
applied
sciences

Article

Artificial Intelligence Control Logic in Next-Generation
Programmable Networks

Mateusz Żotkiewicz 1 , Wiktor Szałyga 1, Jaroslaw Domaszewicz 1 , Andrzej Bąk 1 , Zbigniew Kopertowski 2

and Stanisław Kozdrowski 3,*

����������
�������

Citation: Żotkiewicz, M.; Szałyga,

W.; Domaszewicz, J.; Bąk, A.;

Kopertowski, Z.; Kozdrowski, S.

Artificial Intelligence Control Logic in

Next Generation Programmable

Networks. Appl. Sci. 2021, 11, 9163.

https://doi.org/10.3390/app11199163

Academic Editor: Eui-Nam Huh

Received: 9 August 2021

Accepted: 23 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Telecommunications, Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland; mzotkiew@tele.pw.edu.pl (M.Ż.); wiktor.szalyga.stud@pw.edu.pl (W.S.);
domaszew@tele.pw.edu.pl (J.D.); bak@tele.pw.edu.pl (A.B.)

2 Orange Labs Polska, Obrzezna 7, 02-691 Warszawa, Poland; Zbigniew.Kopertowski@orange.com
3 Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19,

00-665 Warsaw, Poland
* Correspondence: s.kozdrowski@elka.pw.edu.pl

Abstract: The new generation of programmable networks allow mechanisms to be deployed for the
efficient control of dynamic bandwidth allocation and ensure Quality of Service (QoS) in terms of Key
Performance Indicators (KPIs) for delay or loss sensitive Internet of Things (IoT) services. To achieve
flexible, dynamic and automated network resource management in Software-Defined Networking
(SDN), Artificial Intelligence (AI) algorithms can provide an effective solution. In the paper, we
propose the solution for network resources allocation, where the AI algorithm is responsible for
controlling intent-based routing in SDN. The paper focuses on the problem of optimal switching of
intents between two designated paths using the Deep-Q-Learning approach based on an artificial
neural network. The proposed algorithm is the main novelty of this paper. The Developed Networked
Application Emulation System (NAPES) allows the AI solution to be tested with different patterns to
evaluate the performance of the proposed solution. The AI algorithm was trained to maximize the
total throughput in the network and effective network utilization. The results presented confirm the
validity of applied AI approach to the problem of improving network performance in next-generation
networks and the usefulness of the NAPES traffic generator for efficient economical and technical
deployment in IoT networking systems evaluation.

Keywords: artificial intelligence; deep-Q-learning; internet of things; software defined networking;
programmable networks; IoT traffic generation

1. Introduction

This paper presents a solution developed in the FlexNet (www.celticnext.eu/project-
flexnet) project related to the management of network resources using Software-Defined
Networking (SND) technology. SDN is a new networking solution in which a central
server, called a controller, oversees all processes and controls network behaviour, ensuring
the best possible network quality. This new paradigm of network design, as opposed to
the traditional method, has benefits. It is much easier to adapt to new network policies
using software, as it is easier to add or modify controller-based network-level rules using
software, rather than manually applying a limited set of commands to these devices. The
SDN model allows control functions found in network devices to be taken and moved
centrally at the SDN controller level, allowing network devices to communicate with each
other in an efficient manner.

Presented approach is in accordance to FlexNet project objective of building up a new
paradigm of flexible network communications to foster IoT value creation. The Flexible
IoT Network provides the IoT value creators with the availability to consume network
communications on demand, in real time, and automatically to fulfil their specific needs.

Appl. Sci. 2021, 11, 9163. https://doi.org/10.3390/app11199163 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3157-3015
https://orcid.org/0000-0001-7088-9966
https://orcid.org/0000-0002-1989-6850
https://orcid.org/0000-0002-9471-6258
https://orcid.org/0000-0001-6647-5189
https://doi.org/10.3390/app11199163
https://doi.org/10.3390/app11199163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.celticnext.eu/project-flexnet
www.celticnext.eu/project-flexnet
https://doi.org/10.3390/app11199163
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11199163?type=check_update&version=2

Appl. Sci. 2021, 11, 9163 2 of 14

This new network paradigm is fully aligned with the efforts currently ongoing in the
implementation of 5G technology, providing high-quality and consistent connectivity
for people and objects, creating the perception of infinite capacity. The FlexNet project
proposes flexible resource management using SDN with the support of an AI solution for
different IoT use cases.

Usually, the network is managed manually using commands, scripts or special tools,
without automation for the efficient allocation of network resources. For several years,
new network solutions with improved management solutions can be seen, where the most
advanced one is the SDN solution [1–3]. In [4], the basic mechanisms and techniques of SDN
for dynamic and scalable network control envisioned for 5G technology are defined [5]. One
of the main elements is the SDN controller, which allows adaptive dynamic provisioning of
resources by applying management rules to the traffic flow in the network [6]. On the other
hand, the traffic generated in the network is also becoming more complex, especially in IoT
applications [7–11] where the management of large data volumes requires more flexibility
and scalability [12,13].

