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Abstract: In the field of robust design, most estimation methods for output responses of input factors
are based on the response surface methodology (RSM), which makes several assumptions regarding
the input data. However, these assumptions may not consistently hold in real-world industrial
problems. Recent studies using artificial neural networks (ANNSs) indicate that input—-output re-
lationships can be effectively estimated without the assumptions mentioned above. The primary
objective of this research is to generate a new, robust design dual-response estimation method based
on ANN:s. First, a second-order functional-link-NN-based robust design estimation approach has
been proposed for the process mean and standard deviation (i.e., the dual-response model). Second,
the optimal structure of the proposed network is defined based on the Bayesian information crite-
rion. Finally, the estimated response functions of the proposed functional-link-NN-based estimation
method are applied and compared with that obtained using the conventional least squares method
(LSM)-based RSM. The numerical example results imply that the proposed functional-link-NN-based
dual-response robust design estimation model can provide more effective optimal solutions than the
LSM-based RSM, according to the expected quality loss criteria.

Keywords: response surface methodology; estimation; functional link neural network

1. Introduction

Over the past two decades, robust parameter design (RPD), also known as robust
design (RD), has been widely applied to improve the quality of products in the offline
stage of practical manufacturing processes. Bendell et al. [1] and Dehnad [2] discussed the
applications of RD to various engineering concerns in the process, automobile, information
technology, and plastic technology industries. The primary purpose of RD is to obtain
the optimal settings of control factors by minimizing the process variability and deviation
based on the mean value and the presupposed target, which are often referred to as the
process bias. As Taguchi explored [3], RD includes two main stages: design of experiments
and two-step modeling. However, orthogonal arrays, statistical analyses, and signal-to-
noise ratios used in conventional techniques to solve RD problems have been questioned by
engineers and statisticians, such as Leon et al. [4], Box [5], Box et al. [6], and Nair et al. [7].
As a result, to resolve these shortcomings, several advanced studies have been proposed.

The most significant alternative to Taguchi’s approach is the dual-response model
approach based on the response surface methodology (RSM) [8]. In this approach, the
process mean and variance (or standard deviations) are approximated as two separate
functions of input factors based on the LSM. In addition, the dual-response model approach
provides an RD optimization model that minimizes the process variability while the process
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mean is assigned equal to the target value. However, the dual-response approach in Vining
and Myers [8] may not always provide efficient optimal RD solutions, which have been
discussed in Del Castillo and Montgomery [9] and Copeland and Nelson [10]. Instead, they
employed the standard nonlinear programming techniques of the generalized reduced
gradient method and the Nelder-Mead simplex method to provide better RD solutions.
Subsequently, Lin and Tu [11] identified a drawback in the dual-response model approach
whereby the process bias and variance are not simultaneously minimized. To overcome
this issue, they proposed a mean square error (MSE) model.

The RSM comprises statistical and mathematical techniques to develop, improve, and
optimize processes. It helps design, develop, and formulate new products, as well as im-
prove the existing product designs [12]. The unidentified relationship between input factors
and output responses can be investigated using the RSM. To define the input—-output func-
tional relationship, the conventional LSM is used to estimate unknown model coefficients.
The LSM-based RSM assumes that the sample data follow a normal distribution, and the er-
ror terms hold a fixed variance with zero mean. Unfortunately, the Gauss—-Markov theorem
is not applicable in several practical situations, which implies that those assumptions are
not valid. Therefore, weighted least squares, maximum likelihood estimation (MLE), and
Bayesian estimation methods can be used as alternatives to determine model parameters.
Pertaining to MLE, the unknown parameters are considered as constant, and the observed
data are treated as random variables [13]. The MLE approach with abnormal distributed
data was implemented in Lee and Park [14], Cho et al. [15], and Cho and Shin [16], whereas
Luner [17] and Cho and Park [18] proposed the weighted least squares methods to estimate
the model coefficients in the case of unbalanced data. Most estimation methods based on
the RSM consider several assumptions or require specific data types to determine functions
between the process mean or variance and input factors.

