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Abstract: Free vibration analyses of lattice sandwich beams with general elastic supports have rarely
been discussed in this field’s literature. In this paper, a unified method is proposed to study the free
vibration characteristics of lattice sandwich beams under various boundary conditions. The proposed
method is to convert the three truss cores of lattice sandwich beams into an equivalent homogeneous
layer and introduce two different types of constraint springs to simulate the general elastic support
boundary at both ends of lattice sandwich beams. By changing the rigidity of the boundary restraint
spring, various boundary conditions can be easily obtained without modifying the solving algorithm
and solving process. In order to overcome all the discontinuities or jumps associated with the elastic
boundary support conditions, the displacement function of lattice sandwich beams is usually obtained
as an improved Fourier cosine series along with four sine terms. On this basis, the unknown series
coefficients of the displacement function are treated as the generalized coordinates and solved using
the Rayleigh–Ritz method. The correctness of the present method is verified through comparison with
existing literature. The calculation results of the present method are highly accurate, indicating that
the present method is suitable for analyzing the vibration characteristics of lattice sandwich beams
with general elastic supports. In addition, the effects of beam length, panel thickness, core height,
radius and truss inclination on the natural frequencies of lattice sandwich beams with arbitrary
boundary conditions have been discussed in this paper.

Keywords: free vibration; lattice sandwich beams; general elastic supports; improved Fourier series
method; Rayleigh-Ritz method

1. Introduction

Consisting of two thin panels attached to each side of a thick core, the sandwich structure
is a special structure of composite materials. The sandwich structure has been widely used in
aviation, aerospace, transportation, ocean engineering and other fields due to its light weight,
high rigidity and high strength [1–9]. When the sandwich structure is subjected to a bending
load, its panel will bear plane compression and tensile loads, and the core material will bear
shear loads. The mechanical properties of the sandwich structure can be obtained by selecting
different panel and core material configurations simultaneously. Sandwich structures of
foam [10,11] and honeycomb materials [12,13] have been widely used as traditional sandwich
structures due to their high rigidity and weight ratio, which can significantly reduce weight
while maintaining mechanical properties. However, the conventional sandwich structure
cannot be universally used, as it is not compatible with closed-cell foam or a honeycomb core.
The space lattice sandwich structure with various types of 3D periodic lattice cores, including
pyramidal [14–18], tetrahedral [19,20], Kagome [21,22] and corrugated lattice core [23,24],
has been proved to be stronger and more rigid than traditional sandwich structures due to
its opening structure with high node connectivity [25]. Based on the developmental trend
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of recent years, the three-dimensional periodic lattice core has been considered the best
direction for multifunctional ultra-light structure design.

The space lattice sandwich structure is often dynamically stimulated by the working
environment load in practical engineering applications. Therefore, for design purposes, it
is of great significance to understand the vibration response mechanism of space lattice
sandwich structures. In recent years, a great deal of research has been conducted on the
vibration mechanism of space lattice sandwich structures. The most common approach is to
transform the sandwich structure as an equivalent homogeneous layer, and then use differ-
ent panel and shell theories for modeling and calculation analyses. Hwu et al. [26] studied
the free vibration and dynamic vibration responses of composite sandwich beams and
discussed their influence on transverse shear deformation and rotational inertia. By treating
pyramidal truss cores as a continuous homogeneous material, Lou et al. [27] discussed the
free vibration characteristic of a sandwich beam under the simply supported boundary
condition and verified the calculation results with Abaqus, the finite element analysis
software. In order to obtain more a accurate sandwich beam response, Lou et al. [28] intro-
duced a modified piecewise function to establish an analytical model for studying the free
vibration response of composite lattice sandwich beams under several typical boundary
conditions. Considering the different uncertainties of materials and structures, Xu and
Qiu [29] analyzed the free vibration mechanism and studied the structural optimization
of two kinds of space lattice sandwich beams with different core types. Chen et al. [30]
selected different panel theories to study the vibration characteristics of composite lattice
sandwich panels with three truss cores. By using Hamilton’s principle and the assumed
mode method and setting up a piezoelectric actuator and sensor on the upper and lower
panels of the lattice sandwich beam, Li and Lyu [31] analyzed the vibration control problem
of the beam under a simply supported boundary condition. Li et al.’s work was extended
by Zhao et al. [32], who studied the vibration response for a multi-span lattice sandwich
beam with a Kagome lattice core and a pyramidal truss core. By applying the Rayleigh–Ritz
method, Xu and his collaborators [33] established an analytical method to study the natural
frequency of lattice sandwich beams with a composite gradual corrugated core.

A lot of research on the vibration mechanism of the lattice sandwich beam is basically
based on several classical boundary support conditions, including clamped support, free
support, simple support and cantilever support. However, there are few studies on general
elastic boundary conditions. Li et al. [34–37] first proposed an improved Fourier series
method to reveal the vibration mechanisms of beam and plate structures. On this basis,
a large number of scholars have put forward many original research results. For a Timo-
shenko beam with general elastic support conditions, Shi and her team [38] developed a
unified method to study their structure response by using virtual springs to simulate arbi-
trary boundary conditions. By further extending their research, Wang et al. [39] proposed
an improved Fourier–Ritz method to analyze the vibration characteristics of composite
laminated beams under general boundary conditions. For a Mindlin rectangular plate,
Pang et al. [40,41] studied its transverse vibration response by employing the improved
Fourier series method with elastic point support boundary conditions. In addition, Li and
Fan [42] studied the bending behavior and local failure of glass fiber-reinforced composite
(GFRC) and pultruded sandwich panels (PSPs). Guo et al. [43] were devoted to investi-
gating the sound insulation performance of a simply supported sandwich plate with an
hourglass lattice core. Yang et al. [44] experimentally and numerically investigated the free
vibration, quasi-static compressive and split Hopkinson pressure bar impact responses of
hybrid composite pyramidal truss sandwich panels. Wu et al. [45] revealed elastoplastic
deformation and a local indentation failure pattern of the truss-core sandwich panel and
material ductility effects to the failure of the truss-core sandwich panel. Sun et al. [46]
used the concept of phononic crystals to improve the vibroacoustic properties of truss-core
sandwich beams.

However, most of the current research is confined to using classical boundary condi-
tions, and there are few studies on the vibration characteristics of lattice sandwich beams
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under general elastic boundary conditions. In practical engineering, the structure boundary
is not an ideal classical boundary condition, but a more general elastic boundary. Therefore,
the theoretical analysis method under general elastic boundary support is more conducive
to reveal the actual vibration characteristics of the structure. However, the introduction of
elastic boundary conditions will lead to a very complicated theoretical modeling process,
and the derivative of the vibration differential equation will be discontinuous or jump-
ing. For this reason, this paper presents a unified solution for all boundary conditions,
including classical boundary conditions and elastic boundary conditions. In the present
method, the truss core of lattice sandwich beams is equivalent to a homogeneous layer, and
the lattice sandwich beam is simplified to a laminated beam. By setting tension springs
and torsion springs at both ends of the beam, the general elastic support boundary is
simulated. Then, the displacement function of lattice sandwich beams is extended to the
improved Fourier series expression, and our sine terms are introduced to overcome all the
relevant discontinuities or jumps of elastic boundary support conditions. On this basis, the
unknown series coefficients of the displacement function are treated as the generalized
coordinates and solved using the Rayleigh–Ritz method. The correctness of the present
method is verified by comparing with existing literature. The geometric parameters are
studied and the vibration characteristics of the structure under elastic boundary conditions
are analyzed. This study aims to accumulate data for analyzing the vibration of the lattice
sandwich beam.