This flexibility and efficiency approach is often supported by artificial intelligence (AI)
algorithms. In our proposed approach, the AI algorithm supports the intent routing control
in SDN and is responsible for the resource allocation mechanism and network parameters
such as throughput and network losses. This approach is also used in our ongoing FlexNet
project [14–16]. The FlexNet project covers different use cases related to IoT technology,
where different Quality of Service (QoS) requirements have to be met.

In addition, an IoT traffic generator called Networked Application Emulation System
(NAPES) was developed and used for solution validation purposes. New applications
and end-user devices generate different network traffic patterns; therefore, for validating
new network solutions in complex application scenarios, the aforementioned IoT traffic
generator is a very useful, cost-effective and fast-to-implement tool.

1.1. Motivation

The evolution of the next-generation telecommunication network in programmable
flexible resources control solutions is driven by growing application requirements in service
quality and networking resources [17]. Especially, it is the challenge in the IoT domain
where multiply vertical use cases with different types of requirements are needed to be
effectively implement. In the FlexNet project, we focused on different types of IoT use
cases like:

• Emergency and public safety with low latency requests;
• Video surveillance applications, where on demand high bandwidth is required.

In these situations, SDN approach allows for flexible, on demand creation of new
services using network controller handling virtualized resource across the network. Au-
tomatized management of the network resources in relation, from one side to applications
demands and from other side to their optimal effective utilization is complex task, where
AI mechanisms are promising solutions.

AI has seen a surge of interest in the networking community [18]. Recent contributions
include data-driven flow control for wide-area networks, job scheduling, and network
congestion control [19]. A particularly promising domain is the network management.
Researchers have used Machine Learning (ML) to automate the management of network
resources in relation to routing or network traffic optimization [20–24]. In loT networks,
we expect network conditions to vary over time and space. Time varying conditions
may be long term (seasonal) or short term, resulting in a significant impact on network
performance [25]. ML techniques will be developed in order to detect such changes and
signal them to the SDN layer for timely action to be taken to improve the overall network
performance. Another solution is a Knowledge-Defined Network (KDN) which also is a
next step on the path towards an implementation of a self-driving network [26]. KDN is a
complementary solution for SDN that brings reasoning processes and ML techniques into

Appl. Sci. 2021, 11, 9163 3 of 14

the network control plane to enable autonomous and fast operation and minimization of
operational costs.

1.2. Article Organisation

The article is organized as follows: in Section 2, we briefly describe the problem and
application of AI in the contribution. Section 3 presents description of IoT traffic generator
called NAPES we developed and use in the contribution. In Section 4, the results are
presented. Contributions of this work are summarized and future work directions are
discussed in Section 5.

2. Problem Description

The work has been done in the scope of FlexNet project, where Open Network Oper-
ating System (ONOS) controller has been used to control SDN. In ONOS, the concept of
intents is used. An intent express a willingness to send a specific amount of data through a
network [27].

In the considered architecture, for each registered intent, a pair of paths is computed.
The paths are computed immediately after an intent is registered, and the process can take
up to a couple of seconds. Then, when a network is in operational state, the AI module
described in this paper selects one path from these precomputed paths for each intent. The
selection itself has to be fast and prone to the unexpected behaviour of network links and
intents. In other words, we face the problem of optimal switching of intents between two
previously computed paths. The switching is performed based on an output of an artificial
neural network that has been trained to recognize situations and states of the network
requiring switching from one path to another.

Consider the following sets:

E edges

I intents

Pi paths for intent i ∈ I
Ep edges used on path p ∈ P

Each intent has its volume defined for each moment in time in the considered time
horizon < 0; T >. However, the volume is not known in advance. Intents have to be
assigned to available paths in a way that minimizes the congestion resulting from the
limited capacity of the edges. The volume and the capacities are expressed using the
following constants:

vit volume of intent i ∈ I at time t ∈< 0; T >

ce capacity on edge e ∈ E

The assignment and the congestion are expressed using the following variables:

xit ∈ Pi equals the path intent i ∈ I uses at time t ∈< 0; T >

yit volume intent i ∈ I is actually sending at time t ∈< 0; T > due to congestion

We express congestion using the following function that depends on the network,
loads, and selected routes:

yit =

{
vit ∀e ∈ Exit ∑i′ :e∈Exi′ t

vi′t ≤ ce

C(xt, i) otherwise
∀i ∈ I , ∀t ∈< 0; T >

where C(xt, i) is a non-trivial function that depends on the network, its current state, and an
utilized congestion avoidance algorithm. The actual optimization problem we are solving
is as follows:

max
∫ T

0
∑
i∈I

yit

Appl. Sci. 2021, 11, 9163 4 of 14

We notice that even a formally defined problem with unrealistically constant and
predictable behaviour of intents and state of links is NP-hard, because we can reduce the
satisfiability problem (SAT) [28] to it. Therefore, we decided first to decompose the problem
to alleviate the computational complexity and second to use artificial neural networks
to cope with unexpected behaviour of intents and links. The decomposition consists of
considering each intent independently. The considered artificial neural network knows
neither an exact topology of SDN nor volumes and paths of all intents. Instead, it is fed
with the view of SDN from a point of view of a single intent that consists of the detailed
information about the considered intent and the aggregated information about other intents
in the vicinity.