Over the past two decades, artificial neural networks (ANNSs), often known as neural
networks (NNs), have been widely used to classify, cluster, approximate, forecast, and
optimize datasets in the fields of biology, medicine, industrial engineering, control engi-
neering, software engineering, environmental science, economics, and sociology. An ANN
is a quantitative numerical model that originates from the organization and operation of
the neural networks of the biological brain. The basic building blocks of every ANN are
artificial neurons, i.e., simple mathematical models (functions). Typical ANNs comprise
thousands or millions of artificial neurons (i.e., nonlinear processing units) connected via
(synaptic) weights. ANNs can “learn” a task by adjusting these weights. Neurons receive
inputs with their associated weights, transform those inputs using activation functions, and
pass the transformed information as outputs. It has been theoretically proved that ANNs
can approximate any continuous mapping to arbitrary precision without any assump-
tions [19-22]. Furthermore, without any knowledge of underlying principles, ANNs can
determine unknown interactions between the input and output performances of a process
because of their data-driven and self-adaptive properties. Accordingly, the functional
correlation between the input and output quality characteristics in RD can be modeled
and analyzed by NNs without any assumptions. The integration of an NN into the ex-
periment design procedure of an RD model has been mentioned in Rowlands et al. [23]
and Shin et al. [24]. In recent times, Arungpadang and Kim [25] presented a feed-forward
NN-based RSM that improved the precision of estimations without additional experiments.
Le et al. [26] proposed an NN-based estimation method that identified a new screening
procedure to determine the optimum transfer function, so that a more accurate solution
can be obtained. A genetic algorithm with NNs has been executed in Su and Hsieh [27],
Cook et al. [28], Chow et al. [29], Chang [30], Chang and Chen [31], Arungpadang et al. [32],
and Villa-Murillo et al. [33] as an estimation method to investigate the optimal quality
characteristics with associated control factor settings in the RD model without the use of
estimation formulas. Winiczenko et al. [34] introduced an efficient optimization method by
combining the RSM and a genetic algorithm (GA) to find the optimal topology of ANNs
for predicting color changes in rehydrated apple cubes.
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Therefore, the main objective is to propose a new dual-response estimation approach
based on NNs. First, the normal quadratic process mean and standard deviation functions
in RD are estimated using the proposed functional-link-NN-based estimation method. Sec-
ond, the Bayesian information criterion (BIC) is used to quantify the magnitude of neurons
in the hidden layer, which affects the coefficients in the estimated input-output equations.
Finally, the results of the case study are presented to verify the effectiveness of the proposed
NN-based estimation method compared with the LSM-based RSM. The graphical overview
of the proposed NN-based estimation method is demonstrated in Figure 1.
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Figure 1. Proposed feed-forward NN-based estimation procedure.

The remainder of the study is organized as follows: Section 2 introduces the conven-
tional LSM-based RSM. Section 3 describes the functional-link-NN-based dual-response
estimation model. Section 4 explains the outputs generated by the proposed NN-based
estimation method and analyzes the LSM-based RSM based on the results of the case study.
Finally, Section 5 concludes the study and describes further studies.

2. Conventional LSM-Based RSM

The RSM was first introduced by Box and Wilson [35] and is used to model empirical
relationships between output and input variables. Myers [36] and Khuri and Mukhopad-
hyay [37] present insightful commentaries on the different development phases of the RSM.
When the exact functional relationship is very complicated or is unknown, the conventional
LSM is used to estimate the input-response functional relationships of the output [38,39].
In general, the estimated second-order response surface functions are used to analyze RD
problems. The estimated process mean and standard deviation functions proposed by
Vining and Myers [8] can be defined as follows:

p p p p
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where x = (xl, oy Xy Xy .,xp) is a vector of input variables, and ,3 and § are the
estimated coefficients in the mean and standard deviation functions, respectively. These
regression coefficients can be estimated using the LSM as

p=(xX) X'y )

$= (xTx) ~IXTs @)

where X is the design matrix of control factors, and i and s are the mean and standard
deviation of the observed responses, respectively.

3. Proposed Dual-Response Model Based on Functional Link NNs
3.1. Proposed Functional Link NN

ANN s are comprised of various processing elements known as artificial neurons or
nodes, which are interconnected. Each neuron obtains input signals from the previous nodes,
aggregates these signals with the related weights, and generates output signals through
a transfer function (or activation function). This output signal forms the input signal for
other nodes. The multilayer feed-forward back-propagation NN is the most influential
model applied to various practical problems. A multilayer feed-forward back-propagation
NN model comprises several layers; each layer contains several nodes. The first and last
layers inside the network are considered as input and output layers, respectively, as the
input and output units in the NN system are involved. Various hidden layers are located
between the input and output layers. A multilayer feed-forward back-propagation NN
comprises one input layer, one output layer, and various hidden layers between the input
and output layer. The overall structure of a multilayer feed-forward back-propagation NN
is illustrated in Figure 2.

X1

Xk

input layer

hidden layers output layer

Figure 2. Multilayer feed-forward NN structure.