2. Theoretical Formulations
2.1. Description of the Model

As shown in Figure 1a,b, a lattice sandwich beam under arbitrary boundary conditions
is taken as the research object. In this paper, three different lattice cores are considered,
namely, a 3D–Kagome core, a tetrahedral core and a pyramid core, as shown in Figure 2.
The coordinate system involved in this paper is shown in Figure 1a,b, where the x–y plane
is fixed at the mid-plane of the lattice sandwich beam, the z-axis is perpendicular to the
x–y plane and its direction points downward. The length, width and height of the lattice
sandwich beam are defined by L, B and h, respectively. The lattice sandwich beam contains
a different number of elements in the direction of length and width. Different lengths and
widths of sandwich beams can be obtained by selecting different numbers of units.

Figure 1. Cont.
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Figure 1. Schematic diagram of lattice sandwich beams with arbitrary boundary conditions: (a) The
structural parameters of the structural system. (b) The cross-sectional view of the structural system.
(c) The kinematical parameters of the system.

Figure 2. Schematic diagram of three different lattice core layers. (a) Pyramidal truss core. (b) Tetra-
hedral truss core. (c) 3D-Kagome truss core.

To explore the vibration mechanism of lattice sandwich beams with arbitrary boundary
conditions, the artificial virtual spring technology is first used in this paper. The specific
process is to set transverse translational springs and torsion springs at both ends of the
beam, based on which the shear force and bending moment at the boundary support
can be simulated. Then, by arbitrarily adjusting the rigidity values of the transverse
translational springs and torsion springs, arbitrary boundary conditions can be easily
simulated. For example, a boundary condition with clamped ends supported can be
obtained by setting the rigidity values of the transverse translational springs and the
torsion springs at the boundary support to infinity. In practical computations, a maximum
number is often used instead of an infinite value. Similarly, setting the rigidity values of
these springs at the boundary support to an extremely small value can be considered a free
supported boundary.

In theoretical modeling, the upper and lower panels of sandwich beams are thin
and hard. Generally, only transverse bending deformation and axial deformation are
considered, while shear deformation is ignored. In contrast, the influence of the core layer
on the overall flexural rigidity of the lattice sandwich beam is largely ignored because the
core layer is generally thicker and lighter. Hence, for a thicker core layer, only the shear
deformation is generally taken into account, and the shear stress is considered to be constant
in the direction of height. Therefore, based on the above deformation assumptions, the
lattice sandwich beam is generally simplified to an equivalent laminated beam composed
of the upper and lower panels and an equivalent homogeneous material in the middle
layer. Three different lattice cores are involved in this paper, namely, a 3D–Kagome core, a
tetrahedral core and a pyramidal core, and are shown in Figure 2. The diameter, length and
inclination of the circular truss will be represented by 2r, l and α, respectively. According
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to the equivalent principle of mechanics, the equivalent density and equivalent transverse
shear modulus of three different core layers are shown as follows [24]:

pyramidal core : ρ
pyr
c =

2πr2

l2 cos2 α sin α
ρ, Gpyr

xzc = sin α
πr2

l2 Es

tetrahedral core : ρtet
c =

2πr2
√

3l2 cos2 α sin α
ρ, Gtet

xzc = sin α
πr2
√

3l2
Es

3D–Kagome core : ρ
kag
c =

3πr2

sin αB2 ρ, Gkag
xzc =

3π sin α cos2 αr2

2B2 Es

where ρ and Es represent the density and the Young’s modulus of the base material,
respectively.

2.2. Energy Functions of Lattice Sandwich Beams

The analysis in the present paper is limited to linear conditions. Based on the classical
sandwich beam theory, the Kirchhoff hypothesis holds, i.e., the straight material line normal
to the beam midplane before deformation remains straight and normal to the midplane
after deformation. Based on the above deformation hypothesis, the deformation process of
the cross-section of the lattice sandwich beam under external force is given Figures 1c and 3.
HIJKL represents a straight line that is normal to the undeformed sandwich beam. If there
is no shear strain, HIJKL would rotate by an angle ∂w/∂x to reach the position H’I’J’K’L’,
as shown in Figure 3b. If a shear strain θ occurs in the core, HIJKL moves to the position
H”I”J”K”L”. The lines H”I” and K”L” remain parallel with H’I’J’K’L’, as the shear strains in
the face sheets are assumed to be negligible. According to the geometric relationship in
the figure, the deformation expression of any point at the cross-section of lattice sandwich
beams with different truss cores under arbitrary boundary conditions are given as follows:

ut = − c
2 θ − z ∂w

∂x , wt = w, (− h
2 ≤ z ≤ − c

2 )

uc = z(θ − ∂w
∂x ), wc = w, (− c

2 ≤ z ≤ c
2 )

ub = c
2 θ − z ∂w

∂x , wb = w, ( c
2 ≤ z ≤ h

2 )

(1)

where w and θ represent the lateral displacement of lattice sandwich beams in the z-axis
direction and the rotation angle in the y-axis direction, respectively. The thickness of
the upper and lower panels and the height of the core layer are represented by t and c,
respectively. The horizontal displacements of the upper panel, the core layer and the lower
panel in the x-axis direction are represented by ut, uc and ub, respectively. The lateral
displacements of the upper panel, the core layer and the lower panel in the z-axis direction
are represented by wt, wc and wb, respectively.

Figure 3. Deformation of the equivalent lattice sandwich beam. (a) before deformation (b) after
deformation.
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According to the above expressions and the definition of the material strain, the strain
corresponding to the three layers of the equivalent lattice sandwich beam can be written as
the expression of the displacement:

εt =
∂ut
∂x = − c

2
∂θ
∂x − z ∂2w

∂x2 , (− h
2 ≤ z ≤ − c

2 )

γc =
∂uc
∂z + ∂w

∂x = θ, (− c
2 ≤ z ≤ c

2 )

εb = ∂ub
∂x = c

2
∂θ
∂x − z ∂2w

∂x2 , ( c
2 ≤ z ≤ h

2 )

(2)

where εt and εb represent the normal strain of the upper panel and that of the lower panel,
respectively. γc represents the shear strain of the core layer along the length of the beam.

Based on Hooke’s Law, the stress corresponding to the three layers of the equivalent
lattice sandwich beams can be written as the expression of the displacements:

σt = Exεt = Ex(− c
2

∂θ
∂x − z ∂2w

∂x2 ), (− h
2 ≤ z ≤ − c

2 )

τc = Gxzcθ, (− c
2 ≤ z ≤ c

2 )

σb = Exεb = Ex(
c
2

∂θ
∂x − z ∂2w

∂x2 ), (
c
2 ≤ z ≤ h

2 )

(3)

where Ex is the elastic modulus of the upper and lower panels, and Gxzc represents the
equivalent shear modulus of the core layer. σt and σb represent the normal stress of the
upper panel and that of lower panel in the x-axis direction, respectively; τc represents the
shear stress of the core layer.

The next step is to start deriving kinetic and potential energy expressions of the whole
structure, obtain the Lagrange energy functional expression and use the Rayleigh–Ritz
method to calculate the natural frequency of the structure. The total potential energy U of
a lattice sandwich beam under arbitrary boundary conditions consists of two parts: one is
the strain energy UB of lattice sandwich beams, and the other is the elastic potential energy
US stored in the restraint springs at both ends of lattice sandwich beams. Their specific
expressions can be given as follows:

U = UB + US (4)

UB = 1
2

∫ L
0

∫
A (σ · ε + τ · γ)dAdx

= B
2

∫ L
0

(∫ −c/2
−h/2 σtεtdz +

∫ c/2
−c/2 τcγcdz +

∫ h/2
c/2 σbεbdz

)
dx

(5)

Us =
1
2 k0 w2(x)

∣∣
x=0 +

1
2 K0

(
∂w(x)

∂x

)2
∣∣∣∣
x=0

+ 1
2 K0 θ2(x)

∣∣
x=0

+ 1
2 kL w2(x)

∣∣
x=L +

1
2 KL

(
∂w(x)

∂x

)2
∣∣∣∣
x=L

+ 1
2 KL θ2(x)

∣∣
x=L

(6)

where k0 and kL represent the rigidity constants of the translational springs at the left
(where x = 0) and right (where x = L) ends of lattice sandwich beams, respectively. Similarly,
K0 and KL represent the rigidity constants of the torsion springs at the left (where x = 0) and
right (where x = L) ends of the lattice sandwich beams, respectively. For vibration systems,
the units of rigidity for the translational and torsional springs are N/m and Nm/rad,
respectively.