We developed a system whose conceptual model is presented in Figure 1. First, it
collects information about intents registered in ONOS using Intent Monitor and Reroute
(IMR) service and standard ONOS API. Then, it collects information about traffic in a
network using ifstat, which is an open-source, interface statistics collecting tool that is
available in almost all Linux machines.

Network

FlexNet AI

ifstat

ONOS

IMR

Collect
intents

Collect
traffic

Reroute

Compute
observations

Figure 1. Conceptual model of the system.

In the next step, it combines this knowledge and creates observations for a randomly
selected group of registered intent independently. The computed observations for each
selected intent independently enter a neural network that returns two values associated
with expected values of q-functions for two possible actions: doing nothing or switching to
another path. If the latter value is greater than the former value, the switching is performed.
In this way, in each step, only a part of registered intents is considered, and usually only a
small fraction of this part of intents is issued with a command to change a current path.

The artificial neural network used in this research is a Deep-Q-Network (DQN) [29]
consisting of four inputs (observations), two outputs, and four hidden layers of ten, five,
five, and three neurons. We used DQNs, because it gave the best results in our internal
studies. The learning process was implemented using Ray framework [30] and its goal was
to maximize the total throughput in the network. The neural network takes a state of a
network from a viewpoint of a single intent as an input and as an output it produces the
expected q-function value for two cases: (a) when nothing happens and (b) when the path
is switched.

Appl. Sci. 2021, 11, 9163 5 of 14

The observations provided to the artificial neural network depend on a considered
intent and are computed using data collected from a network and from ONOS. The
observations are as follows:

• Ratio of efficiency on active path;
• Ratio of potential efficiency on inactive path;
• Edge occupancy percentage on active path;
• Edge occupancy percentage on inactive path.

The first observation is a ratio of an obtained momentum throughput for the intent to
the maximum throughput declared for this intent. The maximum declared throughput is
provided by the owner of the intent when creating the intent using the ONOS interface.
The second observation is a ratio of the minimum available capacity on all edges of the
inactive path to the declared intent’s maximum throughput. The third observation is the
minimum ratio of an obtained momentum throughput for the intent to a total traffic on an
edge for all edges of the active path. Similarly, the fourth observation is the minimum ratio
of the obtained momentum throughput for the intent to a total potential traffic (current
traffic increases by the current momentum throughput of the intent) on an edge for all
edges of the inactive path. All these observations are computed independently for each
intent using data collected from ONOS and ifstat.

The artificial neural network that is fed with the above observations was trained
using a heavily modified Iroko framework [31] that is based on Open AI Gym [32] and
was originally implemented to optimize traffic in data centers. Episodes were run with
the mininet framework using a modified version of goben [33] to generate various traffic
patterns. The neural network was trained to maximize the total throughput in a network.
The modifications to Iroko framework are as follows:

• Procedures to collect traffic from a network using ifstat;
• Procedures to compute the previously described observations from the traffic;
• Objective function fed to Ray that now expresses the total throughput in a network;
• Dynamically modified network topologies that can change during training

between episodes;
• Dynamically selected currently considered intents that also change between episodes;
• Support for dynamic traffic that can vary between iterations.

The network was trained in series of episodes. Each episode was defined by an SDN
network topology and a set of active traffic demands. Each demand was described by its
source, destination, and an active time period. Note that the proposed neural network
was trained using various topologies and traffic patters; thus, it is topology independent.
Because of the limitations of mininet and utilized machines, the considered topologies
consisted of ten switches at most. In the training process, we used three different topologies
with eight different traffic patterns for each topology. The episodes were repeated for
36 times, totalling 864 episodes in the training process. Each episode lasted for 100 s in
real time, resulting in 100 training steps. In each step, an active demand was selected at
random and only this demand was considered in this particular step. The observations
were computed for the selected demand, and depending on the output of a current neural
network the action was taken.

We set the learning rate of RLLib’s Adam optimizer [34] to 5× 10−4. A replay buffer
size was set to 5000, which is approximately twice as much as a number of steps in one loop
over all utilized topologies and traffic patterns. The exploration ε decreased linearly from
1.0 to 0.02 in the first 5000 steps and then remained constant. Finally, the target network
was updated each 200 steps, and the training batch size was set to 8.

3. Generating Network Traffic

To test our AI solution, we use Networked Application Emulation System (NAPES),
a traffic generator we developed within the FlexNet project. The motivation behind the
development of NAPES is to enable rapid deployment of setups that exhibit complex, time

Appl. Sci. 2021, 11, 9163 6 of 14

varying traffic patterns, which closely resembles those of actual applications. The main
innovative idea behind NAPES is that it allows distributed, traffic-generating “applications”
to be defined with elements of application logic. Specifically, a NAPES application consists
of communicating application components, each of which can have several state machines
representing the component’s logic. State machines are meant to approximate the logic of
an actual application. Interacting state machines of an application’s components jointly
give rise to complex traffic patterns. A NAPES developer specifies the state machines (i.e.,
states and state transitions) for each of an application’s components.