The universal approximation theorem for multilayer feed-forward networks was
proposed by Cybenko [21] and Hornik et al. [20]. A multilayer feed-forward NN with a
hidden layer can approximate a multidimensional, continuous, and arbitrary nonlinear
function with any desired accuracy, as mentioned in Funahashi [22] and Hartman et al. [40],
based on the theorem stated by Hornik et al. [20] and Cybenko [21]. In the hidden area,
the transfer function is used to figure out the functional formation between the input
and output factors. Popular transfer functions used in ANNs include step-like, hard
limit, sigmoidal, tan sigmoid, log sigmoid, hyperbolic tangent sigmoid, linear, radial basis,
saturating linear, multivariate, softmax, competitive, symmetric saturating linear, universal,
generalized universal, and triangular basis transfer functions [41,42]. In RD, there are two
characteristics of the output responses that are of particular interest: the mean and standard
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deviation. Each output performance can be separately analyzed and computed in a single
NN structure based on the dual-response estimation framework. Figure 3 illustrates the
proposed functional-link-NN-based dual-response estimation approach.

Jout (¥ or $)

input layer hidden layer output layer

Figure 3. Functional-link-NN-based RD estimation method.

As shown in Figure 3, x1, x2, ..., x; denote k control variables in the input layer.
The weighted sum of the k factors with their corresponding biases by, by, ..., b, can
represent the input for each hidden neuron. This weighted sum is transformed by the
activation function x + x2, also known as the transfer function. The transformed combi-
nation is the output of the hidden layer y;,;; and refers to the input of one output layer as
well. Analogously, the integration of the transformed combination of inputs with their
relevant biases can represent the output neuron (i or §). The linear activation function
x can represent the output neuron transfer function. In an i-hidden-node NN system,
1,..., j, ..., h, are denoted as the hidden layer, and w and b represent the weight term
and process bias, separately. In particular, the weight connection between the input factor
x; and hidden node j is written as wj;, while w; is the weight connection between the
hidden node j and the output. In addition, b]}-’id and b°"! represent deviations at j and the
output, respectively. The output performance of the layers in the hidden neuron can be
represented in mathematical formulas as:

4 k , k \?
y;-”d(x) = (Z wjix; + b;”d> + (2 wjix; + b]}-”d> ()
i=1 i=1

The outcome of the functional-link-NN-based RD estimation model can be written as:

1

2
k . k .
WjiX; + b]hld> + (Z WjiX; + b]}-”d> + pout (6)
=1 i=1

h
Gout(x) = ij (

j=1

Hence, the regressed formulas for the estimated mean and standard deviation are
given as:

h_mean k . k . 2
ANn(X) = Y w wjix; + b;”d‘mm + | ) wjix; + b]hld‘mm + b (7)
=1 i—1 i—1

2
h_std k , k ‘
() = ) W (Zwﬁwb?”‘*-“d) + (Zwﬁxi+b§’“-“d> e

j=1 i=1 i=1

where hi_mean and h_std denote the quantity of the hidden neurons of the h-hidden-node
NN for the mean and standard deviation functions, respectively.
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3.2. Learning Algorithm

The learning or training process in NNs helps determine suitable weight values. The
learning algorithm back-propagation is implemented in training feed-forward NNs. Back-
propagation means that the errors are transmitted backward from the output to the hidden
layer. First, the weights of the neural network are randomly initialized. Next, based on
presetting weight terms, the NN solution can be computed and compared with the desired
output target. The goal is to minimize the error term E between the estimated output o,
and the desired output y,,t, where:

1
E =5 Y (out = Jour)” ©)

Finally, the iterative step of the gradient descent algorithm modifies w; refers to:

wj — w;j+ Aw]- (10)
where SE(w)
w

Aw; = —1 3w, (11)

The parameter 77 (> 0) is known as the learning rate. While using the steepest descent
approach to train a multilayer network, the magnitude of the gradient may be minimal,
resulting in small changes to weights and biases regardless of the distance between the
actual and optimal values of weights and biases. The harmful effects of these small-
magnitude partial derivatives can be eliminated using the resilient back-propagation
training algorithm (trainrp), in which the weight updating direction is only affected by
the sign of the derivative. In addition, the Marquardt-Levenberg algorithm (trainlm),
an approximation to Newton’s method, is defined such that the second-order training
speed is almost achieved without estimating the Hessian matrix.