For restraint springs at both ends of the lattice sandwich beam, it is generally assumed
that rigidity is provided without considering the effect of their own weight. Additionally,
for a lattice sandwich beam under arbitrary boundary conditions, its entire kinetic energy
T is determined only by the kinetic energy of the lattice sandwich beam and has nothing to
do with the elastic constraints at either end of the beam. At this time, the overall kinetic
energy of the system T is expressed as follows:
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T = 1
2

∫ L
0

∫
A ρ

[(
∂u
∂t

)2
+
(

∂w
∂t

)2
]

dAdx

= B
2

∫ L
0

{∫ −c/2
−h/2 ρ f

[(
∂ut
∂t

)2
+
(

∂wt
∂t

)2
]

dz +
∫ c/2
−c/2 ρc

[(
∂uc
∂t

)2

+
(

∂wc
∂t

)2
]

dz +
∫ h/2

c/2 ρ f

[(
∂ub
∂t

)2
+
(

∂wb
∂t

)2
]

dz
}

dx

(7)

where ρf is the density of the upper panel and lower panel, and ρc is the equivalent density
of the core layer.

2.3. Displacement Function and Unified Solution

In order to find the vibration responses of lattice sandwich beams with arbitrary
boundary conditions, the improved Fourier series is used to describe the displacement
function of the structure in this paper, thereby overcoming the potential discontinuities
or jumps of arbitrary boundary conditions during derivation. Hence, the transverse dis-
placement w and the rotation angle θ of a lattice sandwich beam under arbitrary boundary
conditions are expressed as follows [28]:

w(x, t) = Φ(x)ejωt (8)

θ(x, t) = Ψ(x)ejωt (9)

Φ(x) =
∞

∑
m=0

Am cos λmx +
4

∑
n=1

Aa
n sin λnx (10)

Ψ(x) =
∞

∑
m=0

Bm cos λmx +
4

∑
n=1

Ba
n sin λnx (11)

where λm = mπ/L, λn = nπ/L and Φ(x) and Ψ(x) are the mode shape functions of the lattice
sandwich beam under arbitrary boundary conditions, which are described by the improved
Fourier series. The improved Fourier series is given as a Fourier cosine series along with
four sine terms in this paper. These four sine terms are considered auxiliary functions. Am
and Bm are the coefficients of the cosine Fourier series, and Aa

n and Ba
n are those of the four

sine terms, where n = 1, 2, 3, 4.
As mentioned above, the discontinuity of the original displacement and its derivative

can be solved by adding auxiliary functions, and the rapid convergence of the calculation
process can also be promoted. Once the structural displacement function is given an
explicit expression, the next task is to substitute these displacement function expressions
into the kinetic and potential energy expressions. Then, these coefficients in the displace-
ment function are solved by the Rayleigh–Ritz method. The kinetic and potential energy
expressions contain the same time term, ejwt, which will also exist after complex derivative
and integration operations. For the sake of convenience and simplicity, the time term ejwt

will be reduced in the following derivation process.
Substituting Equations (2), (3), (8) and (9) into Equation (5) and performing the

operation of merging the similar items, the strain energy UB of lattice sandwich beams will
be given as:

UB = B
2

∫ L
0

[
(At + Ab)

(
∂Ψ(x)

∂x

)2
+ 2(Bt − Bb)

(
∂Ψ(x)

∂x

)
·
(

∂2Φ(x)
∂x2

)
+ (Dt + Db)

(
∂2Φ(x)

∂x2

)2
+ AcΨ2(x)

]
dx

(12)

Here

At =
(

c2/4
)∫ −c/2

−h/2
Exdz, Bt = (c/2)

∫ −c/2

−h/2
Exzdz, Dt =

∫ −c/2

−h/2
Exz2dz

Ac =
∫ c/2
−c/2 Gxzdz, Ab =

(
c2/4

)∫ h/2
c/2 Exdz, Bb = (c/2)

∫ h/2
c/2 Exzdz, Db =

∫ h/2
c/2 Exz2dz
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Substituting Equations (2), (3), (8) and (9) into Equation (6) and performing the
operation of merging the similar items, the potential energy US stored in restraint springs
at the two ends of the lattice sandwich beams will be given as:

Us =
B
2

[
k0Φ2(x)

∣∣
x=0 + K0

(
∂Φ(x)

∂x

)2
∣∣∣∣
x=0

+ K0Ψ2(x)
∣∣
x=0

+kLΦ2(x)
∣∣
x=L + KL

(
∂Φ(x)

∂x

)2
∣∣∣∣
x=L

+ KLΨ2(x)
∣∣
x=L

] (13)

Substituting Equations (2), (3), (8) and (9) into Equation (7) and performing the operation
of merging the similar items, the kinetic energy T of the structure will be given as:

T = ω2 B
2

∫ L
0

[(
It
1 + Ic

1 + Ib
1
)
Ψ2(x) + 2

(
It
2 − Ic

1 + Ib
2
)

·Ψ(x)
(

∂Φ(x)
∂x

)
+
(

It
3 + Ic

1 + Ib
3
)( ∂Φ(x)

∂x

)2
+(

It
4 + Ic

2 + Ib
4
)
Φ2(x)

]
dx

(14)

Here

It
1 =

(
c2/4

)∫ −c/2
−h/2 ρ f dz, It

2 = (c/2)
∫ −c/2
−h/2 ρ f zdz, It

3 =
∫ −c/2
−h/2 ρ f z2dz, It

4 =
∫ −c/2
−h/2 ρ f dz,

Ic
1 =

∫ c/2
−c/2 ρcz2dz, Ic

2 =
∫ c/2
−c/2 ρcdz, Ib

1 =
(
c2/4

)∫ h/2
c/2 ρ f dz, Ib

2 = (c/2)
∫ h/2

c/2 ρ f zdz,

Ib
3 =

∫ h/2

c/2
ρ f z2dz, Ib

4 =
∫ h/2

c/2
ρ f dz

and ω is the angular frequency of the lattice sandwich beam.
Based on the above derivation, the kinetic and potential energy will be shown as the

function of unknown coefficients Am, Bm, Aa
n and Ba

n. Thus, the Lagrange energy function
L of the structure will be expressed as follows:

L = (UB + US)− T (15)

The partial derivatives of the Lagrange energy function for all unknown coefficients
Am, Bm, Aa

n and Ba
n are all calculated by using the standard solution process of the Rayleigh–

Ritz method. The specific calculation formula is shown as:

∂L
∂Ar

= 0,
∂L

∂Aa
s
= 0,

∂L
∂Br

= 0,
∂L
∂Ba

s
= 0 (16)

where m, r = 0 ∼ ∞, n, s = 1, 2.
Substituting Equations (10)–(14) and Equation (13) into Equations (16) and (17), the

following can be obtained: (
K−ω2M

)
A = 0 (17)

where M and K are called the mass and rigidity matrices of the structure, respectively; A
denotes the unknown coefficient vector.