State transitions occur in response to events, which may originate locally (timer events)
or may arrive from other components of the application. Thus, the events serve the purpose
of intra- and inter-component coordination.

Besides lightweight event-based coordination, components communicate via flows,
which form the traffic stress-testing the network under investigation. A component may
generate a flow addressed to another component. A flow is a sequence of packets described
with some parameters, e.g., ones that describe a distribution of inter-packet times and a
distribution of packet sizes. Flows are sent and received by means of components’ ports. A
client port generates the packets of a flow, while a server port receives the packets.

The generation of flows is governed by the states of the states machines inside the
components comprising a NAPES application. Specifically, for each client port, a NAPES
user specifies a flow to be generated in each state of a state machine assigned to control
the client port (in some states there may be no flow at all). Thus, when an event (a local
one or received from another component) causes a state transition, flows generated by the
component’s client ports controlled by the state machine in question may change. As a
result of state changes of components’ state machines, a NAPES application may generate
traffic of different patterns. Overall, the above mechanisms allow a NAPES to approximate
some actual IoT application, whose components are also likely “to be in different states”
reflecting the state of the environment.

In terms of implementation, a component is specified in a data structure to be in-
terpreted by the so-called NAPES Runtime. A NAPES Runtime should be installed on a
computing device to make it a NAPES node. We intend to implement a NAPES Runtime
on different platforms, from resource-constrained IoT nodes to cloud servers. We currently
have a Linux implementation; runtimes for Android and Arduino are being developed. As
the accepted component data structure is the same, no matter what the underlying plat-
form, NAPES components are portable and can be run on different nodes. Inter-component
events are exchanged as short Message Queuing Telemetry Transport (MQTT) messages.

A general approach to stress-test a network with NAPES is to (a) develop a multi-
component NAPES application with an application logic close to that of an actual applica-
tion, (b) connect to the network under test a number of NAPES nodes (computing devices
with NAPES Runtimes), (c) distribute the data structure representations of the applica-
tion’s components to the NAPES nodes, (d) run the application and collect logs. Notably,
NAPES applications are agnostic as to an underlying stress-tested network. There is no
application-to-network signaling, which calls for some network intelligence and adaptivity.

4. Experiments and Results

The AI algorithms were tested with the network topology shown in Figure 2. The test
network consists of thirteen NAPES hosts on which a simple client server application is
deployed. All network’s links have the capacity of 50 Mbps and the access links (between
hosts and network switches) have the capacity of 1 Gbps. The hosts at the top of Figure 2
represent sensor nodes (e.g., equipped with cameras) and the host at the bottom represents
a cloud server. The network topology was setup in such a way that it becomes easily
congested around the cloud server node, when shortest path routing is used, while the
network has still enough capacity to handle the traffic generated by the active sensors.

Appl. Sci. 2021, 11, 9163 7 of 14

Host-01

sw02

sw00

sw01 sw03

sw04

Host-02 Host-03

sw05

Host-04 Host-05

sw06

Host-06 Host-07

sw07

Host-08 Host-09

sw08

Host-10 Host-11

sw09

Host-12

Host-00

50

50

50 50 50 50 50

50 50 50 50

5050

50
50

50

Figure 2. Analyzed network topology.

The application emulates the case when a space (e.g., the streets of a smart city) is
instrumented with multiple sensor nodes. A sensor node may be in the standby or alert
mode. When in the standby mode, no traffic is generated; when in the alert mode, a
node generates a simple User Datagram Protocol (UDP) flow with the specific bit rate of
20 Mbps. Note that the bit rates have been chosen to allow convenient experimentation
with the AI algorithm; they need not be realistic from the application domain point of view.
Imagine that some stimulus (e.g., noise from a street sweeper vehicle at night time) triggers
a change from the usual standby mode to the alert mode. As the sweeper moves down the
streets, different sensor nodes are exposed to the noise and enter the alert mode (starting
generating traffic).

We assumed that two sensor nodes enter the alert mode at a time (imagine two
cameras deployed at each intersection). Moreover, pairs of sensors are alerted according
to a regular pattern. Specifically, NAPES components running on the nodes Host-01 and
Host-02 start generating traffic at the time 0 s (one flow per node), components on the
nodes Host-03 and Host-04 start at the time 20 s, components on the nodes Host-05 and
Host-06 start at the time 40 s, etc. Each component remains in the alert mode for 40 s and,
afterwards, returns to the standby mode (with no traffic generated), which lasts for 100 s.
After that, a component enters the alert mode again.

To conduct the experiments with the AI algorithm, we emulated the above test network
using the MiniNet tool [35]. The network nodes represent the Open Virtual Switch (OVS).
The test flows were generated using the NAPES traffic generator. In all cases the test
instances were run on the hardware platform with the following parameters:

• 16 GB RAM
• 8 VCPU
• 64 GB of disk space
• Ubuntu system version 20.04.