One problem with the NN training process is overfitting. This is characterized by large
errors when new data are presented to the network, despite the errors on the training set
being very small. This implies that the training examples have been stored and memorized
in the network, but the training experiences cannot generalize new situations. To avoid
the overfitting problem, efficient researchers can use an additional technique of “early
stopping” to improve the generalization ability. In this model, the dataset is separated into
three subsets, which are specialized to train, validate, and test the database. The process
weight and bias terms of the network can be updated in the training set, in which the
gradient is estimated as well. Then, the error, which is supervised during the training
process, has to be evaluated in the validation set. While in the testing set, the capability
to generalize the supposedly trained network can be examined. The accurate proportion
of the learning algorithm among training, testing, validation data is determined by the
designer; typically, the ratios of training:testing:validation are 50:25:25, 60:20:20, or 70:15:15.

3.3. Number of Hidden Neurons

Based on the number of layers in the hidden neuron, the optimal NN structure can
be decided. A random selection of the number of hidden neurons can cause overfitting or
underfitting problems. Several approaches can determine the number of hidden neurons
in NNs—a literature review can be found in Sheela and Deepa [43]. However, no sin-
gle method is effective and accurate considering various circumstances. In this study,
Schwartz’s Bayesian criterion, known as BIC, can help determine the number of hidden
neurons. The BIC is given by:

BIC =nxIn (711 i E2> + pxIn(n) (12)

i=1
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where 1 and p represent the magnitude of the sample data and the number of variables
in the mathematical formula, respectively. In(n) in BIC tends to significantly penalize
complex models. Moreover, while the size of the dataset n increases, the BIC will be more
likely to decide matched-model approaches.

4. Case Study

The printing data proposed by Box and Draper [38] are discussed in this study for
comparative analysis; these data had been used by Vining and Myers [8] and Lin and Tu [11]
as well. Three experimental parameters, x1, X2, and x3 (speed, pressure, and distance), of a
printing machine are treated as input variables to examine the ability to apply colored inks
to package levels (). These three control factors are assumed to be examined in three levels
(=1, 0, +1), so that there are 27 runs in total. Based on the general full factorial design in
the design of experiments, it contains 27 experimental runs considering all combinations
of three levels of three factors. The order of the experiment was set in the standard order,
and three repeated experiments were performed for each run. Experimental data (Box and
Draper [38]) lists the experimental configurations, which include process mean, standard
deviation, and variability, with their corresponding design points.

A variety of criteria have been used to analyze RD solutions. Among them, the ex-
pected quality loss (EQL) is widely used as a critical optimization criterion. The expectation
of the loss function can be expressed as

EQL = 6(i(x) — 1) + *(x)] (13)

where 6 signifies a positive loss coefficient, 6 = 1, and fi(x), T, and & (x) are the esti-
mated mean function, desirable target value, and estimated standard deviation function,
respectively. In this example, the target value is T = 500.

As this model does not exhibit the unrealistic constraint of forcing the estimated
mean response to a specific target value, it avoids misleading the zero-bias logic. The main
objective of minimizing process bias and variability to obtain efficient solutions has allowed
a slight bias between the estimated mean and its assigned target. For this reason, the EQL
is selected as an identification and comparison tool to evaluate optimal solutions obtained
from each model.

MATLAB is used in this study to perform the estimated regression functions of mean
and standard deviation using the proposed dual-response approach and conventional LSM-
based RSM, respectively. The correlation coefficients of the estimated response functions
based on Vining and Myers’ [8] dual-response approach are listed in Table 1.

Table 1. Coefficients of the estimated response functions using LSM.

Coefficients
Treatment Combinations N N
Mean pj g, Standard Deviation oygpy
Constant 327.630 34.883
X1 177.000 11.527
X2 109.430 15.323
X3 131.460 29.190
x2 32.000 4.204
x5 —22.389 —1.316
x3 —29.056 16.778
X1X2 66.028 7.720
X1%X3 75.472 5.109
X2X3 43.583 14.082

Table 2 lists the proposed NN-functional-link-based dual-response RD estimation
model after the training procedure.
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Table 2. Parameters of NN-based estimation method.

Objective Response Function Training Algorithm Structure No. of Epoch
Mean mse Trainlm 3-21-1 13
Std mse Trainlm 3-2-1 12

The weights and biases of the NN for the estimated mean and standard deviation

T
functions are listed in Tables 3 and 4, respectively. In these tables, W/}, (er;lifianout) ,

by, and bI'%"" represent the weight connection from the input to the hidden layers, the
weight connection from the hidden layers to the output, the process bias in the hidden

layers, and the process bias in the output layer of the observed mean formula, respectively.

in ut
input to the hidden layers, the weight connection from the hidden layers to the output, the
process bias in the hidden layers, and the process bias in the output layer of the observed
standard deviation formula, respectively.