According to Equation (17), the eigenvalue equation of lattice sandwich beams can
be obtained. Thus, the vibration frequencies and modes of lattice sandwich beams under
arbitrary boundary conditions can be calculated by the standard eigenvalue solution
method. Equation (17) is described in detail in Appendix A.

3. Results and Discussions
3.1. Validation

To verify the correctness and accuracy of the present method, this section will first
take a pyramidal lattice core sandwich beam as the research object and calculate its natural
frequencies under three different typical boundary conditions, including clamped ends,
simply supported ends and clamped-free ends. The calculation results in this section will be
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then compared to the data of existing literature, which were calculated by Hwu et al. [19],
Lou et al. [21] and Xu et al. [27] under typical boundary conditions. The material prop-
erties and geometric dimensions of the pyramidal lattice sandwich beam involved in the
calculation are listed as: L = 0.6364 m, B = 0.06364 m, t = 0.0005 m, c = 0.015 m, r = 0.001 m,
α = 45, Es = Ex = 210 GPa, υ = 0.3 and ρf = ρ = 7930 kg/m3. In order to describe the arbitrary
boundary conditions of the lattice sandwich beam, specific abbreviations are used instead
of the corresponding boundary conditions. The free, clamped, simply supported and elastic
boundary conditions are represented by F, C, SS and E, respectively. By combining them
with each other, arbitrary boundary conditions of lattice sandwich beams can be obtained.
For example, the symbol C–E can be considered a special case when the lattice sandwich
beam is under lamped and elastic boundary conditions at x = 0 and x = L, respectively.
For the convenience of calculation, it is necessary to set appropriate rigidity values for
these springs and torsional springs to obtain an accurate simulation of the corresponding
boundary conditions. Therefore, for clamped ends, the rigidities of these translational and
torsion springs at x = 0 and x = L are all set to a huge value, 1014. For simply supported
ends, the rigidities of the translational springs at x = 0 and x = L are all set to 1014, and
those of the torsion springs at x = 0 and x = L are all set to 100. For clamped-free ends, the
rigidities of the translational and torsion springs at x = 0 are all set to 1014, and those of the
translational and torsion springs at x = L are all set to 100.

According to the above calculation parameters, the first five order natural frequencies
of the pyramid lattice sandwich beam under three typical boundary conditions are solved
simultaneously. For direct comparison, the calculation results of the present method and
the data of existing literature are all listed in Table 1, where the error value is obtained by
comparing between Lou’s result and the value of the present method. As shown in Table 1,
the calculation results in the present method are close to those calculated by Hwu et al. [19],
Lou et al. [21] and Xu et al. [27], indicating that both the theoretical modeling process
mentioned in the above section and the programs in the simulation calculations are all
correct, and that the present method has sufficient precision. Therefore, this method is
very suitable for calculating the free vibration frequency of lattice sandwich beams with
arbitrary boundary conditions.

Table 1. Comparison of the natural frequencies for the lattice sandwich beam with a pyramidal lattice
core (Hz).

Boundary
Condition Mode Hwu et al.

[19]
Lou et al.

[21]
Xu et al.

[27]
Present Results

(M = 10) Error

Clamped
ends(CC–CC)

1 264.99 265.44 265.21 266.02 −0.22%
2 693.24 695.72 694.48 699.10 −0.49%
3 1278.8 1286.1 1282.2 1295.25 −0.71%
4 1977.7 1993.7 1986.9 2014.54 −1.05%
5 2756.9 2786.3 2764.5 2817.91 −1.13%

Simply
supported

ends(SS–SS)

1 121.37 121.42 121.33 121.42 0.00%
2 471.66 472.30 472.1 472.31 0.00%
3 1014.9 1017.9 1014.6 1017.95 0.00%
4 1705.6 1714.2 1702.9 1714.18 0.00%
5 2500.0 2518.4 2506.3 2518.40 0.00%

Clamped−free
ends(C–F)

1 43.468 43.572 43.63 43.48 0.21%
2 265.01 266.40 265.76 265.49 0.34%
3 712.04 718.13 715.61 715.08 0.42%
4 1321.2 1337.5 1333.7 1331.15 0.48%
5 2051.8 2085.7 2033.1 2074.36 0.54%

3.2. Convergence Studies

According to the above theoretical analysis, the calculation results of this method are
mainly related to the rigidity of the constrained spring and the item numbers of the Fourier
series. Therefore, this section will focus on the relationship between these factors and the
convergence of the present method. It should be noted that the calculation parameters
used in the following numerical calculations are the same as those used in the previous
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section. Theoretically, as the number of Fourier series terms increases, the numerical results
will become more and more accurate. Therefore, as long as the calculation cost allows it,
the present method can be considered to have arbitrary accuracy. However, in the actual
calculation process, the Fourier series with infinite terms is often truncated to a finite
number of terms M, which ensures the acceptable accuracy of the calculation results.

To investigate the relationship between the item numbers of the Fourier series and
the convergence of the present method, the frequency parameter Ω = ωL2

√
ρA/EI is

firstly introduced into this study. Taking the sandwich beam with a pyramidal lattice core
under the SS–SS boundary condition as a special case, the first six frequency parameters
Ω = ωL2

√
ρA/EI of the sandwich beam are calculated as the increase of the item numbers

(represented by M). The comparison results are shown in Table 2. The results show that
the lower the frequency is, the easier the convergence is. When the model sequence
(represented by m) is less than four, the calculation results can rapidly converge at M = 6,
and a four-digit calculation precision can be obtained. As the model sequence increases,
the number of items that need to be converged also increases. The more items there are,
the more accurate the calculation results will be. When the model sequence is greater than
4, the calculation results are plotted in Figure 4a,b, respectively. As shown in Figure 4a,b,
when the number of terms is greater than 10, the results converge stably to all frequencies.
Therefore, in order to obtain sufficient accuracy while controlling the calculation cost, all
Fourier series will be truncated to M = 10 in the following numerical calculations.

Table 2. Convergence analysis of Ω = ωL2√ρA/EI for a SS–SS sandwich beam with a pyramidal
lattice core, as M increases.

M
Model Sequence

1 2 3 4 5 6

6 2.0689 8.0478 17.3451 29.2085 42.9238 58.0482
8 2.0689 8.0478 17.3451 29.2085 42.9145 57.8734

10 2.0689 8.0478 17.3451 29.2085 42.9128 57.8594
12 2.0689 8.0478 17.3451 29.2085 42.9118 57.8562
14 2.0689 8.0478 17.3451 29.2085 42.9117 57.8560
16 2.0689 8.0478 17.3451 29.2085 42.9117 57.8559

Figure 4. Frequency parameters Ω for different numbers of items in the lattice sandwich beam with
a pyramidal lattice core.

To study the influence of the restraint spring rigidity at both ends of lattice sandwich
beams on the convergence of the present method, Figure 5 plots the relationship between
the first six order-dimensionless frequency parameters (Ω) of lattice sandwich beams and
the restraint springs’ rigidity. During the numerical calculation process, the rigidity of
the restraint springs is set in two cases. In one case, based on the simply supported ends
(SS-SS), the rigidity of the rotational springs (Ki, i = 0, L) gradually increases from 100 to
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1014. The corresponding results are plotted in Figure 5a,b. In the other case, the rigidity of
the translational springs (ki, i = 0, L) gradually changes from 100 to 1014, when that of the
rotational springs is fixed at 1014. The corresponding results are plotted in Figure 5c,d.

Figure 5. Relationships of frequency parameters Ω with restraint spring stiffness of the lattice
sandwich beam with a pyramidal lattice core.

