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Abstract: As mobile robots perform long-term operations in large-scale environments, coping with
perceptual changes becomes an important issue recently. This paper introduces a stochastic varia-
tional inference and learning architecture that can extract condition-invariant features for visual place
recognition in a changing environment. Under the assumption that a latent representation of the vari-
ational autoencoder can be divided into condition-invariant and condition-sensitive features, a new
structure of the variation autoencoder is proposed and a variational lower bound is derived to train
the model. After training the model, condition-invariant features are extracted from test images to cal-
culate the similarity matrix, and the places can be recognized even in severe environmental changes.
Experiments were conducted to verify the proposed method, and the experimental results showed
that our assumption was reasonable and effective in recognizing places in changing environments.
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1. Introduction

Autonomous robots operating over long periods of time, such as days, weeks, or
months, face a variety of environmental changes over time. As the environment changes,
robots should recognize places using their visual sensors, which is called long-term visual
place recognition. It is an essential component for achieving long-term simultaneous
localization and mapping (SLAM) and autonomous navigation [1]. One of the major
problems in long-term visual place recognition is the appearance change problem caused
by factors such as time of day or weather conditions [2].

To solve the appearance change problem in visual place recognition, global descriptors
that can describe the whole-image have widely used [3,4]. Compared to local features such
as SIFT [5] and SURF [6], global descriptors are not only robust to illumination changes, but
also require less computation since they do not require a keypoint detection phase [1]. The
classic hand-crafted global descriptors such as HOG [7] or gist [8,9] showed higher place
recognition performance than the existing local descriptors in a changing environment [3,4].
However, hand-crafted descriptors have inherent limitations in generalization performance
since features are extracted according to predefined parameters.

Recently, features from deep learning structures have proven to have superior gener-
alization performances than existing hand-crafted methods. In particular, a deep convo-
lutional neural network (CNN), a kind of neural network, is a structure that have shown
excellent performance in image recognition and classification [10]. A variety of structures
using CNNs have been widely used in visual place recognition [11–14]. A sequence of im-
age features using CNNs was used to find the same places between different seasons in [15].
Sünderhauf et al. evaluated CNNs features from each layer of pretrained AlexNet [10] for
visual place recognition in a changing environment. Another deep learning structure, the
autoencoder, has been also used for visual place recognition because the output of each
layer can be used as an image descriptor. Oh and Lee [16] used a deep convolutional autoen-
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coder (CAE) for feature extraction, and Park [17] proposed an illumination-compensated
CAE for robust place recognition.

In this paper, we propose a novel feature extraction method based on variational
autoencoders (VAEs) [18]. It is one of the popular models for unsupervised representation
learning, and showed outstanding performance in feature learning [19,20]. It consists of
a standard autoencoder component, and can approximate Bayesian inference for latent
variable models. To obtain robust performances in a changing environment, we assume
that the image x is generated from the latent variable z, and this latent representation
is divided into the condition-invariant feature zp and the condition-sensitive feature zc.
To find the same places from different conditions, comparing the condition-invariant
features improves the performance of place recognition. The proposed procedure is shown
in Figure 1.
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Figure 1. The proposed model of VAE for condition-invariant feature extraction in a changing
environment. After training the model, the same place can be recognized by extracting encoded
features from images obtained in different environments.

Our paper is organized as follows. Section 2 explains the basic preliminaries of VAEs.
The proposed structures for feature extraction using the context information is explained
in Section 3. Then, the robot localization using the extracted condition-invariant feature is
discussed in Section 4. Section 5 presents the validation of the proposed method through
publicly available datasets with other algorithms. Finally, Section 6 concludes the paper.

2. Preliminaries

Let us consider the dataset X consisting of N images X = {x(1), x(2), ..., x(N)}. The
assumption of the generative model is that the observed images are generated by some
stochastic process, involving an unobserved random variable z. To be specific, the latent
representation z(i) is generated from a prior distribution p(z), and the image x(i) is gener-
ated from a conditional distribution pθ(x|z) where θ is the generative model parameter.

To efficiently approximate posterior inference of the latent variable z given an observed
value x, a recognition model qφ(z|x) is introduced where φ is the recognition model
parameter. This model is an approximation to the intractable true posterior pθ(x|z), and
also referred as a probabilistic encoder. Instead of encoding an input image x as a single
vector, the encoder produces a probabilistic distribution of the compressed feature z over
the latent space. Similarly, pθ(x|z) is a probabilistic decoder since given a latent feature z it
produces a probabilistic distribution over the possible corresponding values of x.