T
Similarly, W5/, ., <wi€g out) , b3'4, and b5 represent the weight connection from the

Table 3. Weight and bias terms of the NN for the estimated process mean.

Weight Bias
i (wpeen,,) by i
0.96075 0.11736 1.54028 2.10096 3.63174
0.75123 0.38223 0.73934 1.62200 0.77913
—0.28537 —0.34012 —0.80124 2.30133 3.88614
1.17461 0.63199 1.11264 1.73056 1.68918
0.27560 0.60510 —0.26521 —0.48992 —0.70557
—0.72625 0.41018 0.21240 —0.11370 —0.84332
—0.45138 —0.37180 0.56006 —1.03860 —0.39605
—0.40578 —0.11631 —0.02559 —0.09612 —0.44870
0.75884 —0.59636 —0.37276 —0.29991 —0.43415
2.86524 1.95064 1.96605 4.72650 5.36510
—1.13144 —0.73588 —1.17218 0.84079 —1.47882 1.00092
—0.06226 —0.41228 —0.58818 0.40969 0.05234
0.32760 —0.75682 —0.67588 —0.11504 —0.02238
—0.01851 —0.81573 0.01320 —0.27318 —0.58988
0.11633 0.16928 0.17376 —0.45037 —0.88337
—0.68532 0.37096 —0.27889 —0.27210 0.04470
—0.27500 —0.52907 0.34659 —0.85252 —0.31859
0.91857 0.59698 0.76126 0.59614 0.80572
0.29861 —0.39570 0.10545 0.28709 0.51167
0.56297 —0.03477 —0.09037 0.43088 0.67887
0.10126 —0.37625 —0.01066 —0.64268 —0.36799

Table 4. Weight and bias terms of the NN for the estimated process standard deviation.

Weight Bias
; T d
Wit i (w;fi‘f,_ow ) bi bt
—2.04505 —3.02946 —4.90330 0.86246 —4.32652 —0.01267
—0.38368 —1.22474 —0.62419 —2.32404 —2.08030 ’

According to the estimated regression formulas of the process mean and standard
deviation, the response functions of the dual-response models between parameters x;
and x; for two estimation methods (i.e., LSM and NN) are illustrated in Figures 4 and 5,
including statistical indexes such as coefficients of determination (R?) and root-mean-
square error (RMSE). The rest of parameters x; and x3, x, and x3 are additionally provided
as figures in Appendix A. The process mean, bias, and variance obtained from the proposed
functional-link-NN-based dual-response estimation approach and the conventional LSM-
based RSM are compared in Table 5 based on the corresponding optimal input variable
settings and the EQL results. Table 5 implies that the proposed RD dual-response estimation
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approach based on the functional link NN produced a significantly smaller EQL value
than the conventional LSM-based RSM. In addition, compared with the conventional LSM,
the proposed method can provide lower process variance. The process mean and the
squared bias with regard to the variability of the standard LSM-based RSM and proposed
NN-based estimation model are shown in Figure 6. The criterion spaces of the estimated
regression functions are denoted by red stars. The optimal settings are marked as green
star in each figure.
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Figure 4. Graphical representation of the estimated mean response functions between x; and x;:
(a) the response surface plot and response function of LSM (R? = 92.68% and RMSE = 60.40); (b) the
response surface plot and response function of NN (R? = 86.37% and RMSE = 82.47).
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Figure 5. Graphical representation of the estimated standard deviation response functions between x;
and x,: (a) the response surface plot and response function of LSM (R? = 45.41% and RMSE = 34.78);
(b) the response surface plot and response function of NN (R? = 44.18% and RMSE = 35.17).
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Table 5. Comparative analysis results.
Optimal Factor Settings
Estimation Model Process Mean Process Bias  Process Variance EQL
x1 X2 x3
LSM 1.0000 0.07153 —0.25028 494.67226 5.32773 1977.53266 2005.91742
Proposed NN 0.99999  0.99999 —0.79327 496.39189 3.60810 450.64771 463.66611
d Criterion Space of Mean and Var using LSM
3“0 R i Criteion Space o Mean and Var using Proposed NN
3.\"’
) L
M '..2
; 1 ;
' 0
LI oM W @ W W
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Figure 6. Criterion space of the two estimated functions: (a) conventional LSM; (b) proposed
NN-based RD estimation model.

