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34433 İstanbul, Turkey

2 Department of Computer Engineering, Faculty of Engineering-Architecture, Beykent University, Ayazağa,
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Abstract: Manifold learning tries to find low-dimensional manifolds on high-dimensional data. It is
useful to omit redundant data from input. Linear manifold learning algorithms have applicability
for out-of-sample data, in which they are fast and practical especially for classification purposes.
Locality preserving projection (LPP) and orthogonal locality preserving projection (OLPP) are two
known linear manifold learning algorithms. In this study, scatter information of a distance matrix
is used to construct a weight matrix with a supervised approach for the LPP and OLPP algorithms
to improve classification accuracy rates. Low-dimensional data are classified with SVM and the
results of the proposed method are compared with some other important existing linear manifold
learning methods. Class-based enhancements and coefficients proposed for the formulization are
reported visually. Furthermore, the change on weight matrices, band information, and correlation
matrices with p-values are extracted and visualized to understand the effect of the proposed method.
Experiments are conducted on hyperspectral imaging (HSI) with two different datasets. According
to the experimental results, application of the proposed method with the LPP or OLPP algorithms
outperformed traditional LPP, OLPP, neighborhood preserving embedding (NPE) and orthogonal
neighborhood preserving embedding (ONPE) algorithms. Furthermore, the analytical findings on
visualizations show consistency with obtained classification accuracy enhancements.

Keywords: linear manifold learning; out-of-sample; classification; weight matrix; artificial intelligence

1. Introduction

Dimension reduction (DR) techniques are used to obtain new feature sets in a subspace
from high-dimensional original data. This helps to omit the redundant data and noise from
the input and provides advantages, especially in terms of computational time and data
storage [1,2]. Manifold learning is a special kind of technique for DR, which assumes that
there is a low-dimensional manifold on high-dimensional data and its purpose is to find
this manifold [3]. Manifold learning is applied to different application domains such as
face recognition, medical image segmentation, and object recognition [4]. Furthermore, an
increase in the availability of hyperspectral imaging (HSI) data and advanced computing
has led to the popularity of manifold learning techniques in this research area [5].

Manifold learning aims to preserve local or global geometric relations and not lose
the graph topology of high-dimensional data [5–7]. Isometric feature mapping (Isomap),
locally linear embedding (LLE), and Laplacian eigenmaps (LE) are the most widely utilized
nonlinear manifold learning methods. While Isomap is a global approach [8], LE [9] and
LLE [10] retain the local geometry of data. Local approaches are initiated by obtaining the
nearest neighborhood of each data point instead of retaining overall topology. There are
more robust domain-specific manifold learning methods in the literature. In this study, an
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effective local manifold representation that makes use of spatial and spectral information
is proposed [11].

Traditional nonlinear manifold learning algorithms take all previous samples and
new samples as input for the learning process. This is known as an out-of-sample problem
and is not practical for classification purposes including face recognition and HSI tasks [3].
Nevertheless, there are some studies on generalizations and extensions of out-of-sample
data for nonlinear manifold learning that use polynomial mapping [3], the Nyström
approach [12], kernel Hilbert space [13], and sparse grid functions [14]. Additionally,
linearized manifold learning algorithms can make embedding generalizations from the
learned linear projections for new samples.

There are various linear manifold learning algorithms in the literature. Locality
preserving projection (LPP) and neighborhood preserving embedding (NPE) linearize the
LE and LLE, respectively [15,16]. Linearization provides applicability for out-of-sample
problems, while LLE applies convex optimization to obtain a weight matrix and LE employs
a heat kernel function for this purpose. Orthogonal locality preserving projection (OLPP)
and orthogonal neighborhood preserving embedding (ONPE) are the same with LPP and
NPE, respectively, except for orthogonality restrictions [17,18]. Transformation matrices
are restricted to be orthogonal [3]. These algorithms have been analyzed on hyperspectral
images in a study by [19]. The aforementioned methods use an unsupervised approach.
If the labeled data is scarce, semi-supervised techniques can also be used. One study
presented a multitask regression framework to enhance model generalization and the
quality of class indicators of unlabeled samples [20].

