector of the next state φ̂(st+1). Curiosity is defined as the prediction error of the
environment state; thus, the internal reward is calculated as

ri
t =

η

2

∥∥φ̂(st+1)− φ(st+1)
∥∥2

2, (11)

where η > 0 is a scaling factor. The inverse and the forward model are respectively
optimized by minimizing the loss function LI(at, ât) and LF(φ(st+1), φ̂(st+1)); then, the
overall loss function of ICM is the weighted sum of them.

3.2. Integration and Decoupling

We combine those extensions together and propose the NDSPI-DQN algorithm to
train the pentesting agent. As shown in Figure 1, we apply the dueling network architecture
with added noise for both the Q network and the target network. The input of the neural
network is the environment state vector, the hidden layers are fully connected to the input
and output layers, and the output is the predicted values of all actions. ε-greedy policy
is no longer used, but the action is directly selected by the softmax policy as Equation (7).
The goal is set to maximize both the external reward and internal reward that is generated
by ICM. Prioritized experience replay to store and sample important transitions more
frequently. After combining those extensions, the action-value function can be written as
Q(s, a, ε; ψ), where ε and ψ, respectively, denote the noise variable and the concatenation
network parameters. Thus, the target Q value is calculated as

y = r + γ[σlog ∑
a′

exp(
1
σ

Q(s′, a′, ε′; ψ−))], (12)

where r = ri + re and the overall loss function is defined as

L(ψ, θI , θF) = λE(s,a,r,s′)∼D[y−Q(s, a, ε; ψ)]2 + (1− δ)LI + δLF, (13)

where λ and δ are the scalar that weights the importance of the loss of the policy network
and ICM model.

However, it is not enough to merely improve the agent’s exploration. In order to
reduce the cost of trial and error in the exploration process of the agent, we reduce the
action space by decoupling the action that can be seen as an attack vector a =< h, o >. As
illustrated in Figure 2, the crucial insight of our method is that we split the the NDSPI-
DQN network into two separate streams: one estimates the value of hosts, and the other
estimates the value of the operations, which means the agent can independently select
the victim host and the operation taken against the target at one time according to the
current environment state vector. For the agent in an environment with M target hosts and
N executable operations, the output of the neural network is divided into two parts: the Q
values of M hosts and the Q values of N operations; thus, the action space is reduced from
the original O(M× N) to O(M + N).
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Figure 1. The learning cycle (Top) and schematic illustration of the NDSPI-DQN (bottom). (Top) The
agent observes current environment state st and outputs an action at according to the learned policy;
then, the external reward re

t is obtained from the environment. Meanwhile, ICM takes (st, at, st+1) as
input and outputs the internal reward ri

t. Both ri
t and re

t are used to optimize the policy. (Bottom)
The details of the algorithm architecture are explained in Section 3.2. The orange layers denote fully
connected layers and the red layers denote dueling network architectures with noisy linear layers.
The input to the neural network is the vector of environment states, and the output is the action value.
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Figure 2. Schematic illustration of the decoupling NDSPI-DQN. Two streams share the hidden
layers and each of them outputs its Q value using the dueling network architecture with the noisy
linear layers.

Two streams independently output the elements of actions given the input state
using π(h|s) = so f tmaxh(

1
σh

Q(s, h, ε; ψh)) and π(o|s) = so f tmaxo(
1
σo

Q(s, o, ε; ψo)). The
selected host h and operation o are then combined into the attack vector to act on the
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environment. We use the average of the host Q value and the operation Q value to calculate
the overall loss:

L(ψ, θI , θF) = λE(s,h,o,r,s′)∼D[y−
1
2
(Q(s, h, ε; ψh) + Q(s, o, ε; ψo))]

2
+ (1− δ)LI + δLF, (14)

where ψh, ψo are the parameters of the host stream and operation stream, ψ = {ψh, ψo} is
the common network parameters and

y = r +
γ

2

[
σhlog ∑

h′
exp(

1
σh

Q(s′, h′, ε′; ψh
−)) + σolog ∑

o′
exp(

1
σo

Q(s′, o′, ε′; ψo
−))

]
. (15)

The algorithm of NDSPI-DQN and its decoupling version are presented in Algorithm 1.

Algorithm 1 NDSPI-DQN.

