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Abstract: Hiding a message in compression codes can reduce transmission costs and simultaneously
make the transmission more secure. This paper presents an adaptive reversible data hiding scheme
that is able to provide large embedding capacity while improving the quantity of modified images.
The proposed scheme employs the quantization level difference (QLD) and interpolation technique
to adaptively embed the secret information into pixels of each absolute moment block truncation
coding (AMBTC)-compressed block, except for the positions of two replaced quantization levels.
The values of QLD tend to be much larger in complex areas than in smooth areas. In other words,
our proposed method can obtain good performance for embedding capacity and still meets the
requirement for better modified image quality when the image is complex. The performance of the
proposed approach was compared to previous image hiding methods. The experimental results show
that our approach outperforms referenced approaches.

Keywords: quantization level difference; AMBTC; reversible data hiding; high capacity

1. Introduction

With the rapid development of internet communication and computer technology, a large
number of information is transmitted over the internet. When digital data are transmitted
through the internet, some sensitive data may become vulnerable to the malicious users.
Therefore, to ensure the security of the transmitted data, data owners either encrypt the trans-
mitted data via traditional cryptographic algorithms or transfer data into an imperceptible
way by using data hiding techniques [1]. In the last decade, multimedia-based transmission
has become popular; as such, data hiding techniques are a secure and efficient method for
such applications. Data hiding is a way to embed secret data into a digital cover media by
modifying the original content, such that other users in a public network will not be aware of
the existence of the embedded data. If malicious users have not noticed the transmitted data
concealing confidential data, the safety of hidden data is guaranteed. Generally, a data hiding
scheme can be divided into three categories, i.e., spatial domain, frequency domain, and
compressed domain. The spatial domain method imparts some meaningful changes in the
image pixels in order to embed information. The frequency domain method and compressed
domain method embed the secret data into transformed coefficients and the compressed
codes of digital images, respectively [2].

In order to transmit multimedia data efficiently on the internet, many researchers
have proposed various compression methods to reduce the size of multimedia files, such
as vector quantization (VQ) [3–5], discrete wavelet transform (DWT) [6–8], and discrete
cosine transform (DCT) [9–11]. Qin et al. [3] proposed a data hiding scheme based on VQ
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compressed images and an index mapping mechanism. Ahmed et al. [6] proposed a data
hiding method based on DWT. Their method hides a secret image inside a cover image by
using two secret keys. Chang [11] et al. proposed a scheme to hide the secret information in
the DCT coefficient domain. In this scheme, the image is divided into 8 × 8 blocks, where if
two successive coefficients of the medium-frequency components are zero, the information
is hidden in each block.

Block truncation coding (BTC) [12] is another efficient lossy block-based image com-
pression technique. In recent years, many researchers have studied data hiding based on
BTC and made improvements, such as absolute block truncation coding (AMBTC) [13],
ordered dither block truncation coding (ODBTC) [14], error Diffusion Block truncation
coding (EDBTC) [15], etc. BTC is characterized by low complexity and low memory, and
thus it has become an ideal data hiding domain. Wu and Sun [16] presented a data hiding
method in which each secret bit is embedded into the bitmap of the BTC compression
codes. Kim [17] proposed a data hiding method for halftone compressed images based
on ODBTC and exploiting modification direction (EMD). Guo et al. [18] introduced a
data hiding scheme based on error-diffused BTC to embed an extremely large amount of
watermarks without obviously damaging image quality. These methods are irreversible,
and the host image is permanently altered and it cannot be recovered accurately after data
extraction. However, in some applications such as medical image sharing, military image
processing, remote sensing and multimedia archive management, the recovery of a host
image is essential [19]. To address this problem, a reversible data hiding scheme [20] were
proposed that can extract the hidden data and produce a lossless recovery of the cover
image. As Zhao et al. mentioned [1], the key property of reversible data hiding is not only
the secret data but also the host image can be accurately recovered in the recorder.