In addition, some supervised manifold learning approaches have also been proposed.
They use class information of the input and aim to optimize similarities between and
within class neighbors, while preserving the geometric structure of the data. They can
be applied as linear or nonlinear. Approaches using class information which redefine the
distances between the samples in LE and LLE have been shown in some studies [21,22].
Furthermore, linear operator mappings for the LPP have been proposed for better class
separability [23–25]. Similarly, a specific method has been developed which was applied
during the construction of the adjacency graph step in the NPE for the same purpose [26].
There are also Fisher-based linear manifold learning algorithms that improve class sepa-
rability in the literature [27–30] and an analysis on supervised nonlinear embeddings has
been suggested in a study by [31].

One study explained manifold learning-based dimension reduction methods and the
technique to make them supervised [32]. The supervised technique applied to LE shown
in [32] was based on maximizing inter-class and minimizing intra-class distances. The
method employed two different weight matrices for each task to optimize cost. However,
the proposed method employed one weight matrix for optimization. Contrary to the
existing method, it created class-specific variables considering scatter information of every
class. They employed a heat kernel function with a supervised manner to create the
weight matrix. This approach was applied to LPP and OLPP instead of LE and was more
suitable for classification applications due to its out-of-sample applicability. The linear
manifold learning methods used were LPP, OLPP, NPE, and ONPE. The study also included
comparative analytical evaluations of the algorithm giving the best classification accuracy
performance to understand the effect of the proposed method. Analytical evaluations
were made with the help of visual reports of class specific accuracy enhancements and
the coefficients proposed, visualizations of weight and correlation matrices with the p-
values, and band information graphs. This study explores the relations between the
analytical visuals and classification results. The application of the proposed method is
expected to have better discrimination ability of extracted features as compared with a
traditional version and to provide higher classification accuracy performance than the
rivals mentioned. The experiments are conducted on HSI data.

The organization of this paper is as follows: In Section 2, the linear manifold learn-
ing algorithms which are used in the proposed method and the experiments are briefly
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described; in Section 3, the proposed method is described clearly; in Section 4, datasets,
experiments, and the results are presented; finally, in Section 5, we conclude the paper with
some remarks.

2. Linear Projections for Manifold Learning

Some important linear manifold learning methods which are applied to the proposed
formulation on and/or used in the experiments are described.

2.1. LPP and NPE

The LPP and the NPE are linear manifold learning methods that are derived from
the LE and the LLE, respectively. Given a set for training data is X = [x1, x2, . . . , xm]
in Rn, they aim to find a transformation matrix, A = [a0, a1, . . . al−1, ] that maps X to
Y = [y1, y2, . . . , ym] in Rl to obtain lower dimensional space. The methods use the
following equation for the linear projection:

xi → yi = ATxi (1)

In the LPP [13], the first step is to construct the adjacency graph. The nodes i and j are
connected if i is in k-nearest neighbors of j. The following Euclidean distance formulation
is used to determine the distances between the nodes:

d
(

xi, xj
)
=
√(

xi1 − xj1
)2

+
(

xi2 − xj2
)2

+ . . . +
(

xin − xjn
)2 (2)

The next step of the LPP is to construct the weights. Weights on the connected nodes
are calculated by a heat kernel function given by Equation (3). If the nodes i and j are not
connected, then, it is represented by 0 in the W. W is a symmetric, m × m weight matrix
as follows:

Wij = e−
||xi− xj ||

2

t (3)

where t = 2s2. The heat kernel parameter, s, is used in the experiments later.
The algorithm continues with the minimization of Equation (4) assuming yT = aTX,

where α is the transformation vector as follows:

∑
i,j

(
yi − yj

)2Wij (4)

Finally, the minimization problem leads to a generalized eigenvalue problem as follows:

XLXTai = λiXDXTai (5)

where L and D represent the Laplacian and diagonal matrices, respectively, and are defined
as L = D−W and Dii = ∑

j
Wji, respectively. The transformation matrix, A, is constructed

as A = [a0, a1, . . . al−1, ], where a0, a1, . . . , al−1 corresponds to l smallest eigenvalue such
that λ0 < λ1 < . . . < λl−1. A is substituted into Equation (1) to obtain the low-dimensional
space that represents high-dimensional data.