As shown in Figure 5, the first six order-dimensionless frequency parameters (Ω)
curve of lattice sandwich beams have the same change rule. As the rigidity for the transla-
tional and rotational springs continues to increase, the dimensionless frequency parameters
(Ω) curve of the lattice sandwich beam is a straight line within a certain interval (rigidity
changes from 100 to 104), and then it increases sharply within a certain range of rigid-
ity (from 104 to 1010) to eventually gradually approach a straight line before remaining
unchanged in the range of 1010~1014. It can be clearly seen that the convergence of the
calculation results can be guaranteed when the rigidity value of all types is either more than
1010 or less than 104. The analysis result shows that when the rigidity of the restraint springs
is greater than 1010, it can be regarded as a clamped boundary condition. Afterwards,
the increasing rigidity of the restraint springs has little effect on the natural frequency
of the lattice sandwich beam. Therefore, the rigidity value equal to 1014 can be used for
simulating infinite rigidity during the numerical calculations. When the rigidity of the
restraint springs is less than 104, the support effect of the restraint spring is very weak. At
that time, it has the same effect as if the rigidity value was equal to zero. It can be regarded
as a free boundary condition. Therefore, it is reasonable to use 100 to simulate an extremely
small rigidity in numerical calculations. These instructions indicate that the constraint
spring rigidity set in the previous section is very reasonable for numerical verification.
When the rigidity of the restraint springs is between 104 and 1010, it can be regarded as an
elastic boundary condition.
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For the convenience of subsequent research, the applicable boundary conditions in
the calculation are shown in Table 3, where the symbols F, C and SS, respectively, represent
free boundary conditions, clamping boundary conditions and simply supported boundary
conditions. The elastic boundary conditions are denoted by E1, E2 and E3. The arbitrary
boundary condition can be easily obtained by the different combinations between them.

Table 3. The values of spring rigidity under arbitrary boundary conditions.

Boundary Conditions F C SS E1 E2 E3

ki (i = 0, L) 0 1014 1014 105 106 107

Ki (i = 0, L) 0 1014 0 107 108 109

3.3. Effects of Boundary Conditions

To investigate the influence of different boundary conditions on the vibration char-
acteristics of lattice sandwich beams, twenty-one different boundary conditions are first
obtained from Table 3 by free combination. They are divided into three different groups.
The first group includes F–F, SS–SS, C–C, SS–F, C–F and SS–C, which represent classical
boundary conditions. The second one includes E1–E1, E—E2, E3–E3, E1–E2, E1–E3 and
E2–E3, which represent elastic boundary conditions. The third one includes E1-F, E2-F,
E3–F, E1–C, E2–C, E3–C, E1–SS, E2–SS and E3–SS, which represent arbitrary boundary con-
ditions. To clarify the meaning of the above symbols, the symbol E—SS will be described
in detail as an example; that is, at x = 0 and x = L, the boundary supports of the sandwich
beam are elastic supports and simple supports, respectively. In this case, k0 = 106, K0 = 108

at x = 0 and kL = 1014, KL = 0 at x = L. Based on these three different groups of boundary
conditions, the first six order dimensionless frequency parameters (Ω) of lattice sandwich
beams under the corresponding boundary conditions are shown in Tables 4–6, respectively.

Table 4. Frequency parameters Ω for lattice sandwich beams with several classical boundary conditions.

Boundary Conditions
Mode Sequence

1 2 3 4 5 6

F–F 0.0000 0.0019 4.6697 12.4591 23.3257 36.4479
SS–SS 2.0689 8.0478 17.3451 29.2085 42.9118 57.8562
C–C 4.5327 11.9122 22.0701 34.3264 48.0153 62.8635
SS–F 0.0009 3.2241 10.1398 20.2331 32.7395 46.9466
C–F 0.7408 4.5238 12.1844 22.6818 35.3457 49.5428
SS–C 3.1828 9.9286 19.7000 31.7739 45.5013 60.3664

Table 5. Frequency parameters Ω for lattice sandwich beams with several elastic boundary conditions.

Boundary Conditions
Mode Sequence

1 2 3 4 5 6

E1–E1 0.4264 2.1411 8.0147 17.2445 29.0461 42.6961
E2–E2 1.3112 2.8063 8.2706 17.4394 29.2536 42.9313
E3–E3 3.2448 5.9553 10.2655 18.4350 29.8442 43.3382
E1–E2 0.8600 2.5327 8.1444 17.3421 29.1498 42.8136
E1–E3 1.2028 4.5804 9.3204 17.8623 29.4499 43.0185
E2–E3 1.7983 4.7050 9.4148 17.9553 29.5525 43.1358
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Table 6. Frequency parameters Ω for lattice sandwich beams with arbitrary boundary conditions.

Boundary Conditions
Mode Sequence

1 2 3 4 5 6

E1–F 0.2869 1.2339 6.2327 14.7937 26.1570 39.5668
E2–F 0.6171 1.7714 6.3907 14.8940 26.2590 39.6822
E–3F 0.7272 3.6098 7.8701 15.5133 26.5960 39.9047
E1–C 1.2617 6.1255 14.4416 25.4206 38.3692 52.6972
E2–C 1.8772 6.2805 14.5400 25.5202 38.4800 52.8244
E3–C 3.6773 7.7494 15.1622 25.8595 38.7019 52.9903
E1–SS 0.6716 4.6038 12.2935 22.9374 35.7759 50.1410
E2–SS 1.3834 4.8051 12.3983 23.0363 35.8864 50.2658
E3–SS 2.7371 6.5917 13.1531 23.4202 36.1301 50.4421

Comparing the data in Tables 4–6, it can be clearly concluded that the influence
of boundary conditions on structural vibration is very important. When the boundary
conditions are different, there will be a large difference in the frequency parameters (Ω)
of the lattice sandwich. As the rigidity of the restraint spring at both ends of the lattice
sandwich beam continues to increase, its frequency parameters (Ω) also increase. Among
them, the frequency parameters (Ω) are the largest under the lamped ends. These results
have accumulated data for discussing the vibration characteristics of lattice sandwich
beams under arbitrary boundary conditions.

In order to further study the influence of boundary conditions on the vibration char-
acteristics of lattice sandwich beams, the mode shapes of lattice sandwich beams under
different boundary conditions are also plotted. To facilitate this study, one of the three
different boundary conditions mentioned above is selected as the representative, namely,
SS–SS, E3–E3 and E3–SS, and its mode shape is drawn in Figures 6–8, respectively. Com-
paring Figures 6–8, it can be seen that the mode shapes of the structure under the three
boundary conditions are different. The boundary conditions have a significant influence
on the mode shape of the structure. Under the classical boundary conditions (e.g., SS–SS),
the number of peaks and troughs in the mode shapes of lattice sandwich beams has a
one-to-one relationship with the modal orders of the structure. That is, one mode shape
corresponds to a peak or trough. However, under elastic boundary support conditions,
this correspondence is not obvious. The elastic boundary support reduces the node effect
of the boundary support.

Figure 6. Three initial mode shapes of the SS-SS lattice sandwich beam. (a) First mode shape,
(b) Second mode shape and (c) Third mode shape.
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Figure 7. Three initial mode shapes of the E3-E3 lattice sandwich beam. (a) First mode shape,
(b) Second mode shape and (c) Third mode shape.

Figure 8. Three initial mode shapes of the E3-SS lattice sandwich beam. (a) First mode shape,
(b) Second mode shape and (c) Third mode shape.

3.4. Effect of Geometric Parameters

For pyramidal truss-core sandwich beams, the first natural frequencies of structures
under different boundary conditions, including SS–SS, C–C, E3–E3, E3–SS and E3–C, are
calculated by changing the geometric parameters such as beam length, plate thickness and
core height. The calculation results are listed in Tables 7–9, respectively. For comparison,
the data shown in Tables 7–9 are also plotted in Figures 9–11, respectively.