Initialize the replay memory D, the set of random variables ξ
Initialize the Q network with weights ψ, the target Q network with weights ψ−

Initialize the ICM with weights θI , θF
Initialize the environment env, the boolean Decoupling: False for NDSPI-DQN and True
for decoupling NDSPI-DQN
for episode = 1, M do

Reset the environment state s0 ∼ env
for step = 1, T do

Set st ← s0
Sample the noisy network ε ∼ ξ
if Decoupling then

Select ht ← so f tmaxh(
1
σh

Q(st, h, ε; ψh)) , ot ← so f tmaxo(
1
σo

Q(st, o, ε; ψo))

Execute action at =< ht, ot >, obtain the external reward re
t and next state st+1

Store the transition (st, ht, ot, re
t , st+1) in D, update the priority of transitions

Sample a minibatch of transitions (sj, hj, oj, re
j , sj+1) from D with probability using

Equation (9)
else

Select action at ← so f tmaxa(
1
σ Q(st, a, ε; ψ))

Execute action at, obtain the external reward re
t and observer next state st+1

Store the transition (st, at, re
t , st+1) in D and update the priority of transitions

Sample a minibatch of transitions (sj, aj, re
j , sj+1) from D with probability using

Equation (9)
end if
Sample the noisy network ε′ ∼ ξ
Calculate the loss functions LI , LF of ICM and the internal reward ri

j
if episode terminate at step j + 1 then

Set yj = re
j + ri

j
else

if Decoupling then
Set yj using Equation (15)
Do a gradient step with the overall loss using Equation (14) with respect to ψ

else
Set yj using Equation (12)
Do a gradient step with the overall loss using Equation (13) with respect to ψ

end if
end if
Every C steps update the target Q network ψ− ← ψ
st ← st+1

end for
end for
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4. Experiments

We test the performance of algorithms on a range of scenarios with different scales
that are designed based on the NASim [18] project. The experiments are divided into two
parts: the first is to use a standard scenario as a benchmark to test the performance of
different algorithms, and the second is to investigate the scalability using different scale
scenarios. The experiment uses PyTorch as the framework of algorithms and is conducted
on the following experimental environment: NVIDIA Geforce RTX3090 GPU, Intel Xeon
Gold 6248R CPU, and 64GB RAM .

4.1. Network Scenarios

NASim is an open-source research platform that provides a series of simulated and
abstract network scenarios for testing autonomous pentesting agents using the RL algo-
rithms. It also offers a scenario generator that works as an option to generate networks
automatically, allowing for rapid testing of the agent on different size of networks. The
benchmark scenarios and the scenario generator are based on prior works [3,30].

The benchmark scenario for testing different algorithms is shown in Figure 3. To make
it more complex and realistic, a honeypot is added to one of the benchmark scenarios in
NASim, which is coming from practical commercial experience of [3]. This scenario has
7 subnets and 17 hosts, among which subnet 2 and 3 are internal networks and subnet
7 is a honeypot. The firewalls restrict the communication between subnets: only a small
amount of service traffic is allowed through the firewalls. Each host can be configured
with the following properties: address (defined by subnet number and machine number),
OS (operating system), host value (measuring the importance of hosts), services (vulner-
able software), and process (software that can be used to escalate privilege). Detailed
configurations of scenario 1 are presented in Table 1 .

（2,0）

Subnet-2

（1,0）

Subnet-1

（5,0） （5,1）

Subnet-5

（6,0） （6,1）

Subnet-6

Internet

（3,0） （3,1）

Subnet-3

（3,2）

（3,4） （3,5） （3,6）

（7,0）

Subnet-7

（1,1）

（2,1）

（4,0） （4,1）

Subnet-4

Router

Firewall

Honeypot

Sensitive file

Legend

Server

Computer

Agent

Figure 3. Structure of experimental scenario 1. Sensitive hosts are marked in red font.

The goal of the agent is to get root access to sensitive hosts by lateral movement in
the network. Operations of the agent cover scan (gathering information of hosts), exploit
(EXP, using vulnerable services to get root or user access to hosts ), and privilege escalation
(PE, using processes to elevate the user access to root access). As the reward function is
defined as Equation (5), the aim of the agent is to attack the most valuable hosts and get
root access with the least costly operations as much as possible. Thus, the value of sensitive
hosts is a large positive number, while that of the honeypot host is a negative number. In
addition, each operation has an associated cost that is the comprehensive quantification
of time, skills, and money costs. Furthermore, in order to simulate the uncertainty of
attacks in the real world, every operation has a probability of success (POS). Here, we
assume that the POS of the scan and PE operations are 1 and the others are determined
by the CVSS (common vulnerability scoring system) score [31], which uses 0.2, 0.6, 0.8 to
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simply determine the POS of a particular vulnerability. Whether an action can be executed
successfully depends not only on the POS but also on the network topology, configuration
of hosts, and the firewall. The detailed operations of agent in scenario 1 are shown in
Table 2.

Table 1. Configurations of each host in scenario 1. Five vulnerable services, three processes, and
two operating systems running in computers are chosen to configure the hosts and also define their
points of vulnerabilities. Hosts with value of 0, 100, and −100 represent the common hosts, sensitive
hosts, and the honeypot host, respectively.