NPE provides linearization to the LLE algorithm as stated formerly [16]. The first
step of the algorithm is to construct the adjacency graph, as in the LPP. This provides
neighborhood information. Unlike the LPP algorithm, the weight matrix, W, is obtained by
using the convex optimization instead of the heat kernel function. Assuming yT = aTX,
the minimization of Equation (6) is solved to obtain W as follows:

∑
i
(yi −∑

j
Wijyj)

2 (6)
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Finally, the minimization problem leads to generalized eigenvalue problem as follows:

XMXTai = λiXXTai (7)

where M equals (I −W)T(I −W) and I is identity matrix. As in the LPP, the transformation
matrix, A, is constructed as A = [a0, a1, . . . al−1, ], where a0, a1, . . . , al−1 corresponds to
the l smallest eigenvalues such that λ0 < λ1 < . . . < λl−1. Linear projection is implemented
by substituting A into Equation (1) to get low-dimensional representation.

2.2. OLPP and ONPE

The LPP and the NPE are redesigned with the orthogonality restriction of the trans-
formation matrices. The minimization equations defined for the LPP and the NPE, i.e.,
Equations (4) and (6), are solved by taking AAT = I constraint into consideration to get
the OLPP and the ONPE respectively.

The construction of the adjacency graph and finding of weight matrix phases, W,
are the same as defined in the LPP and the NPE. The restriction, AAT = I, leads to an
easier eigenvalue solution as compared with that of the LPP and NPE. The l smallest
eigenvalues are calculated from XLXT and XMXT in the OLPP and the ONPE respectively.
Equation (1) is used for the projection. The reader can refer to [17,18] for more details about
these algorithms.

3. The Proposed Method

The LE attempts to preserve the local structure of data. First, it constructs an adjacency
graph, and then finds the weight matrix. The heat kernel function defined in Equation (3)
can be applied to the graph at this phase. These steps are common for both the LPP and
the OLPP.

A supervised version of the LE is overviewed in a study by [32]. It finds within-class
and between-class neighbors upon a specific similarity threshold value. The algorithm
continues by constructing two different weight matrices for within and between classes, Ww
and Wb. At these steps, the heat kernel function is constructed with a preselected constant
heat kernel parameter, t. The next step is the optimization of two objective functions,
i.e., maximizing ∑i,j

(
yi − yj

)2Wb, ij and minimizing ∑i,j
(
yi − yj

)2Ww, ij. Finally, these are
combined to give a generalized eigenvalue solution.

In the proposed method, the weight matrix, W, is constructed with the help of a
changing parameter in the denominator of Equation (3). The denominator is formulated
based on class-specific scattering information of training data with a supervised manner.
The proposed method optimizes an objective function depending on this W. It means that
the proposed method requires only one weight matrix instead of two for optimization. The
method is applied on the LPP and the OLPP for classification purpose.

Let µc be the coefficient that keep the specific values calculated for every class with c
in 1, 2, . . . , n and n is the total class number, and D is the m × m distance matrix where
m is the number of training samples. Then, µc is found by applying Equations (8) and (9),
sequentially, based on the information of D as follows:

Si =

√
1

ki − 1 ∑j=ki
j=1

(
D
(
i, Iij

)
− avgi

)2 (8)

uc =
1
tc

∑j=tc
j=1 (sIgrouped,c)j

(9)

Equation (8) calculates the standard deviation of every i-th sample of D considering
only intra-class distance information. Here, the i-th sample means the i-th row and i
changes from 1 to m. The output of the equation is shown by Si which corresponds to the
i-th row. In the equation, ki keeps the total number of intra-class samples for every row. Iij
keeps the intra-class sample indices for every i-th row; the maximum number of j depends
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on the i-th sample intra-class number, ki. The average of distances of intra-class samples of
i-th rows is shown with avgi.