5. Conclusions and Further Studies

There have been many studies to improve the RSM by combining statistical and
mathematical techniques, but there are cases where particular data types are required or
assumptions are made to define functions between mean, variance, and input elements.
NNs, which have recently been widely applied in artificial intelligence, can present simple
mathematical models (functions) using artificial neurons and determine unknown interac-
tions between the input and output performance of a process without any knowledge of
the principle.

This study has described a functional-link-NN-based estimation method that offers
an alternative RD technique without assumptions inherent in the conventional LSM-based
RSM. Compared with the existing RD dual-response estimation approach, the proposed
method provides significant advantages in determining the functional relationship between
the control factors and output performances and the optimal solutions. The proposed
dual-response estimation approach can be quickly and efficiently implemented using
MATLAB (see Appendix B). Experimental results show that the proposed NN-based
estimation method can achieve better solutions than the conventional LSM-based RSM in
the EQL metric.

In the future, the proposed functional-link-NN-based dual-response RD estimation
approach will be extended to time series data and multiple-response optimization problems.
In addition, we plan to search for the optimal structure by binary coding the neural network
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structure with a genetic algorithm and conducting research on optimizing the weights of
the neural network.
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Appendix A. The Estimated Regression Formulas of the Process Mean and
Standard Deviation

The estimated regression formulas of the process mean and standard deviation, the
response functions of the dual-response model for the estimation methods, are illustrated
in Figures A1-A4.
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Figure A1. Graphical representation of the estimated mean response functions between x; and x3:
(a) the response surface plot and response function of LSM; (b) the response surface plot and response
function of NN.
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Figure A2. Graphical representation of the estimated mean response functions between x, and x3:
(a) the response surface plot and response function of LSM; (b) the response surface plot and response

function of NN.
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Figure A3. Graphical representation of the estimated standard deviation response functions between
x1 and x3: (a) the response surface plot and response function of LSM; (b) the response surface plot
and response function of NN.
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Figure A4. Graphical representation of the estimated standard deviation response functions between
xp and x3: (a) the response surface plot and response function of LSM; (b) the response surface plot
and response function of NN.

Appendix B. MATLAB Codes to Perform Estimative Regression Functions of Means and Standard Deviations by
Using the Proposed NN Method

Table A1l. MATLAB codes of the proposed functional link NN method.

MAIN FUNCTION

%% Preparation

%% data

load dataprint.mat

Target_mean = 500;

y_mean = [dataprint(:,7)];

y_std = [dataprint(:,8)];

y_var = [dataprint(:,9)];

format long g

%% prepare data

X_NN = [dataprint(;,1:3)]’;

y_mean_NN = y_mean’;

y_std_NN =y_std’;

y_var_NN = y_var’;

samplesize_mean = size(y_mean_NN,2);

sample_mean = size(y_mean_NN,1);

samplesize_std = size(y_std_NN,2);

sample_std = size(y_std_NN,1);

[m,n] = size(X_NN);

bestl = 1; best2 = 1; minBIC1 = 10e10; minBIC2 = 10e10;
fori=1:25

[netl, err1] = create_Poly2_mean(X_NN, y_mean_NN, i);
msel = mse(errl);

BIC1 = samplesize_mean*log(msel/samplesize_mean) + m*log(samplesize_mean);
if BIC1 <= minBIC1

minBIC1 = BICI;

bestl =1i;
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end

end

Hidden_neuron_mean = best1;

[net_mean_trained, errl] = create_Poly2_mean(X_NN, y_mean_NN, best1);
mean_fun = @(x) sim(net_mean_trained, x);

W_in_hid_mean = net_mean_trained.IW{1,1};

W_hid_out_mean = net_mean_trained.LW{2,1};

b_in_hid_mean = net_mean_trained.b{1,1};

b_hid_out_mean = net_mean_trained.b{2,1};

forj=1:25

[net2, err2] = create_Poly2_std(X_NN, y_std_NN, j);

mse2 = mse(err2);

BIC2 = samplesize_std*log(mse2/samplesize_std) + m*log(samplesize_std);
if BIC2 <= minBIC2

minBIC2 = BIC2;

best2 =j;

end

end

Hidden_neuron_std = best2;

[net_std_trained, err2] = create_Poly2_std(X_NN, y_std_NN, best2);
std_fun = @(x) sim(net_std_trained, x);

W_in_hid_std = net_std_trained.IW{1,1};

W_hid_out_std = net_std_trained . LW{2,1};

b_in_hid_std = net_std_trained.b{1,1};

b_hid_out_std = net_std_trained.b{2,1};