Address OS Value Service Process

(1,0) Linux 0 SSH Tomcat
(1,1) Linux 0 SSH Tomcat
(2,0) Windows 100 SMTP /
(2,1) Windows 0 SMTP Schtask
(3,0) Linux 0 SSH Tomcat
(3,1) Linux 0 SSH, HTTP /
(3,2) Linux 0 SSH /
(3,3) Linux 0 SSH /
(3,4) Linux 100 SSH Tomcat
(4,0) Windows 0 FTP Daclsvc
(4,1) Windows 0 FTP Daclsvc
(5,0) Windows 0 FTP Daclsvc, Schtask
(5,1) Windows 0 FTP, HTTP /
(6,0) Linux 0 SSH Tomcat
(6,1) Windows 0 SSH, SMB /
(7,0) Windows −100 ALL Daclsvc, Schtask

Table 2. Operation list of the agent in experimental scenario 1. Eight EXP and PE operations are
associated with the services and processes running in computers. Four kinds of scan operations can
be used for an agent to obtain knowledge of the hosts’ configuration.

Operation OS Cost POS Access

SSH-EXP Linux 3 0.8 USER
FTP-EXP Windows 1 0.5 ROOT

HTTP-EXP Linux 2 0.8 USER
SMB-EXP Windows 2 0.2 ROOT

SMTP-EXP Windows 3 0.5 USER
Tomcat-PE Linux 1 1 ROOT
Daclsvc-PE Windows 1 1 ROOT
Schtask-PE Windows 1 1 ROOT

Subnet-Scan / 1 1 /
OS-Scan / 1 1 /

Service-Scan / 1 1 /
Process-Scan / 1 1 /

In order to investigate the scaling performance, scenario generator is used to generate
scenarios 2, 3, and 4 based on the given parameters of numbers of hosts and services in the
network. The distribution of configurations of hosts is generated using a nested Dirichlet
process to make the configurations of hosts across the network correlate. Rules of firewalls
and POS of each service are generated randomly. Table 3 provides details of the generated
scenarios used in the experiments. The number of sensitive hosts are fixed to 2 so that
rewards become more and more sparse as the network size increases. The size of network
deeply affects the action space of the agent. The number of operations is calcuated as
Services + Processes + 4 where 4 means 4 types of scan operations.

In the initial state, the agent is located on the Internet and has no knowledge of the
global information of the target network. The agent needs to select a series of proper actions
to move laterally according to the topology information and host configuration information
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obtained from the scan operation. An action refers to a certain operation taken against a
certain host, and the ordered sequence of actions is the attack path. The agent learns the
optimal attack path through exploration in each episode with limited training steps. The
conditions for the end of each episode are: obtaining the root access of all sensitive hosts,
the number of training steps reaching the set maximum, or attacking the honeypot hosts.

Table 3. Experimental network scenarios list.

Scenario Hosts Sensitive Subnets Services Processes Operations Honeypots

Scenario 1 17 2 7 5 3 12 yes
Scenario 2 80 2 17 10 4 18 no
Scenario 3 100 2 21 10 4 18 no
Scenario 4 150 2 31 10 4 18 no

4.2. Results and Discussion

The first part of our experiments is comparing the convergence performance of NDSPI-
DQN, decoupling NDSPI-DQN, and the DQN algorithm under the same hyperparameter
values (shown in Table 4). DQN is the baseline, as it has been widely used in many prior
research studies [14–16]. Three algorithms are tested using scenario 1, and we compare
the performance of them by looking at two metrics: the mean rewards over training steps
during training episodes and the number of steps that the agent used in each episode.

As shown in Figures 4 and 5, at the start of training, the mean reward obtained by
the agent is low and the mean episode steps reach the set maximum, indicating that the
agent tends to use random policy to choose actions. As the training progresses, the agent
gradually learns to use as few steps as possible to obtain the maximum rewards. Finally,
both NDSPI-DQN and its decoupling version can converge on the approximate optimal
value within limited episodes (∼600 episodes for the decoupling version and ∼1000 for
the NDSPI-DQN) while DQN fails to converge during the training process.

NDSPI-DQN(decoupling)
NDSPI-DQN
DQN

M
ea

n 
ep

iso
de

 re
w

ar
ds

Training episodes

Figure 4. Mean episode rewards versus training episodes for different algorithms in scenario 1.
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Figure 5. Mean episode steps versus training episodes for different algorithms in scenario 1.