After Si is calculated for every row of D, the values that belong to the same classes on
S are grouped by holding the indices of S elements. This information is kept on sIgrouped,c
and allowed us to calculate the average of each grouped class as given by Equation (9). The
indices of S elements belonging to the same classes are represented by Igrouped,c, where c is
for class id. The total sample number of every class is shown by tc. The maximum number
of j depends on the sample number belonging to the specific classes, tc.

At the end, n different µ are obtained that are represented as µc. Due to the symmet-
rical structure of D, the explanations made for notations are also valid for the column-
wise perspective.

Up to this point, the procedure to find µc was explained. This parameter is exclusive
for each class of training samples and used in the formulation to find W. The main steps of
the application of the proposed method to LPP and OLPP are described as follows:

• The adjacency graph is constructed.
• Equation (10) is applied to samples among k-nearest neighbors.

Wij =

 e−
||xi−xj ||

2

t
1

uc p , i f c(xi) = c(xj)

e−
||xi−xj ||

2

t , otherwise
(10)

• New weights for the samples among k-nearest neighbors are calculated with Equation
(10). The class exclusive parameter, µc, is used when two samples belong to the same
class that c(xi) = c(xj) holds. The parameter p is a constant determined manually to
scale W. If the classes of the samples are not the same, the heat kernel function is
applied directly.

• The samples that are not connected, i.e., not among k-nearest neighbors, are marked
with 0 on W or this must be guaranteed in Step 1.

• The intra-class samples that satisfies Wij = 0 among the k-nearest neighbors are
determined and their weights are updated to new values determined by the first part
of Equation (10) and, correspondingly, the maximum values of the samples on the row
of W among k-nearest neighbors and not in the same class are marked as 0, i.e., this
value is replaced with 0.

• The generalized eigenvector solution and the projection are implemented as the LPP
or the OLPP does.

The main steps of the above algorithm are implemented considering Algorithm 1
given below.

The last part of the algorithm is the eigenvalue solution and is the same with the LPP
and the OLPP. Time and space complexity is O(m2), but extra memory is required to keep
11 different variables to initialize the algorithm.
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Algorithm 1 Proposed method

Given Dm×m, the distance matrix; Km×m, the neighborhood information matrix (1, neighbor
and 2, not); Lm×m, the non-intra-class information matrix (1, non-intra and 2, not); Wm×m, Jm×m,
Nc×m, S1×m, Y1×m, and µc×1, u, an integer; and p, a float used in Equation (10), are zero matrices
and variables that are needed during the implementation:

c: Total number of classes and used as class enumeration.
m: Total number of training number.
u, p are independent variables created due to need of algorithm.
For i = 1 to m do
For j = 1 to m do
If (Y(1,i) == Y(1,j))
J(i,j) = D(i,j)
end
end
S(1,i)← calculate standard deviation for every row for Jm×m (exclude zeros)
For i = 1 to c do
For j = 1 to m do
If (Y(1,j) == c)
N(c,i) = S(1,j)
end
end
µ(c,1)← calculate average of every row of Nc×m (exclude zeros)
For i = 1 to m do
For j = 1 to m do
If (Y(1,i) == Y(1,j) && K(i,j) == 1)
W(i,j) = exp(−D(i,j)2/2.s2 .µ(Y(1,j),1).p)
Elseif (Y(1,i) != Y(1,j) && K(i,j) == 1)
W(i,j) = exp(−D(i,j)2/2.s2)
end
end
For i = 1 to m do
For j = 1 to m do
If (Y(1,i) == Y(1,j) && K(i,j) == 0)
u = find_max_non_intra_indice (W(i,:) from L(i, :) = 1)
W(i,u) = 0
L(i,u) = 0
W(i,j) = exp(-D(i,j)2/2.s2 .µ(Y(1,j),1).p)
end
end

4. Experiments
4.1. Datasets

The experiments are carried out on HSI datasets, but first, synthetic data are employed.
The synthetic data used are “3d_clusters” and can be created via [33]. The dataset includes
500 samples and has six different classes. Random noise is added to the samples, but most
experiments are performed on hyperspectral data. Two different hyperspectral datasets are
used in the experiments, i.e., the Indian Pines and Kennedy Space Center (KSC) datasets.