In 2008, Chang et al. [21] presented a reversible data hiding method aimed at BTC-
compressed color images. In 2011, Li et al. [22] introduced a reversible image hiding
based on the BTC-compressed approach. In this scheme, the histogram shifting and
bitmap flipping technique were used to hide secret bits. In 2013, Sun et al. [23] introduced
another reversible data hiding method for BTC-compressed using the joint neighbor coding
technique. In 2015, Lin et al. [24] presented a reversible data hiding scheme for AMBTC-
compressed images by combining secret bits with bitmap bits one by one.

In this paper, we propose an adaptive reversible data hiding scheme that is based on
an AMBTC compression domain and quantization level difference. In this scheme, the
cover image is compressed into corresponding quantizers and a bitmap image by absolute
moment block truncation coding (AMBTC). Subsequently, a certain amount of the data
bits will be embedded into this pixel according to the value of QLD. The rest of this paper
consists of four sections: AMBTC’s and Lin et al.’s methods are introduced in Section 2;
the proposed algorithm is illustrated in Section 3; detailed experimental description and
comparative analysis are provided in Section 4; and finally, the conclusions are offered in
Section 5.

2. Related Work
2.1. Absolute Moment Block Truncation Coding (AMBTC)

As a variant of BTC, AMBTC was introduced by Lema and Mitchell [13] in 1984.
During the encoding procedure, the algorithm divides the original image into a set of
non-overlapped blocks with a size of k × k. Assume that xij is the pixel value in location
(i, j) of the block, the mean value u and its standard deviation α are computed by Equations
(1) and (2), respectively.

u =
1

k× k ∑k
i=1 ∑k

j=1 xij, (1)

α =

√√√√∑k×k
j=1

∣∣∣x2
ij − u2

∣∣∣
k× k

. (2)
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Then, each block is converted to two quantizers and a bitmap image bm. The two
quantizers hm and lm for the block are computed by:

lm = u− α

√
q

k× k− q
, (3)

hm = u + α

√
k× k− q

q
, (4)

where q is the number of pixels that are greater than or equal to the mean value u. The
bitmap bm =

{
mij
∣∣mij ∈ {0, 1}, 1 ≤ i, j ≤ k

}
is created as follows:

mij =

{
1, if xij ≥ u
0, if xij < u.

(5)

Figure 1 shows an example to describe the procedures for the AMBTC scheme. Figure 1a
shows the original image block of 4× 4 pixels. Then, the block mean u and standard
deviation α are computed, respectively, by using Equations (1) and (2). In this example,
u = 110 and α = 10. The bitmap generated by AMBTC is shown in Figure 1b. Finally,
the quantization levels, namely lm and hm, are calculated by using Equations (3) and (4),
respectively. Figure 1c shows the reconstructed image block.
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Figure 1. Example of absolute block truncation coding (AMBTC) encoding procedures.

2.2. AMBTC Scheme of Lin et al.’s Method

In 2015, Lin et al. presented a reversible data hiding scheme for AMBTC-compressed
images by considering the mean value and the standard deviation to achieve a high
payload and high-quality modified images. Following are details about the major steps of
the embedding processing.

Step 1: Define three parameters, i.e., the bitmap bm, mean pixel value u and standard
deviation α using Equations (1), (2) and (5), respectively.

Step 2: Define four different scenarios for each pixel of a given k× k block. As shown
in Table 1, if the secret bit is “1”, and the bit in bitmap is “0”, then the corresponding
scenario is “10” by combining secret bits with bits of the bitmap.

Table 1. Four scenarios for each pixel of a given block.

Scenario Case00 Case01 Case10 Case11

secret bit 0 0 1 1
Bit in bitmap 0 1 0 1

Step 3: Determine the cover image block is embeddable or non-embeddable. If there
are only one or two different scenarios, this cover block is a non-embeddable block. If the
types of scenarios are equal to three or four, the cover is an embeddable block.