In the following experiments, we compared 2 network parameters i.e., total through-
put obtained by the node representing cloud server and temporary network loss rate
(averaged over all flows) to show the advantage of the proposed AI algorithm.

Figure 3 shows total throughput without AI and Figure 4 shows total throughput with
the AI algorithm. It is noticeable that the AI algorithm allows for better network resource
utilization by rerouting traffic to alternative paths and as a result increases the overall
network throughput. The hosts Host-01 ... Host-12 are arranged in pairs that periodically
switch between active and inactive states. When four hosts become active at the same the
network becomes congested if all flows are routed over the same link (this may happen
with shortest path routing). With the AI algorithm, the flows can be routed over link

Appl. Sci. 2021, 11, 9163 8 of 14

disjoint paths, thus, network congestion can be avoided. This can be observed, for example,
in the time period between 20 and 40 s. Without AI, the server throughput is only 50 Mbps,
as all active flows are routed over a single link with a capacity of 50 Mbps. When the
AI algorithm is enabled, two flows can be rerouted to alternative disjoint paths and the
throughput increases to 80 Mbps (which is equal to the offered traffic).

Figure 3. Total throughput without AI.

Figure 4. Total throughput with AI.

Appl. Sci. 2021, 11, 9163 9 of 14

The advantage of using AI is even clearer for the loss rate parameter. With the
AI algorithm, network losses are significantly lower than without using AI (compare
Figures 5 and 6). However, the traffic losses cannot be completely avoided as the AI
algorithm needs some time to “observe” the traffic prior to the path switch over decision.

Figure 5. Loss rate without AI.

Figure 6. Loss rate with AI.

It can be seen in Figure 5 that the network suffers from six congestion periods due to
the naive shortest path routing (the same can be seen also in in Figure 3). It happens when
four hosts nearest to the same aggregation switch (sw01, sw02, and sw03) are all operating.
The situation happens two times for each aggregation switch during the 280 s experiment.
The first congestion period (form 20 to 40 s) happens when hosts: Host-01, Host-02, Host-03,
and Host-04 are operating and all the traffic is routed on the shortest path. In such a case,
link sw00-sw01 becomes the bottleneck, because all the traffic is using it. However, in
the presented AI framework, each intent can chose between two paths that are as link
disjointed as possible. It is clearly seen in Figure 2 that, for each host (Host01-Host-12) in

Appl. Sci. 2021, 11, 9163 10 of 14

the considered network, there exists a pair of paths to the server (Host-00) that shares only
two links. These links are directly connected either to the host or to the server. Therefore,
there is always a combination of possible paths, which can be assigned to intents, that will
prevent from the described congestion situations on the links connecting the server with
the aggregation switches. As displayed in Figure 4, the presented AI framework usually
finds this perfect assignment and allows for considerable loss reductions.

The results of the above experiments obtained for five different test cases are presented
in Tables 1 and 2. Table 1 shows the per flow average throughput obtained for experiments
performed with and without the AI algorithm. Table 2 shows similar results for the average
flow loss rate parameter. We can see that the traffic losses (and the resulting throughput
reductions) are not evenly distributed between flows. Without the AI algorithm, the per
flow loss rate can be as high as 40 % (meaning the same level of throughput decrease). The
AI algorithm reduces the average per flow loss rate over 3 times, to an average level of 6 %
(from an average of 18 % for the case with the shortest path routing).

Table 1. Comparison of flows’ throughput for different test case.

(a) Throughput without AI

Flow No. Test Case Average
1 2 3 4 5

1 3.58 5.75 3.68 4.83 5.23 4.61
2 5.75 4.97 5.52 4.50 3.72 4.89
3 5.21 3.61 4.11 4.60 3.98 4.30
4 4.01 4.34 5.30 4.71 5.64 4.80
5 4.26 4.24 5.52 5.62 3.74 4.68
6 4.31 5.69 4.25 4.50 5.42 4.83
7 5.59 4.95 4.61 4.79 5.39 5.07
8 4.52 3.83 4.33 3.78 4.16 4.12
9 5.24 5.50 5.55 5.42 4.17 5.18

10 3.81 4.76 4.16 3.79 4.46 4.20
11 5.69 4.76 5.00 4.64 4.46 4.91
12 3.98 3.68 3.99 4.85 5.62 4.42

(b) Throughput with AI

Flow No. Test Case Average
1 2 3 4 5

1 5.69 5.43 5.54 5.59 5.58 5.57
2 5.65 5.77 5.14 5.77 5.66 5.60
3 5.75 5.33 4.66 5.71 5.07 5.30
4 5.46 5.71 5.76 5.58 5.74 5.65
5 5.52 4.66 5.19 4.98 5.57 5.19
6 5.19 5.72 5.42 4.97 4.61 5.18
7 5.37 5.59 5.69 5.52 5.03 5.44
8 5.68 5.60 5.31 5.74 5.55 5.58
9 5.56 5.70 5.30 5.13 5.24 5.39

10 5.31 4.97 4.96 5.03 5.68 5.19
11 5.65 5.44 5.76 5.65 5.72 5.64
12 5.61 5.56 5.59 5.45 5.77 5.60

Appl. Sci. 2021, 11, 9163 11 of 14

Table 2. Comparison of flows’ loses for different test case.