The Indian Pines and KSC datasets are both acquired by NASA AVIRIS sensor. Indian
Pines is a 16-class dataset. After removing 20 noisy bands, 200 bands remain for the
analysis. It primarily consists of regular-shaped agricultural fields with 10,249 samples in
the ground truth. The KSC dataset includes 13 classes of land cover. After removing the
water absorption bands, 176 bands remain. It includes 5211 samples in the ground truth.
The Indian Pines and KSC data samples are not equally distributed among classes. The
reader can refer to [34] to access these datasets to obtain more details about them.
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4.2. Experimental Settings

The experiments are conducted on hyperspectral images; but, first, the effect of the
proposed method is shown on synthetic data. LPP and Proposed + LPP embeddings
are used, and the parameters are chosen heuristically to reduce three dimensions to two
dimensions. Then, the classification accuracy performances that belong to LPP, OLPP,
NPE, ONPE, the proposed method + LPP, and the proposed method + OLPP are searched
on hyperspectral images. The reduced dimensionality (RD) is fixed to 20. The optimum
neighborhood k and heat kernel parameter s are searched based on the classification
performance of each algorithm that achieves its maximum over a range. The boundaries
of the search loops and interval values for every iteration are determined heuristically.
All experiments are repeated five times with random samples and classification rates are
averaged. The overall accuracy values are shown with tables in the next subsection. The
algorithm flowchart for the classification experiments on a randomly selected train and
test data is illustrated in Figure 1.
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for feature learning. This part is repeated five times with randomly selected training/test datasets and classification
results are kept, and then averaged to find optimal k and s. Cross validation is applied to train embeddings to determine
hyperparameters. Then, the test data is evaluated. The test data are completely unseen data and used just for prediction).

As shown in Figure 1, the first step is to split the data into training and test datasets.
The training dataset is employed for dimensionality reduction learning. A transformation
matrix is created and with the help of this matrix, training and test embeddings are
constructed. The process shown in the red rectangle continues over a range of s and k. The
accuracy values are recorded during this period. Training and test dataset sample numbers
are given with Table 1. The classes belonging to the HSI datasets do not have the same
number of samples.

Table 1. Train/test sample numbers of the HSI datasets used.

Dataset Indian P. KSC

Total 10,249 5211

Training 1031 528

Test 9218 4683
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Support vector machine (SVM) is chosen as the classifier in this study. In the SVM, a
radial basis function (RBF) kernel is used with the penalty parameter, C ∈ [2−4, 28] and
kernel width parameter, γ ∈ [2−4, 24]. A grid search is applied on the closed intervals
indicated. Cross validation is applied to search parameters.

Another main part of the study is to conduct experiments for analytical evaluations.
The manifold learning algorithm that yields the highest classification accuracy performance
is taken into consideration for the analysis to show the effects of the proposed method,
which is the experimental strategy. The best resulting algorithm may become LPP or OLPP
with the proposed versions, depending on the dataset.

The class-based accuracy enhancements and coefficients, µc, that are proposed with
this study are visually reported. The other analytical elements can be expressed as the
evaluation of band information, weight, and correlation matrices with their significance.
The analytical experiments are carried out with randomly chosen data by considering
the sample rates shown in Table 1. The parameters remained the same as previously
determined in classification phase.