The second part of experiments is investigating the scaling performance of our im-
proved algorithms in different generated scenarios. The general procedure is to use scenario
2, 3 and 4, which are different in network sizes, test the NDSPI-DQN algorithm and its
decoupling version with the same hyperparameter values (Table 4), and measure the con-
vergence performance by looking at the mean rewards across the limited training episodes
(Figure 6). DQN is ignored for its poor performance in the first part of experiments.

Figure 6 shows that the performance of the NDSPI-DQN algorithm is significantly af-
fected by the scale of the network: when the network size increases to 120 hosts (Figure 6b)
or more, the algorithm becomes difficult to converge. By contrast, the decoupling NDSPI-
DQN algorithm can stably converge within limited episodes for all test network scenarios
(∼200 episodes for scenario 2, ∼300 episodes for scenario 3, and ∼400 episodes for sce-
nario 4). The size of the network hardly affects the convergence performance of the algo-
rithm, which means that the algorithm has better robustness in large-scale network scenarios.

The experimental results indicate that the decoupling NDSPI-DQN converges faster
and has the best performance in large-scale scenarios. The major reasons are:

1. Integration of improvements promotes efficient exploration so as to alleviate the
sparse reward problem. Rewards drive the agent’s learning and act as supervisory
signals. When the network scale increases, the reward becomes sparse, which means
that the agent cannot obtain positive rewards in most of the training steps. By
integrating a series of improved methods, we have greatly improved the exploration
ability of the DQN algorithm, so that the agent can learn the optimal policy efficiently
within a limited number of training steps per episode.

2. The reduction of action space reduces the cost of trial and error. As we mentioned
previously, an action is an attack vector that is defined as < h, o >, and the action
space of the agent is up to O(M × N). For example, assuming that the agent in
scenario 1 has compromised the host (4,1), then it can take action < (2, 0), scan >
to scan the host (2,0). Since there are 17 hosts, and for each host, the agent can
take 12 types of executable operations in scenario 1, the total action space reaches
17× 12 = 204. As the network scale increases, the huge action space makes it difficult
for the agent to select the proper action. We use two streams to separately estimate
the target host and executable operations according to the environment state, and
then combine them into an attack vector to act on the environment, so that the agent’s
action space is reduced to O(M + N), thus speeding up the convergence speed in
large-scale network scenarios.
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Figure 6. Mean rewards versus training episodes in different scenarios. (a–c) show results for
scenario 2 (80 hosts), scenario 3 (120 hosts) and scenario 4 (150 hosts), respectively.

Additionally, the scale of the network is not the only factor that affects the perfor-
mance of the algorithms. By comparing the convergence performance of the algorithms
in scenario 1 (Figure 4) and scenario 2 (Figure 6a), we can find that although the scale
of scenario 2 is larger than scenario 1, the algorithms can converge faster. The reason is
that except for sensitive hosts with positive rewards, there are also honeypot hosts with
negative rewards in scenario 1. Once the honeypot host is compromised by the agent,
the training episode will end (in the real world, if the hackers attack the honeypots, the
pentesting task will be exposed and failed), making it more difficult for the agent to learn
the optimal policy. This is also a manifestation of the effect of the reward value on the
performance of the algorithms, and our method can be applied to these complex network
scenarios well.

Table 4. List of hyperparameter values of algorithms.

Hyperparameter Value

Max steps per episode 2000
Learning rate 0.0001

Batch size 64
Discount factor, γ 0.9
Hidden layer size 256

Replay memory size 300,000
Target network update frequency, C 1000
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5. Conclusions and Future Work

In this paper, we model pentesting as an MDP problem and apply the deep rein-
forcement learning algorithm to solve it. By summarizing previous work, we propose the
algorithm named NDSPI-DQN, which has better robustness for the autonomous pretesting
task in large-scale network scenarios. Specifically, we reasonably select a series of DQN im-
provement methods and integrate them into the DQN algorithm to improve the exploration
ability, so as to better solve the sparse reward problem. In addition, by decoupling the at-
tack vector, we significantly reduce the action space of the agent, thereby reducing the trial
and error cost in the agent’s exploration process. We construct simulation network scenar-
ios of different scales to train agents, and experiments show that our proposed algorithms
have better convergence performance in large-scale and complex network scenarios.

We provide scalable and robust RL algorithms that can be used to train PT agents.
However, at present, autonomous penetration testing using reinforcement learning is still in
the stage of simulation experiments, for the reason that modeling the actual network traffic
is hard and the trial-and-error approach in the real world is costly. This is a significant
limitation in our method that needs to be addressed in future contributions. The applica-
tion of emulation technologies and virtualization technologies may be a future direction
worth exploring. In addition, using more advanced algorithms such as multiagent RL or
hierarchical RL to improve the performance of algorithms for more cyberattack tasks from
the MITRE matrix is also an interesting and meaningful direction for future work.
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