The VAE is a structure that implements an encoder qφ(z|x) and a decoder pθ(x|z) as a
neural network as shown in Figure 2.
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Figure 2. The structure of the vanilla VAE composed of the encoder and the decoder.

Then, parameters φ and θ become the weights of the neural network. The objective
is to find the φ and θ maximizing the variational lower bound L(θ, φ; x) on the marginal
likelihood [18] as the following:

L(θ, φ; x)=Eqφ(z|x)[log pθ(x|z)]− DKL(qφ(z|x)||pθ(z)) (1)

where DKL(·) stands for the Kullback–Leibler divergence, which measures the difference
between two probability distributions. The objective function consists of a reconstruction
likelihood and a regularization term. The prior distribution pθ(z) is usually set to a Gaus-
sian distribution so that the reparameterization trick can be used to train the network [18].

After training the VAE, it can compress the input image to the low-dimensional latent
vector z. Since the encoded vector z contains the information of the whole input image, it
can be used as a global descriptor for comparing similarities between images [19].

3. Proposed VAE Using Context Information

Although the compressed vector z can be used as a useful global descriptor, it is
insufficient to cope with environmental changes. To find the same place obtained from
different environments, external factors such as weather or seasonal changes should be
removed from the vector z. If the vector z is divided into the condition-invariant feature zp
and the condition-sensitive feature zc, we would be able to reliably distinguish places even
in changing environments using only the condition-invariant feature zp.

To achieve this goal, we assume that observed images are affected by both structural
information p such as unique landmarks, and context information c due to environmental
changes such as light or weather changes. Since structural information is robust and
context information is sensitive to environmental changes, each information is contained
in the condition-invariant feature zp and the condition-sensitive feature zc, respectively. To
divide the latent feature z into zp and zc, we propose a structure for generating the context
vector c from zc and the image from both zp and zc. Therefore, the generative model is
changed from pθ(x|z) to pθ,ϕ(x, c|zp, zc), and is factorized as the following:

pθ,ϕ(x, c|zp, zc)= pθ(x|zp, zc) · pϕ(c|zc) (2)

where θ and ϕ are parameters of the generative model to generate x and c, respectively.
The comparison between the existing and proposed generative model is shown in Figure 3.
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Figure 3. The comparison between (a) existing model and (b) proposed graphical models for data
generation. Solid lines denote the generative model and dashed lines denote the recognition model.
The proposed model assumes that images are generated from the condition-invariant feature zp and
the condition-sensitive feature zc.

Then, the variational lower bound is also modified from L(θ, φ; x) to L(θ, φ, ϕ; x, c) on
the marginal likelihood as follows:

L(θ, φ, ϕ; x, c)=Eqφ(z|x)[log pθ,ϕ(x, c|z)]− DKL(qφ(z|x)||pθ,ϕ(z))

=Eqφ(zp ,zc |x)[log pθ(x|zp, zc) + log pϕ(c|zc)]

− DKL(qφ(zp, zc|x)||pθ(zp, zc)pϕ(zc))

(3)

In order to learn the probability distributions, our proposed structure named C-VAE
is shown in Figure 4. The encoding part is considered as the inference model qφ(zp, zc|x),
and the decoding part is the generative model pθ(x|zp, zc) and pϕ(c|zc).
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Figure 4. The structure of the C-VAE for feature extraction in changing environments.

A detailed examination of this structure reveals the following characteristics in com-
parison with the existing VAE. The reconstruction of the input image x is the same as the
existing structure. The difference is that zc, a subset of z, is used not only to reconstruct
x, but also to create the context vector c. During the learning process, information that
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is sensitive to environmental influences is concentrated in zc, and condition-invariant
information is compressed into zp. Therefore, zp can be used as a feature of an image which
is robust to environmental changes.