Table 7. Comparison of the natural frequencies of pyramidal truss-core sandwich beams of different
beam lengths under arbitrary boundary conditions (Hz).

Cell Numbers
Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

15 472.3090 951.5135 337.8441 349.2931 459.7782
20 269.9761 569.5114 278.0257 267.9476 343.5740
25 174.1084 376.1836 230.4454 207.4917 270.8658
30 121.4175 266.0154 190.4328 160.6320 215.8123
35 89.4326 197.6274 156.9436 125.4781 172.5897
40 68.5858 152.4518 129.5811 99.5839 139.1626
45 54.2533 121.0526 107.6502 80.4497 113.5873
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Table 8. Comparison of the natural frequencies of pyramidal truss-core sandwich beams of different
panel thicknesses under arbitrary boundary conditions (Hz).

Panel Thicknesses
(mm)

Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

0.5 121.4175 266.0154 190.4328 160.6320 215.8123
1 137.7297 292.6634 168.9821 155.7359 201.3014

1.5 146.5784 302.9722 150.4007 145.0440 185.5933
2 153.0482 308.5381 136.3312 135.3830 173.7080

2.5 158.4541 312.3427 125.4501 127.4007 164.9065
3 163.2901 315.3960 116.7719 120.8833 158.3260

3.5 167.7836 318.1906 109.6617 115.5383 153.3543

Table 9. Comparison of the natural frequencies of pyramidal truss-core sandwich beams of different
core heights under arbitrary boundary conditions (Hz).

Core Height
(mm)

Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

5 32.9684 74.7245 70.7994 50.4886 72.6211
10 76.0519 170.5798 142.6226 110.1543 154.1021
15 121.4175 266.0154 190.4328 160.6320 215.8123
20 166.4761 349.9606 218.4888 197.0480 256.0741
25 209.5006 415.6572 234.9471 221.5729 282.5575
30 249.0683 461.2186 244.8919 238.1765 300.9681
35 284.0671 488.7007 251.0252 249.8877 314.1467

Figure 9. Effect of the beam length on the first natural frequency of the pyramidal truss-core sandwich
beam under arbitrary boundary conditions.

Figure 10. Effect of the panel thickness on the first natural frequency of the pyramidal truss-core
sandwich beam under arbitrary boundary conditions.
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Figure 11. Effect of the core height on the first natural frequency of the pyramidal truss-core sandwich
beam under arbitrary boundary conditions.

It can be seen from Table 7 and Figure 9 that, for different boundary conditions, the
free vibration frequency of the structure decreases with the increase of the cell number. The
main reason is that as the beam length continues to increase, the rigidity of the structure
decreases due to the increase in its weight. Combining Table 8 and Figure 10, it can be
known that the free vibration frequencies of the structure will become larger due to the
increase of the panel thickness under C–C and SS–SS boundary conditions, but it will
become smaller as the panel thickness increases under E3–E3, E3–SS and E3–C boundary
conditions. The main reason is that when the boundary conditions are C–C and SS–SS, the
rigidity of the restraint springs at both ends of the lattice sandwich beam is sufficiently
large. In this case, the increase in the bending rigidity of the structure is greater than that
in the structural weight. As a result, the free vibration frequencies of the structure will
increase as the panel thickness increases. However, when the boundary conditions are
E3–E3, E3–SS and E3–C, the overall rigidity of the restraint springs at boundary supports is
relatively small. In this case, the increase in structural weight is dominant, but the increase
in structural bending rigidity is relatively small. Hence, the free vibration frequencies of
the structure will decrease as the panel thickness increases. These statements indicate that
the boundary support conditions have an important effect on the free vibration frequency
of lattice sandwich beams, especially under the elastic boundary conditions.

It can be seen from Table 9 and Figure 11 that, under different boundary conditions,
with the increase of core height, the free vibration frequency of lattice sandwich beams will
increase. The main reason is that as the core height continues to increase, the equivalent
density of the truss core will decrease, resulting in a decline in the weight of the structure
and an increase in its natural frequency. In addition, comparing Figures 10 and 11, under
the classical boundary conditions such as C–C and SS–SS, it is more effective to change the
free vibration frequencies of lattice sandwich beams by changing the core height than by
changing the panel thickness because, when the height of the core layer increases, not only is
the weight of the structure reduced, but also the moment of inertia of the structure increases.

3.5. Effects of Different Truss Cores

In this section, the free vibration characteristics of the lattice sandwich beam with
three different truss cores, including 3D–Kagome truss core, tetrahedral truss core and
pyramidal truss core, whose will be discussed. The free vibration frequencies of three
kinds of truss core structures under arbitrary boundary conditions (SS–SS, C–C, E3–E3,
E3–SS and E3–C) are calculated by changing the geometrical parameters such as radius
and inclination of the truss Tables 10–12 give the curve of the free vibration frequencies of
the structure with different truss radius. For comparison, the results listed in Tables 10–12
are also displayed in Figures 12–14, respectively. Tables 13–15 gives the curve of the free
vibration frequencies of the structure with different inclination angles. For comparison, the
results listed in Tables 13–15 are also displayed in Figures 17–19, respectively.
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Table 10. Comparisons of the natural frequencies of pyramidal truss-core sandwich beams with
different truss radius under arbitrary boundary conditions (Hz).

Truss Radius
(mm)

Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

0.4 139.9091 267.8756 208.1397 177.9489 230.7810
0.6 136.8992 284.5443 210.5608 178.4970 236.6766
0.8 129.8016 279.3969 202.2866 170.9090 228.6271
1 121.4175 266.0154 190.4328 160.6320 215.8123

1.2 112.8727 249.7781 177.6603 149.7228 201.6419
1.4 104.6991 233.1444 165.1523 139.1051 187.6189
1.6 97.1334 217.1685 153.4348 129.1895 174.4136
1.8 90.2537 202.3523 142.7060 120.1265 162.2863
2 84.0553 188.8378 132.9978 111.9348 151.2920

Table 11. Comparisons of the natural frequencies of tetrahedral truss-core sandwich beams with
different truss radii under arbitrary boundary conditions (Hz).

Radius of
the Truss (mm)

Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

0.4 137.4313 242.6776 197.1684 170.1449 215.5373
0.6 139.8083 276.1559 210.7334 179.5651 234.8861
0.8 136.6687 284.5942 210.3639 178.2960 236.5277
1 131.3832 281.3776 204.3654 172.7485 230.7951

1.2 125.1822 272.4854 195.8814 165.3260 221.7693
1.4 118.6770 261.0067 186.3849 157.1637 211.3455
1.6 112.2116 248.4577 176.6567 148.8691 200.5202
1.8 105.9816 235.7920 167.1272 140.7789 189.8390
2 100.0916 223.4619 158.0284 133.0740 179.5965

Table 12. Comparisons of the natural frequencies of 3D–Kagome truss-core sandwich beams with
different truss radii under arbitrary boundary conditions (Hz).

Radius of
the Truss (mm)

Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

0.4 139.0700 255.8957 203.3113 174.5988 223.8548
0.6 138.8832 281.7456 211.6004 179.8111 236.9097
0.8 133.8783 283.8063 207.4455 175.5245 233.8970
1 127.1032 275.5349 198.5927 167.6778 224.6977

1.2 119.7316 262.9310 187.9493 158.5026 213.0750
1.4 112.3501 248.7202 176.8671 149.0480 200.7555
1.6 105.2674 234.2966 166.0278 139.8470 188.6031
1.8 98.6351 220.3493 155.7685 131.1625 177.0474
2 92.5132 207.2480 146.2359 123.1070 166.2793
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Figure 12. Effect of the truss radius on the first natural frequency of the pyramidal truss-core
sandwich beam under arbitrary boundary conditions.