(a) Loss rate without AI

Flow No. Test Case Average
1 2 3 4 5

1 38.10 0.57 36.41 16.40 9.46 20.19
2 0.49 14.09 4.57 22.11 35.65 15.38
3 9.85 37.60 28.85 20.44 31.19 25.59
4 30.58 25.00 8.36 18.45 2.40 16.96
5 26.18 26.62 4.40 2.65 35.22 19.01
6 25.32 1.55 26.48 22.14 6.26 16.35
7 3.26 14.36 20.22 17.21 6.81 12.37
8 21.81 33.83 25.16 34.54 28.09 28.69
9 9.39 4.76 3.94 6.23 27.89 10.44

10 33.93 17.70 28.00 34.34 22.76 27.35
11 1.81 17.67 13.38 19.84 22.88 15.12
12 31.19 36.31 31.03 16.16 2.75 23.49

(b) Loss rate with AI

Flow No. Test Case Average
1 2 3 4 5

1 1.49 5.98 4.08 3.33 3.57 3.69
2 2.29 0.24 11.14 0.15 2.07 3.18
3 0.58 7.79 19.35 1.23 12.34 8.26
4 5.63 1.18 0.38 3.40 0.65 2.25
5 4.47 19.34 10.17 13.74 3.52 10.25
6 10.13 1.07 6.17 13.91 20.23 10.30
7 7.12 3.26 1.55 4.56 13.07 5.91
8 1.73 3.22 8.11 0.66 4.04 3.55
9 3.71 1.35 8.34 11.21 9.27 6.77

10 8.03 13.95 14.24 12.91 1.72 10.17
11 2.24 5.86 0.48 2.37 1.15 2.42
12 2.98 3.80 3.33 5.67 0.20 3.20

5. Conclusions

In this paper, the management of SDN network resources with AI support for IoT
applications was presented. Particularly, the studied problem focuses on an optimal
switching of intents between two available paths in an SDN networks using AI algorithm.
In the developed architecture, the switching is performed based on Deep-Q-Network AI
mechanism where its main purpose is to maximize the total throughput in the SDN network
with minimal average total data loss rate for served IoT applications. The presented
approach is an intelligent SDN management system with AI support, especially applicable
in programmable next-generation networks (5G and beyond).

Moreover, the network resource allocation in context of QoS assurance is a growing
problem, especially for IoT services. The designed solution is suitable for fast and optimal
resource allocation, especially in cases of emergency and delay-sensitive IoT services. To
test the proposed AI solution, we used an IoT traffic generator called NAPES, developed
within the FlexNet project. We compared the performance and quality parameters, i.e., total
throughput in the network and average data loss rate, to evaluate the AI usefulness in the
designed solution. The presented results confirm effectiveness of proposed AI approach,
which significantly improves the overall Quality of Service and network performance. In
particular, it maximizes the total network throughput as well as significantly reduces the
average total data loss rate. The obtained results confirm the rightness of applying AI to
the presented problem.

Appl. Sci. 2021, 11, 9163 12 of 14

Further research will be focused on more comprehensive experiments that include real
scenarios from IoT use cases with more extensive network topologies, with different QoS
parameters (losses and latency) and with real traffic scenarios from IoT vertical services,
loss and delay sensitive.

Author Contributions: Conceptualization, M.Ż. and S.K.; methodology, M.Ż., S.K., A.B.. J.D. and
Z.K; software, M.Ż., J.D., A.B. and W.S.; validation, S.K., Z.K. and A.B.; formal analysis, M.Ż. and
Z.K.; data curation, A.B., S.K. and Z.K.; writing—original draft preparation, S.K., M.Ż., J.D., Z.K.
and A.B.; writing—review and editing, S.K., M.Ż., J.D. and Z.K.; supervision, Z.K. and S.K.; project
administration, Z.K. and S.K.; funding acquisition, Z.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper was funded by the FlexNet project in EUREKA CELTIC-NEXT Cluster for
next-generation communications together with The National Centre for Research and Development
in Poland.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

QoS Quality of Service
KPI Key Performance Indicator
IoT Internet of Things
SDN Software-Defined Networking
AI Artificial Intelligence
NAPES Networked Application Emulation System
5G Network of 5th Generation
FlexNet Flexible Network
ML Machine Learning
KDN Knowledge-Defined Network
ONOS Open Network Operating System
SAT Satisfiability Problem
IMR Intent Monitor and Reroute service
MQTT Message Queuing Telemetry Transport (standard messaging protocol for IoT)
Gbps Giga bit per seconds
UDP User Datagram Protocol
OVS Open Virtual Switch