If not only context information c but also structural information p is provided, we
propose a model named CP-VAE as shown in Figure 5, which improves the indepen-
dence between zp and zc of the previous model. The generative model is modified to
pθ,ϕ,ψ(x, p, c|zp, zc), and factorized as the following:

pθ,ψ,ϕ(x, c|zp, zp, zc)= pθ(x|zp, zc) · pψ(p|zp) · pϕ(c|zc) (4)

where θ, ψ, and ϕ are parameters of the generative model to generate x, p and c, respectively.
The variational lower bound is also modified as follows:

L(θ, φ, ψ, ϕ; x, p, c)

=Eqφ(zp ,zc |x)[log pθ(x|zp, zc) + log pψ(p|zp) + log pϕ(c|zc)]

− DKL(qφ(zp, zc|x)||pθ(zp, zc)pψ(zp)pϕ(zc))

(5)
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Figure 5. The structure of the CP-VAE for feature extraction in changing environments.

The difference from the previous model is that zp generates not only the image x,
but also the position information vector p. Since zp generates the structural information
vector p, the independence between zp and zc is enhanced, and the more robust condition-
invariant feature zp can be extracted to recognize places under substantial environmental
changes. However, this model has a limitation in that it requires a fairly strong assumption
that the training data are aligned with the same places in order to obtain the position vector
information p.

4. Robot Localization Using Condition-Invariant Features

After training the model, the encoding part of the proposed structure can be used
to extract the condition-invariant feature zp from the image. If there are two image se-
quences uX = {ux(1), ux(2), ..., ux(M)} and vX = {vx(1), vx(2), ..., vx(N)} from different en-
vironments u and v, we can extract feature sequence uZ = {uz(1)p , uz(2)p , ..., uz(M)

p } and
vZ = {vz(1)p , vz(2)p , ..., vz(N)

p }, respectively. Then, the similarity matrix S ∈ RM×N can be
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constructed from the affinity score between features. The component of the S is the affinity
score sij between uz(i)p and vz(j)

p , where 1 ≤ i ≤ M and 1 ≤ j ≤ N. It is calculated using the
cosine similarity as follows:

sij =
uz(i)p · vz(j)

p

‖uz(i)p ‖‖vz(j)
p ‖

(6)

The affinity score sij has a value between [0, 1], and the closer it is to 1, the higher the
probability of the same place. From the similarity matrix S, we can find the correspondence
between the query sequence vX and the database sequence uX, and the location of the
mobile robot can be successfully recognized.

5. Experimental Results

In this section, various experiments were performed to verify the performance of
the proposed algorithm. We used the Nordland dataset [21,22], which comprises images
of all seasons from four journeys on a 728 km train route across Norway, and the KAIST
dataset [23], which includes six sequences in various illumination conditions: day, night,
sunset, and sunrise. They are challenging datasets widely used for long-term place recog-
nition because images between sequences show drastic appearance changes. In each
sequence, 1600 images were used for training, and 6400 images were used as a test. All the
images were resized to 224× 224 pixels.

The output shape of the encoding part in our model is shown in Table 1. To effectively
compress the data, several layers of convolutional and fully connected layers were used.
Then, the output from the sampling layer is the latent feature z, and this feature is divided
into zp with 96 nodes and zc with 32 nodes. The decoding part includes a part that
reconstructs the input image x from the zp and zc similar to a typical VAE, and a part that
generates a context vector c from the zc. Since the dataset has four seasons, the context
vector c is defined as a four-dimensional one-hot encoding vector.

Table 1. The input and output shapes of the encoding part in our VAE model.

Layer Input Size Output Size

conv1 224 × 224 × 3 112 × 112 × 32
conv2 112 × 112 × 32 56 × 56 × 64
conv3 56 × 56 × 64 28 × 28 × 64
conv4 28 × 28 × 64 14 × 14 × 128
conv5 14 × 14 × 128 7 × 7 × 128
fc6 6272 4096
fc7 4096 2048
fc8 2048 1024
fc9 1024 512
z_mean 512 128
z_var 512 128
sampling 128, 128 128

The first experiment is a visualization test to confirm if the model has been trained
to make zp and zc independent as intended. Let ux and vx be images obtained from
different environments u and v, respectively. Then, we can extract the latent features
uz = {uzp, uzc} and vz = {vzp, vzc} from each image respectively using the encoder of
the trained model. Since the reconstructed image from the decoder is mainly affected by
the condition-sensitive feature zc, not the condition-invariant feature zp, we can expect
the reconstructed image from the combined feature {uzp, vzc} will be xv. The results of
combining zp and zc extracted from each sequence image are shown in Figures 6 and 7.
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Figure 6. The independence visualization result of the Nordland dataset. (a) The first row is the
original image, and (b) the other images are reconstructed by a combination of various zp and zc.