%% NN_MSE: Optimal solutions

options = optimset(’Algorithm’, interior-point’);

objfun_NN = @(x) (mean_fun(x)-Target_mean)"2 + std_fun(x)"2;

[x_opt_NN fval_opt_NN] = fmincon(objfun_NN, x0, [[], [[], [[], [[], Ib, ub,[[],options);

meanfun_opt_NN = mean_fun(x_opt_NN);

stdfun_opt_NN = std_fun(x_opt_NN);

results_MSE_NN = [x_opt_NN’" meanfun_opt_NN abs(meanfun_opt_NN-Target_mean) stdfun_opt_NN"2 fval_opt_NN]

SUB-FUNCTION (TRAIN MEAN FUNCTION)

function [net,err] = create_Poly2_mean(inputs, targets, numHiddenNeurons)
Number_Input = size(inputs,1);

Number_Output = size(targets,1);

net = Poly2_mean(Number_Input,Number_Output,numHiddenNeurons);
%% Train and Apply Network

net.trainFen = “trainlm’;

net.performFcn = ‘mse’;

net.trainParam.epochs = 1000;

net.trainParam.goal = 1le-5;

net.trainParam.lr = 0.05;net.trainParam.show = 50;
net.trainParam.showWindow = true;

net.trainParam.max_fail = 100;

net.divideFcn = ‘dividerand’;

net = init(net);

net.plotFens = {"plotperform’,’plottrainstate’, plotregression’, plotfit’};
[net,tr] = train(net,inputs,targets);

bestEpoch = trbest_epoch;

trained = sim(net,inputs);

err = targets-trained;

end
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SUB-FUNCTION (TRAIN STANDARD DEVIATION FUNCTION)
function [net,err] = create_Poly2_std(inputs, targets, numHiddenNeurons)
Number_Input = size(inputs,1);

Number_Output = size(targets,1);

net = Poly2_std(Number_Input,Number_Output,numHiddenNeurons);
%% Train and Apply Network

net.trainFen = “trainlm’;

net.performFcn = ‘mse’;

net.trainParam.epochs = 1000;

net.trainParam.goal = le-5;

net.trainParam.lr = 0.05;

net.trainParam.show = 50;

net.trainParam.showWindow = true;

net.trainParam.max_fail = 100;

net.divideFcn = “dividerand’;

net = init(net);

net.plotFens = {“‘plotperform’,’plottrainstate’, plotregression’, plotfit’};
[net,tr] = train(net,inputs,targets);

bestEpoch = tr.best_epoch;

trained = sim(net,inputs);

err = targets—trained;

end

SUB-FUNCTION (CREATE MEAN FUNCTION)

function net = Poly2_mean(Number_Input, Number_Output, numHiddenNeurons)

net = network;

%% Architect

netnumlInputs = 1;

netnumLayers = 2;

net.biasConnect(1) = 1;
net.biasConnect(2) = 1;
net.inputConnect(1,1) = 1;
net.outputConnect = [0 1];
net.layerConnect = [0 0; 1 0];

%% layerl

net.inputs{1}.size = Number_Input;
net.layers{1}.size = numHiddenNeurons;
net.layers{1}.transferFcn = ‘Polyfunc2’;
net.layers{1}.initFcn = ‘initnw’;

%% layer2net.layers{2}.size = Number_Output;
net.layers{2}.transferFcn = ‘purelin’;
net.layers{2}.initFen = ‘initnw’;

%% net functionnet.initFcn = ‘initlay’;
end

SUB-FUNCTION (CREATE STANDARD DEVIATION FUNCTION)

function net = Poly2_std(Number_Input, Number_Output, numHiddenNeurons)
net = network;

%% Architect

netnumlInputs = 1;

netnumLayers = 2;

net.biasConnect(1) = 1;

net.biasConnect(2) = 1;

net.inputConnect(1,1) = 1;net.outputConnect = [0 1];

net.layerConnect = [0 0; 1 0];
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%% layerl

net.inputs{1}.size = Number_Input;
net.layers{1}.size = numHiddenNeurons;
net.layers{1}.transferFcn = ‘Polyfunc2_std’;
net.layers{1}.initFcn = ‘initnw’;

%% layer2

net.layers{2}.size = Number_Output;
net.layers{2}.transferFcn = ‘purelin’;
net.layers{2}.initFen = ‘initnw’;