References
1. Liyanage, M.; Ylianttila, M.; Gurtov, A. Securing the Control Channel of Software-Defined Mobile Networks. In Proceedings of

the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, NSW, Australia, 19
June 2014. [CrossRef]

2. Rothenberg, C.E.; Nascimento, M.R.; Salvador, M.R.; Corrêa, C.N.A.; Cunha de Lucena, S.; Raszuk, R. Revisiting Routing Control
Platforms with the Eyes and Muscles of Software-Defined Networking. In Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, HotSDN ’12, Helsinki, Finland, 13 August 2012; Association for Computing Machinery: New York,
NY, USA, 2012; pp. 13–18. [CrossRef]

3. Kreutz, D.; Ramos, F.M.V.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A
Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

4. IETF. Software-Defined Networking: A Perspective From Within a Service Provider Environment; IETF: Fremont, CA, USA, 2017.
5. de la Oliva, A.; Li, X.; Costa-Perez, X.; Bernardos, C.; Bertin, P.; Iovanna, P.; Deiss, T.; Mangues-Bafalluy, J.; Mourad, A.; Casetti,

C.; et al. 5G-TRANSFORMER: Slicing and orchestrating transport networks for industry verticals. IEEE Commun. Mag. 2018,
56, 78–84. [CrossRef]

6. Dinh, K.T.; Kukliński, S.; Osiński, T.; Wytrębowicz, J. Heuristic traffic engineering for SDN. J. Inf. Telecommun. 2020, 4, 251–266.
[CrossRef]

7. Bera, S.; Misra, S.; Vasilakos, A.V. Software-Defined Networking for Internet of Things: A Survey. IEEE Internet Things J. 2017,
4, 1994–2008. [CrossRef]

8. Municio, E.; Marquez-Barja, J.; Latre, S.; Vissicchio, S. Whisper: Programmable and Flexible Control on Industrial IoT Networks.
Sensors 2018, 18, 4048. [CrossRef] [PubMed]

http://doi.org/10.1109/WoWMoM.2014.6918981
http://dx.doi.org/10.1145/2342441.2342445
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/MCOM.2018.1700990
http://dx.doi.org/10.1080/24751839.2020.1755528
http://dx.doi.org/10.1109/JIOT.2017.2746186
http://dx.doi.org/10.3390/s18114048
http://www.ncbi.nlm.nih.gov/pubmed/30463346

Appl. Sci. 2021, 11, 9163 13 of 14

9. Municio, E.; Latre, S.; Marquez-Barja, J.M. Extending Network Programmability to the Things Overlay Using Distributed
Industrial IoT Protocols. IEEE Trans. Ind. Inform. 2021, 17, 251–259. [CrossRef]

10. Zemrane, H.; Baddi, Y.; Hasbi, A. SDN-Based Solutions to Improve IOT: Survey. In Proceedings of the 2018 IEEE 5th International
Congress on Information Science and Technology (CiSt), Marrakech, Morocco, 21–27 October 2018; pp. 588–593. [CrossRef]

11. Rego, A.; Canovas, A.; Jiménez, J.M.; Lloret, J. An Intelligent System for Video Surveillance in IoT Environments. IEEE Access
2018, 6, 31580–31598. [CrossRef]

12. Omar, H. Intelligent Traffic Information System Based on Integration of Internet of Things and Agent Technology. Int. J. Adv.
Comput. Sci. Appl. 2015, 6, 37–43. [CrossRef]

13. Jin, Y.; Gormus, S.; Kulkarni, P.; Sooriyabandara, M. Content Centric Routing in IoT Networks and Its Integration in RPL. Comput.
Commun. 2016, 89, 87–104. [CrossRef]

14. Flexnet. Flexible IoT Networks for Value Creators. 2020. Available online: www.celticnext.eu/project-flexnet (accessed on 22
September 2021).

15. Choque, J.; Aguero, R.; Kopertowski, Z.; Nguyen, K.K.; Medela, A.; Municio, E.; Marquez-Barja, J.M.; Domaszewicz, J.; Bak, A.;
Lee, J.H.; et al. FLEXNET: Flexible Networks for IoT based services. In Proceedings of the 2020 23rd International Symposium on
Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, 19–26 October 2020; pp. 1–6. [CrossRef]

16. Kozdrowski, S.; Banaszek, M.; Jedrzejczak, B.; Żotkiewicz, M.; Kopertowski, Z. Application of the Ant Colony Algorithm for
Routing in Next Generation Programmable Networks. In Computational Science–ICCS 2021; Paszynski, M., Kranzlmüller, D.,
Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 526–539.