Classes 3 and 12 for Indian Pines and Classes 2, 7, 8, and 9 for KSC are declared as
difficult to discriminate [35]. In the band information experiments, these classes are evalu-
ated based on the first two bands. Furthermore, Bands 11 and 12 are chosen empirically to
search whether they provide discrimination for any class.

4.3. Experimental Results

The visualization of the 2D embeddings for the synthetic dataset are given in Figure 2.
According to this figure, the proposed method provides better class separation as compared
with LPP. Furthermore, Table 2 shows the classification results for hyperspectral images.
The most successful linear manifold learning method is shown in bold type.

The proposed method is implemented for both LPP and OLPP. According to Table 2,
KSC has higher general classification accuracy rates than Indian Pines when all manifold
learning algorithms used are considered. Proposed + LPP and Proposed + OLPP are the best
linear manifold learning algorithms for Indian Pines and KSC, respectively. Furthermore,
the most successful linear manifold learning algorithm among the existing ones are OLPP
for Indian Pines and NPE for KSC datasets. The enhancement rates are 1.6% and 1.4% for
Indian Pines and KSC datasets, respectively.
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Table 2. Classification performance on linear manifold learning methods for the HSI datasets. (OA, overall classification
accuracy in percentage; std, standard deviation; k, neighborhood; s, heat kernel parameter; the algorithm with the best
performance is bolded for every dataset).

Dataset Linear Manifold Learning Method OA (%) ± std Parameters

Indian Pines

LPP 69.2 ± 1.25 k = 50, s = 1600
NPE 73.2 ± 0.25 k = 70

OLPP 76.6 ± 0.72 k = 90, s = 800
ONPE 74.7 ± 0.67 k = 40

Proposed + LPP 78.2 ± 0.77 k = 110, s = 400, p = 10−4

Proposed + OLPP 75.2 ± 1.25 k = 90, s = 1000, p = 10−4

KSC

LPP 82.9 ± 2.05 k = 2, s = 19,500
NPE 90.0 ± 0.82 k = 32

OLPP 87.4 ± 2.10 k = 18, s = 36,000
ONPE 87.0 ± 1.00 k = 60

Proposed + LPP 85.0 ± 0.87 k = 50, s = 19,500, p = 10−6

Proposed + OLPP 91.4 ± 0.83 k = 20, s = 20,000, p = 10−6

Class-based µc values and enhancement rates for every dataset are reported and
shown in Figure 3. According to this figure, the number of classes that show decrement
in accuracy is only two out of 29 classes. Furthermore, in Figure 3a, a correlation pattern
is noted. Another remarkable point is the classes that seem to match with zero µc, as
shown in Figure 3b. In fact, these are not zero, but very low values as compared with other
classes. This occurs because the classes having very similar band information that causes
low scatter values.
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Figure 3. Enhancement vs. µc graphs upon best resulting algorithms reported in Table 2: (a) Indian P.; (b) KSC (enhancement,
class-based classification accuracy difference in percent between the proposed method + existing manifold learning algorithm
and existing manifold learning algorithm; coeff, µc, class-based coefficients proposed with this study). (Note that every
circle represents a class. The figure reports class-based accuracy enhancements and µc coefficients calculated for every class.
The coefficient µc is related to the scattering level of intra-class samples and specific for every class. Class-based success of
the proposed method can be evaluated.for every dataset and compared with the coefficients proposed).

The other part of the experimental results consists of some visualizations for analytical
evaluations. First, the weight matrices are extracted. The obtained weight matrices are
shown with Figure 4 for hyperspectral datasets. These matrices show the effect of the
changes that the proposed method causes. According to these figures, the values of
coefficients around diagonals, i.e., the similarities for intra-class values, are increased.
Additionally, off-diagonal values for non-intra-class values are decreased.
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Figure 5a–d shows the graphs that belong to the first two bands of low-dimensional
data of hyperspectral images. According to Figure 5a–d which is obtained upon “difficult
classes”, the class discrimination information is increased predominantly by applying the
proposed method for the Indian Pines and KSC datasets. Furthermore, the first two bands
for KSC show a significant discriminative property for the classes marked with green and
red circles. It helps to enhance classification accuracies for KSC. Additionally, the feature
information of some classes belonging to the Indian Pines and KSC datasets is improved
on randomly chosen Bands 11 and 12. This is shown in Figure 5e–h.