Figure 13. Effect of the truss radius on the first natural frequency of the tetrahedral truss-core
sandwich beam under arbitrary boundary conditions.

Figure 14. Effect of the truss radius on the first natural frequency of the 3D–Kagome truss-core
sandwich beam under arbitrary boundary conditions.



Appl. Sci. 2021, 11, 9141 19 of 28

Table 13. Comparisons of the natural frequencies of pyramidal truss-core sandwich beams with
different inclination angles under arbitrary boundary conditions (Hz).

Inclination
Angle (◦)

Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

15 124.7301 196.8051 169.0734 148.0808 181.0930
20 132.9740 242.5085 193.6238 166.4510 212.8749
25 134.5389 266.5863 203.0309 172.9508 226.4270
30 133.2646 276.5761 204.8588 173.6883 230.2152
40 126.4712 274.1745 197.6094 166.8468 223.5877
45 121.4175 266.0154 190.4328 160.6320 215.8123
55 107.5508 238.4049 169.3833 142.7266 192.2973
65 87.0937 194.1741 137.4324 115.7480 156.1585
75 58.0802 129.8441 91.7348 77.2437 104.2799

Table 14. Comparisons of the natural frequencies of tetrahedral truss-core sandwich beams with
different inclination angles under arbitrary boundary conditions (Hz).

Inclination
Angle (◦)

Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

15 116.4407 165.7399 148.9525 132.5366 156.6238
20 130.5388 217.1402 181.8840 158.1508 196.6915
25 135.9736 251.1696 199.1338 170.9350 219.4220
30 137.3951 270.8547 206.9229 176.3563 230.5770
40 134.6366 283.5999 208.1194 176.2027 234.4181
45 131.3832 281.3719 204.3654 172.7486 230.7946
55 120.9219 263.9603 189.4050 159.8195 214.5292
65 102.8408 226.6169 161.6207 136.2611 183.3229
75 72.5552 160.6354 114.2081 96.2506 129.6388

Table 15. Comparisons of the natural frequencies of 3D–Kagome truss-core sandwich beams with
different inclination angles under arbitrary boundary conditions (Hz).

Inclination
Angle (◦)

Arbitrary Boundary Conditions

SS–SS C–C E3–E3 E3–SS E3–C

15 127.2862 213.6764 178.1381 154.7157 192.9505
20 132.3566 251.2956 196.1763 167.8809 217.1953
25 132.8548 268.8284 202.2133 171.8793 226.3097
30 131.8481 276.0647 203.3529 172.2663 228.8377
40 128.7111 277.4762 200.6993 169.5438 226.8882
45 127.1033 275.5196 198.5928 167.6779 224.6977
55 124.1497 269.3705 194.0418 163.8221 219.5808
65 121.4531 259.7725 188.8268 159.6357 213.2088
75 117.8059 237.8299 179.1155 152.2906 200.3804

It can be seen from Tables 10–12 and Figures 12–14 that the variation trend of free
vibration frequency curves of structures with different trusses radius is the same under
different boundary conditions. In this case, free vibration frequency of the structure first
increases and then decreases. The main reasons can be obtained by analyzing Figures 15
and 16. Although both the equivalent density and the equivalent transverse shear modulus
increase simultaneously with the increase of the truss radius, when the truss radius is small,
the increase in the structural weight is limited but rigidity increases significantly, so it is
the control range of rigidity. Hence, the natural frequency increases as the truss radius
increases. However, as the truss radius continues to increase, it turns into the control range
of structural weight. Then, the free vibration frequencies of the structure will decrease with
the increase of the truss radius.
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Figure 15. The relationship between truss radius and the equivalent density of the lattice sandwich
beam under different truss cores.

Figure 16. The relationship between truss radius and the equivalent transverse shear modulus of the
lattice sandwich beams under different truss cores.

As shown in Tables 13–15 and Figures 17–19, the variation trend of the free vibration
frequencies of the structures with different inclination angles is the same under different
boundary conditions. In this case, the free vibration frequency of the structure first increases
and then decreases. The pyramidal truss core and tetrahedral truss core changes in the same
manner. However, for the 3D–Kagome truss core, the mechanism that causes the natural
frequency of the structure to change is indeed different. As shown in Figures 20 and 21, as
the inclination angle increases, the equivalent density of the 3D–Kagome truss core increases
very slowly, but its equivalent transverse shear modulus first increases and then decreases.
It is for this reason that, compared with the pyramidal and tetrahedral truss core, the free
vibration frequencies of the structure with 3D–Kagome truss core decrease very slowly as
the inclination of the truss increases from 15◦ to 75◦, as shown in Figures 17–19.
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Figure 17. Effect of the inclination angle on the first natural frequency of the pyramidal truss-core
sandwich beam under arbitrary boundary conditions.

Figure 18. Effect of the inclination angle on the first natural frequency of the tetrahedral truss-core
sandwich beam under arbitrary boundary conditions.

Figure 19. Effect of the inclination angle on the first natural frequency of the 3D–Kagome truss-core
sandwich beam under arbitrary boundary conditions.
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Figure 20. The relationship between the inclination angle and the equivalent density of lattice
sandwich beams under different truss cores.

Figure 21. The relationship between the inclination angle and the equivalent transverse shear
modulus of lattice sandwich beams under different truss cores.

3.6. Effect of Damping

In the above parameter analysis process, damping is not considered, but damping
exists in actual structures. Therefore, this section will focus on the vibration characteristics
of damped structures. When damping is taken into account, the governing equation of the
forced vibration of the lattice sandwich beam can be expressed as follows:

M
..
X + C

.
X + KX = B0 f (t) (18)

where M and K are the mass and rigidity matrices of lattice sandwich beams, respectively,
which can be calculated by the expression in Appendix A. C is the viscous damping matrix,
f (t) is an external excitation and B0 is the position vector of the external excitation.

C =
(

φT
)−1

C0(φ)
−1 (19)

Mm = φT
mMφm (20)

C0 =


2ω1ζ1M1 · · · 0

2ω2ζ2M2
...

. . .
...

0 · · · 2ωmζm Mm

 (21)
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where C0 is the generalized damping matrix, ωm is the mth order natural frequency of
lattice sandwich beams, Mm is the mth order generalized mass, φ is the vibration mode
matrix, φm is the vibration mode vector corresponding to the mth order natural frequency
and ζm presents the mth order modal damping ratio. Generally, the modal damping ratio
needs to be measured according to experimental data. For the convenience of research, ζm
will be assumed to be 0.005 and 0.01 for all generalized coordinates in this section.

In order to solve the vibration response of lattice sandwich beams subjected to an
initial external excitation, it is first necessary to transform Equation (18) into the state space
equation form:

Z =
[ .
X, X

]
(22)

.
Z =

[
0 I

−M−1K −M−1C

]
Z +

[
0

−M−1B0 f (t)

]
(23)

B0 =
[
(cos λrxa)

T (sin λsxa)
T 0 0

]T
(24)

where x =
[
wT , θT]T is the generalized coordinate vector, xa represents the external excita-

tion position on the lattice sandwich beam and r = 0, · · · , M, s = 1, 2, 3, 4.
The natural frequency of the structure remains constant when damping is considered.