As can be seen from the reconstructed image results in Figure 6, there is no significant
change in the zp change, whereas different season images are created in zc change. Similarly,
there is no significant difference in the change of zp, but it can be seen that images at
different times are created according to the change of zc in Figure 7. We can conclude
that the environmental information is compressed in zc since the reconstructed image is
changed by the influence of the zc rather than zp.

As the zc plays a significant role in reconstructing the image, similar images would be
generated if the same zc is used to reconstruct the image. In other words, if we define ozc
as a constant vector, {uzp, ozc} and {vzp, ozc} will reconstruct condition-invariant images
ox since the image is mainly affected by the condition-sensitive feature ozc. The results of
the condition-invariant image are shown in Figures 8 and 9.



Appl. Sci. 2021, 11, 8976 8 of 12

(1)

pz

(2)

pz

(3)

pz

(4)

pz

(4)

cz
(3)

cz
(2)

cz
(1)

cz

(a)

(b)

(5)

cz
(6)

cz

(6)

pz

(5)

pz

Figure 7. The independence visualization result of the Kaist dataset. (a) The first row is the original
image, and (b) the other images are reconstructed by a combination of various zp and zc.

Figure 8. The condition-invariant image generation results using the constant feature vector zc of the
Nordland dataset.



Appl. Sci. 2021, 11, 8976 9 of 12

Figure 9. The condition-invariant image generation results using the constant feature vector zc of the
Kaist dataset.

As expected, we can see that similar images are generated regardless of time or season
changes if we use the same ozc. The visualization results showed that the independent
assumption between zp and zc is reasonable because the reconstructed images are mainly
influenced by the condition-sensitive feature zc. Therefore, we can conclude that our model
can extract the condition-invariant feature zp and perform robust place recognition in
changing environments using this feature.

To compare the place recognition performance, precision-recall analysis was con-
ducted. Various thresholds were applied to the values of the similarity matrix. We com-
pared the proposed method C-VAE (VAE+C) and CP-VAE (VAE+C+P) with the sum of
the absolute difference (SAD) [24], FAB-MAP [25], AlexNet [10], and VGG19 [26]. The
precision-recall results are shown in Figures 10 and 11.

Figure 10. The precision-recall results in various seasons of the Nordland dataset.
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Figure 11. The precision-recall results in various seasons of the Kaist dataset.

Precision-recall results showed that the proposed method CP-VAE outperformed other
methods in most cases. Existing handcraft features such as SAD and FAB–MAP showed
they are not suitable for place recognition in a changing environment. Pre-trained deep
learning models such as AlexNet and VGG19 showed reasonable performance in various
situations. However, the performances were degraded when environmental changes be-
tween images were substantial, such as winter images with snow and other seasonal images
without snow. This is a fatal weakness of the pre-trained model from the viewpoint of secur-
ing stability for long-term operation of the robot. Since the proposed method recognizes a
place using condition-invariant features, it shows robustly high performance even in these
cases. From the results of the precision-recall analysis, we were able to verify the validity
of the proposed method’s place recognition performances in a changing environment.

6. Conclusions

Variational Bayesian methods can perform efficient inference and learning in the
presence of continuous latent variables with intractable posterior distributions, and large
datasets. We introduced a stochastic variational inference and learning architecture that can
extract condition-invariant features. Under the assumption that a latent representation of
the variational autoencoder can be divided into condition-invariant and condition-sensitive
features, a new structure of the variation autoencoder is proposed and a variational lower
bound is derived to train the model. After training the model, condition-invariant features
are extracted from test images to calculate the similarity between them, and the places can
be recognized even in severe environmental changes. Experimental results showed that
our assumption was reasonable, and the validity of the proposed method was proved by
the precision-recall analysis. In the future, it is necessary to develop a method that can be
applied even when several environmental factors are mixed. For example, if we develop a
place recognition method that is robust to seasonal and weather changes, the robot will be
able to operate in a variety of environmental conditions.
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Abbreviations
The following abbreviations are used in this manuscript:

SLAM Simultaneous Localization And Mapping
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
HOG Histogram of Oriented Gradients
CNNs Convolutional Neural Networks
CAEs Convolutional Auto Encoders
VAEs Variational Auto Encoders
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