The last evaluation metric is getting the visualizations of correlation matrices and
p-values that give the relation between the samples for every dataset and their significance.
If an off-diagonal value is smaller than 0.05, then, the correlation is considered to be
significant. A smaller p-value is identified as a more significant correlation. The correlation
matrices and p-values are given in Figures 6a–d and 6e–h, respectively. In Figure 6a–d, it
can be seen that the correlation values of off-diagonal values are decreased, while there is no
significant change around diagonals. Furthermore, p-values are increased for off-diagonal
values, as observed in Figure 6e–h.
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Preserving Projection, OLPP: Orthogonal Locality Preserving Projection).
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Figure 6. Correlation matrices obtained upon face and HSI datasets: (a) LPP for Indian Pines;
(b) Proposed + LPP for Indian Pines; (c) OLPP for KSC; (d) Proposed + OLPP for KSC. Significance
matrices (p-values) for the correlations: (e) LPP for Indian Pines; (f) Proposed + LPP for Indian
Pines; (g) OLPP for KSC; (h) Proposed + OLPP for KSC. (LPP: Locality Preserving Projection, OLPP:
Orthogonal Locality Preserving Projection).
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5. Discussion

First, the proposed method is tested on a toy dataset. The proposed method gives
better class separation for six randomly created noisy classes. Furthermore, the effectiveness
of the proposed method is shown on two different hyperspectral datasets by applying
classification. When the proposed method is evaluated among all linear manifold learning
algorithms used, 1.6% improvement is achieved for the Indian Pines dataset and 1.4% for
the KSC dataset. Improvements are observed in many classes of both datasets.

Weight matrices are extracted to observe the changes made by the proposed method
on the algorithm for the HSI data. The value increment around diagonals and the value
decrement on off-diagonals for weight matrices can be an indicator to get better classifi-
cation results. However, obtaining a weight matrix is a mid-step and occurs before the
construction of the embeddings. Therefore, it does not guarantee that the classification
success rates always increase.

The band information and correlation matrices are extracted using the embeddings
for both datasets. In the band analysis, it is shown that the information for Bands 1 and 2 is
improved for the “difficult classes”. Indeed, some bands can be discriminative only for
some classes. In this context, the features belonging to some classes that have no informa-
tion on Bands 11 and 12 are greatly improved with the proposed method. In addition, the
correlation matrices for the bands can give information about distinguishability of samples.
A remarkable point is that a general decrease in the correlation values for non-intra-class
samples is observed. This can, likewise, have a positive effect on classification success,
because it shows that the effect of irrelevant class samples is decreased. Furthermore, some
correlations of off-diagonal, i.e., correlations belonging to non-intra-class samples lose their
significance (greater p). This can be evaluated as a meaningless relation for non-intra-class
samples and supports the supervised approach.

6. Conclusions

This study proposes an alternative algorithm for linear manifold learning based on
dimensionality reduction improving feature learning by a supervised approach. It demon-
strates that implementation of the proposed method with the LPP or OLPP algorithms
outperforms not only LPP and OLPP but also NPE and ONPE algorithms for both hyper-
spectral datasets. Furthermore, the discriminative effect of the proposed method is shown
with weight matrices. In addition, according to the statistical evaluations, the classification
results are not a chance. Improvement of the information contributing to classification is
shown on randomly chosen bands. Additionally, general correlations of non-intra-class
samples and the significance of them are decreased. This supports the quality of classifi-
cation. All the statistical findings are consistent with the classification improvements of
both datasets.

The proposed method uses only Euclidean distance. In the future, state-of-the-art
classifiers could be investigated to understand whether the classification success could
be enhanced further or not. Experiments could be expanded to search optimum reduced
dimensionalities to increase efficiency.
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