Therefore, the viscous damping has no effect on the mass and rigidity of the structure. In
this section, the transient exciting force of 10N lasting for only 0.001s is applied on the
mid-point of the lattice sandwich beam. Since the force applied is small in magnitude and
time, the energy generated is small. Therefore, after the excitation force disappears, the
structure will be in a state of free vibration. On this basis, the lsim function in Matlab is used
to calculate the time history curve at the mid-point of the lattice sandwich beam. As can be
seen in Figures 22 and 23, when damping is not considered, the displacement amplitude
of the lattice sandwich beam does not change with time. However, when the influence
of damping is considered, the displacement amplitude of the lattice sandwich beam will
continue to decrease with time and, the greater the damping, the more the attenuation.

Figure 22. Time-response history at the middle point of the lattice sandwich beam, when ζ = 0 and
ζ = 0.005.
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Figure 23. Time-response history at the middle point of the lattice sandwich beam, when ζ = 0 and
ζ = 0.01.

4. Conclusions

In this paper, a unified method is proposed to study the free vibration characteristics
of lattice sandwich beams under various boundary conditions. In the existing methods,
two different types of constraint springs are used to simulate the general elastic support
boundary at both ends of lattice sandwich beams. By changing the rigidity of the boundary
restraint spring, various boundary conditions can be obtained easily without modifying
the solving algorithm and solving process. On this basis, the influence of the structural
parameters on the free vibration characteristics of lattice sandwich beams with three
different truss cores under different boundary conditions are investigated, including beam
length, panel thickness, core height, truss radius, inclination angle and structural damping.
From the numerical results, the following conclusions can be drawn:

(1) The analysis result shows that, when the rigidity of the restraint springs is greater than
1010, it can be regarded as a clamped boundary condition. When the rigidity of the
restraint springs is less than 104, the support effect of the restraint spring is very weak.
It can be regarded as a free boundary condition. When the rigidity of the restraint
springs is between 104 and 1010, it can be regarded as an elastic boundary condition.

(2) It can be found that the influence of boundary conditions on structural vibration
is very important. As the rigidity of the restraint spring at both ends of the lattice
sandwich beam continues to increase, its frequency parameters (Ω) also increase.
Among them, the frequency parameters (Ω) are the largest under the lamped ends.
The elastic boundary support reduces the node effect of the boundary support.

(3) It can be seen that under different boundary conditions, the free vibration frequency of
the structure decreases with the increase of beam length but increases with the increase
of core height; the free vibration frequencies of the structure will become larger due
to the increase of panel thickness under C–C and SS-SS boundary conditions, but it
will become smaller as the panel thickness increases under E3–E3, E3–SS and E3–C
boundary conditions.

(4) It can be known that with the increase of the truss radius, the free vibration frequency
of the structure first increases and then decreases. The main reason is that a smaller
radius aids rigidity control, and a larger radius aids quality control. With the increase
of the inclination angle, the free vibration frequency of the structure also first increases
and then decreases.

(5) It can be learned that when the influence of damping is considered, the displacement
amplitude of the lattice sandwich beam will continue to decrease with time and that
the greater the damping, the more the attenuation.
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Appendix A

According to the above theoretical derivation, both matrix M and K are of dimension
2(M + 4) × 2(M + 4), and vector A has dimension 2(M + 4). The expression of vector A is
shown as:

A = {A0, A1, . . . , Am, . . . AM, Aa
1, Aa

2, Aa
3, Aa

4, B0, B1, . . . , Bm, . . . BM, Ba
1, Ba

2, Ba
3, Ba

4} (A1)

In Equation (17), the expressions of the mass matrix M and the stiffness matrix K for
the lattice sandwich beam with arbitrary boundary conditions can be given separately as:

K = KP + KS (A2)

KP =


KP

11 KP
12 KP

13 KP
14

KP
21 KP

22 KP
23 KP

24
KP

31 KP
32 KP

33 KP
34

KP
41 KP

42 KP
43 KP

44

 (A3)

KP
11 = B(Dt + Db)λ

2
r λ2

i

∫ L

0
cos λrx cos λixdx (A4)

KP
22 = B(Dt + Db)λ

2
s λ2

j

∫ L

0
sin λsx sin λjxdx (A5)

KP
33 = B(At + Ab)λrλi

∫ L

0
sin λrx sin λixdx + BAc

∫ L

0
cos λrx cos λixdx (A6)

KP
44 = B(At + Ab)λsλj

∫ L

0
cos λsx cos λjxdx + BAc

∫ L

0
sin λsx sin λjxdx (A7)

KP
12 = B(Dt + Db)λ

2
r λ2

j

∫ L

0
cos λrx sin λjxdx (A8)

KP
13 = B(−Bt + Bb)λ

2
r (−λi)

∫ L

0
cos λrx sin λixdx (A9)

KP
14 = B(−Bt + Bb)λ

2
r λj

∫ L

0
cos λrx cos λjxdx (A10)
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KP
23 = B(−Bt + Bb)λ

2
s (−λi)

∫ L

0
sin λsx sin λixdx (A11)

KP
24 = B(−Bt + Bb)λ

2
s λj

∫ L

0
sin λsx cos λjxdx (A12)

KP
34 = B(At + Ab)(−λr)λj

∫ L

0
sin λrx cos λjxdx + BAc

∫ L

0
cos λrx sin λjxdx (A13)

KP
21 =

(
KP

12
)T , KP

31 =
(
KP

13
)T , KP

41 =
(
KP

14
)T , KP

32 =
(
KP

23
)T , KP

42 =
(
KP

24
)T , KP

43 =
(
KP

34
)T (A14)

KS =


KS

11 0 0 0
0 KS

22 0 0
0 0 KS

33 0
0 0 0 0

 (A15)

KS
11 = B

(
k0 + (−1)r+ikL

)
(A16)

KS
22 = B

(
K0λsλj + (−1)s+jλsλjKL

)
(A17)

KS
33 = B

(
K0 + (−1)r+iKL

)
(A18)

M =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

 (A19)

M11 = B
(

It
3 + Ib

3 + Ic
1

)
λrλi

∫ L
0 sin λrx sin λixdx + B

(
It
4 + Ib

4 + Ic
2

)∫ L
0 cos λrx cos λixdx (A20)

M22 = B
(

It
3 + Ib

3 + Ic
1

)
λsλj

∫ L
0 cos λsx cos λjxdx + B

(
It
4 + Ib

4 + Ic
2

)∫ L
0 sin λsx sin λjxdx (A21)

M33 = B
(

It
1 + Ib

1 + Ic
1

)
λsλj

∫ L

0
cos λrx cos λixdx (A22)

M44 = B
(

It
1 + Ib

1 + Ic
1

)
λsλj

∫ L

0
sin λsx sin λjxdx (A23)

M12 = B
(

It
3 + Ib

3 + Ic
1

)
(−λr)λj

∫ L
0 sin λrx cos λjxdx + B

(
It
4 + Ib

4 + Ic
2

)∫ L
0 cos λrx sin λjxdx (A24)

M13 = B
(

It
2 − Ib

2 − Ic
1

)
(−λr)

∫ L

0
sin λrx cos λixdx (A25)

M14 = B
(

It
2 − Ib

2 − Ic
1

)
(−λr)

∫ L

0
sin λrx sin λjxdx (A26)

M23 = B
(

It
2 − Ib

2 − Ic
1

)
λs

∫ L

0
cos λsx cos λixdx (A27)

M24 = B
(

It
2 − Ib

2 − Ic
1

)
(−λr)

∫ L

0
cos λsx sin λjxdx (A28)

M34 = B
(

It
1 + Ib

1 + Ic
1

)
(−λr)

∫ L

0
cos λrx sin λjxdx (A29)

M21 = (M12)
T , M31 = (M13)

T , M41 = (M14)
T , M32 = (M23)

T , M42 = (M24)
T , M43 = (M34)

T (A30)

where r, i = 0, · · · ,+∞, s, j = 1, 2, 3, 4.
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