%% net function

net.initFen = “initlay’;

end

SUB-FUNCTION (INTEGRATE FUNCTIONAL LINK TRANSFER FUNCTION INTO NN-BASED MEAN FUNCTION)

function outl = Polyfunc2(inl,in2,in3,in4)

fn = mfilename;

boiler_transfer

%% %% % %o % %0 % %0 %o %o Yo %o Yo %o %o %o %o Yo %o Yo %o Yo Yo %o %o %o Yo Yo Yo Yo %o %o %o Yo Yo %o Yo% Y% Name

function n = name

n = ‘Quadratic’;

%% %0 %% %o % Yo% %0 %o %0 Yo %o Yo %o Yo %o %o Yo %o Yo %o Yo Yo %o Yo %o Yo Yo Yo Yo %o %o %o Yo Yo Yo Yo %o Yo Output range
function r = output_range(fp)

r = [-inf +inf];

%% %% % %o % %0 % %0 %o %0 Yo %o Yo %o Yo Yo Yo %o %o Yo %o %o Yo %o Yo %o Yo Yo %o Yo %o Yo Yo %o Yo %o % % % Active input range
function r = active_input_range(fp)

r = [-inf +inf];

%0%% %% %0 %0 %% %% Yo %o %o %o % %o %o %o %o Yo% Yo %o %o %o %0 Yo %o %o %o %0 %o Yo % % % % Yo% % Parameter Defaults
function fp = param_defaults(values)

fp = struct;

%% %0 %% %o % %0 %0 %0 %o %o Yo %o Yo %o %o Yo Yo Yo %o Yo %o %o Yo %o Yo %o Yo Yo %o Yo %o Yo %o %0 Yo %0 % % % Parameter Names
function names = param_names

names = {};

%% % %% %0 %0 %o % %% %o %o %o %% Yo %o %o Yo% Yo Yo %o %o %o %o Yo %o %o %o % Yo% %o %o % Yo% % % Parameter Check
function err = param_check(fp)

err=";

%% %0 %% %o % %0 %0 %0 %o %o Yo %o Yo %o Yo %o %o Yo %o Yo %o Yo Yo %o Yo %o Yo Yo Yo Yo %o Yo %o Yo Yo Yo Yo %o Yo Apply Transfer Function
function a = apply_transfer(n,fp)

a=n"2+n;

%% % %0 %% %o % %o %o %0 %0 %o %0 %o %o %o %o %o %o %o %o Yo %o %0 %o %o %0 Yo %o %0 Yo %o %0 Yo % %0 % Y% %% Derivative Of Yw / respect to X
function da_dn = derivative(n,a,fp)

da_dn =2*n +1;

SUB-FUNCTION (INTEGRATE FUNCTIONAL LINK TRANSFER FUNCTION INTO NN-BASED STANDARD
DEVIATION FUNCTION)

function outl = Polyfunc2_std(inl,in2,in3,in4)

fn = mfilename;

boiler_transfer

%6%0 % %% %0 %0 %o %o %0 %0 %0 %o %o %o Yo %o Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo% % Name

function n = name

n = ‘Quadratic polynomial Function’;

% %% %0 %% %o %% %o %0 % %o %0 %o %o %o %o %o %o %o %o %o %o Yo %o %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo %o Yo Yo Output range
function r = output_range(fp)

r = [-inf +inf];

%%% % %% %o %0 % %o %0 %0 %o %0 %o %o %o %o %o Yo %o %o Yo %o %o Yo %o Yo Yo %o Yo Yo %o Yo Yo %o %6 %0 % %% Active input range
function r = active_input_range(fp)

r = [-inf +inf];

% %% % %% %o %% %o %0 %o %o %0 %o %o %o %o %o %o %o Yo Yo %o Yo Yo %o Yo Yo %o %o Yo %o %6 Yo % %6 Y% % %% Parameter Defaults
function fp = param_defaults(values)

fp = struct;
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%6%0 %% %0 %0 %0 %o %o %0 %0 %0 %o Yo %o %o %o Yo %o %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo %o Yo Yo Yo Yo Yo Yo Yo Yo% %o Parameter Names

function names = param_names

names = {};

%6%% %0 %0 %% %0 %0 %o %o Yo %0 %o %o Yo %0 Yo %o %o %o Yo %o %o Yo Yo Yo %o Yo Yo %o %o Yo Yo Yo % Yo %0 Yo % Yo Parameter Checkfunction err = param_check(fp)err =
”,'O/o0/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/0 Apply Transfer Function

function a = apply_transfer(n,fp)

a=n+n."2-11;

0/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/00/0 Derivative Of Y w/respect to X

function da_dn = derivative(n,a,fp)

da_dn=1+2*n;
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