17. Open Networking Foundation. Software-Defined Networking: The New Norm for Networks. White Paper 2012.
18. Zhao, Y.; Le, Y.; Zhang, X.; Geng, G.; Zhang, W.; Sun, Y. A Survey of Networking Applications Applying the Software Defined

Networking Concept Based on Machine Learning. IEEE Access 2019, 7, 95397–95417. [CrossRef]
19. Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource Management with Deep Reinforcement Learning. In Proceedings

of the 15th ACM Workshop on Hot Topics in Networks, HotNets ’16, Atlanta, GA, USA, 9–10 November 2016; Association for
Computing Machinery: New York, NY, USA, 2016; pp. 50–56. [CrossRef]

20. Kozdrowski, S.; Cichosz, P.; Paziewski, P.; Sujecki, S. Machine Learning Algorithms for Prediction of the Quality of Transmission
in Optical Networks. Entropy 2021, 23, 7. [CrossRef] [PubMed]

21. Chen, B.; Wan, J.; Lan, Y.; Imran, M.; Li, D.; Guizani, N. Improving Cognitive Ability of Edge Intelligent IIoT through Machine
Learning. IEEE Netw. 2019, 33, 61–67. [CrossRef]

22. Abar, T.; Letaifa, A.; El Asmi, S. Machine learning based QoE prediction in SDN networks. In Proceedings of the 2017
13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017;
pp. 1395–1400. [CrossRef]

23. Dobrijevic, O.; Santl, M.; Matijasevic, M. Ant colony optimization for QoE-centric flow routing in software-defined networks.
In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain,
9–13 November 2015; pp. 274–278. [CrossRef]

24. Ali, J.; Roh, B.H. Management of Software-Defined Networking Powered by Artificial Intelligence. 2021. [CrossRef]
25. Mishra, P.; Puthal, D.; Tiwary, M.; Mohanty, S.P. Software Defined IoT Systems: Properties, State of the Art, and Future Research.

IEEE Wirel. Commun. 2019, 26, 64–71. [CrossRef]
26. Mestres, A.; Rodriguez-Natal, A.; Carner, J.; Barlet-Ros, P.; Alarcón, E.; Solé, M.; Muntés-Mulero, V.; Meyer, D.; Barkai, S.; Hibbett,

M.J.; et al. Knowledge-Defined Networking. SIGCOMM Comput. Commun. Rev. 2017, 47, 2–10. [CrossRef]
27. Sanvito, D.; Moro, D.; Gullì, M.; Filippini, I.; Capone, A.; Campanella, A. ONOS Intent Monitor and Reroute service: Enabling

plug amp;play routing logic. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), Montreal, QC, Canada, 25–29 June 2018; pp. 272–276. [CrossRef]

28. Karp, R. Reducibility among combinatorial problems. In Complexity of Computer Computations; Miller, R., Thatcher, J., Eds.;
Plenum Press: New York, NY, USA, 1972; pp. 85–103.

29. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

30. Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Goldberg, K.; Gonzalez, J.; Jordan, M.; Stoica, I. RLlib: Abstractions for
Distributed Reinforcement Learning. In Proceedings of the 35th International Conference on Machine Learning, Stockholm,
Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; PMLR, Proceedings of Machine Learning Research: Stockholm, Sweden, 2018,
Volume 80, pp. 3053–3062.

31. Ruffy, F.; Przystupa, M.; Beschastnikh, I. Iroko: A Framework to Prototype Reinforcement Learning for Data Center Traffic
Control. arXiv 2018, arXiv:1812.09975.

32. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:cs.LG/1606.01540.

33. Marques, E. Goben. 2018. Available online: https://github.com/udhos/goben (accessed on 22 September 2021).

http://dx.doi.org/10.1109/TII.2020.2972613
http://dx.doi.org/10.1109/CIST.2018.8596577
http://dx.doi.org/10.1109/ACCESS.2018.2842034
http://dx.doi.org/10.14569/IJACSA.2015.060206
http://dx.doi.org/10.1016/j.comcom.2016.03.005
www.celticnext.eu/project-flexnet
http://dx.doi.org/10.1109/WPMC50192.2020.9309486
http://dx.doi.org/10.1109/ACCESS.2019.2928564
http://dx.doi.org/10.1145/3005745.3005750
http://dx.doi.org/10.3390/e23010007
http://www.ncbi.nlm.nih.gov/pubmed/33375082
http://dx.doi.org/10.1109/MNET.001.1800505
http://dx.doi.org/10.1109/IWCMC.2017.7986488
http://dx.doi.org/10.1109/CNSM.2015.7367371
http://dx.doi.org/10.5772/intechopen.97197.
http://dx.doi.org/10.1109/MWC.001.1900083
http://dx.doi.org/10.1145/3138808.3138810
http://dx.doi.org/10.1109/NETSOFT.2018.8460064
http://dx.doi.org/10.1038/nature14236
https://github.com/udhos/goben

Appl. Sci. 2021, 11, 9163 14 of 14

34. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning
Representations, Banff, AB, Canada, 14–16 April 2014.

35. Xiang, Z.; Seeling, P. Chapter 11-Mininet: An instant virtual network on your computer. In Computing in Communication Networks;
Fitzek, F.H., Granelli, F., Seeling, P., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 219–230. [CrossRef]

http://dx.doi.org/10.1016/B978-0-12-820488-7.00025-6

	Introduction
	Motivation
	Article Organisation

	Problem Description
	Generating Network Traffic
	Experiments and Results
	Conclusions
	References