Step 4: Determine the hiding strategy. The detailed Algorithm 1 for hiding strategies
is shown below.
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Algorithm 1. Hiding strategy of Lin’s method.

Input: current scenarios
Output: corresponding pixel value
cpv corresponding pixel value
Switch(current scenarios){

case00 : cpv = u− α; break;
case01 : cpv = u + α; break;

case10 : cpv = u− α− 1; break;
case11 : cpv = u− α + 1; break;

}
return cpv;

Figure 2 shows an example of the strategy. Figure 2a shows the secret bits and the
corresponding bitmap. Figure 2b shows a combination. There are four types of in this
example. Figure 2c shows the result according to Algorithm 1.
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3. The Proposed Scheme

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation as well as the experimental
conclusions that can be drawn. This section describes the details of our method. Our
proposal utilizes an adaptive interpolation technique and AMBTC compression technique,
to improve embedding capacity and image quality. As we utilize the difference of two
quantization levels to adaptively embed the secret data into the cover image, our method
can obtain a high embedding capacity. Moreover, our method still meets good image
quality as we exploit the middle value of two quantization levels and the values of two
thresholds to limit the shifting of values. The flowcharts of embedding and extraction
phases for our proposed scheme are shown in Figures 3–6, respectively.
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3.1. Embedding Phase

The process of embedding phase is shown in Figure 3. Let I be an input cover image
sized H ×W. Each block bi is sized k× k, where i = 0, 1, . . . , H

k ×
W
k − 1. Secret data S is

a bit stream in binary form, and Mn is the decimal value of secret bits.
Input: Cover image I and secret data S.
Output: Modified image I′.
Step 1. Divide I into k× k non-overlapping blocks bi’s.
Step 2. Calculate the current processing block bi using AMBTC algorithm.
Step 3. Compute di using Equation (6).

di = hi − li, (6)

where hi and li are quantization levels of high value and low value, respectively.
Step 4. Determine the value of di. If 3 < di < 64, go to Step 5. Otherwise, go to Step 7.
Here, if di is smaller than 3, the secret data cannot be extracted because of the middle

value of two quantization levels could not be determined. For example, the values of hi
and li are 9 and 7, respectively. We cannot know whether the modified pixel value p′n is
hi − 1 or li + 1 while p′n is 8. Therefore, di must be greater than 3. And if di is greater than
63, it may cause a problem where the difference of the current processing block and its
neighbor blocks are very large. As such, di should be smaller than 63.

Step 5. Find out the first bpn = 0 (FL) and the last bpn = 1 (LH) in the bitmap, where
bpn is the presented value in the bitmap and n = 0, 1, . . . , k× k− 1. FL and LH are the
first value 0 and the last value 1 in the bitmap, respectively. The locations of FL and LH are
r1 and r2, respectively, where r1 and r2 are 0, 1, . . . or k× k− 1. We show an example in
Figure 4 to describe in detail the process of scanning FL and LH.

Step 6. Compute the value of ai using Equation (7). Then, embed the Mn into each pn
using Equation (8),

ai =

⌊
log2

(
di
2

)⌋
, (7)

p′n =


hi , if n = r2
li , if n = r1

hi −Mn, if bpn = 1 and n 6= r1 or r2
li + Mn, if bpn = 0 and n 6= r1 or r2,

(8)

where Mn is the decimal value of the next ai secret bits to be embedded, pn is the pixel
value in the block bi and p′n is the modified pixel value in the modified block.

Step 7. Modify the value of each pn in block bi using Equation (9) that no secret data
are embedded.

p′n =

{
hi, if bpn = 1
li, if bpn = 0.

(9)

Step 8. Repeat Step 2 to Step 7 until all blocks bi’s are processed.
Step 9. Obtain modified image I′.
We can get modified image I′ when all steps are finished. We provide an example

to further clarify our embedding process in Figure 5. In Figure 5, (a) shows an example
of a 4× 4 sized block bi, (b) is the bitmap of block bi, (c) presents secret data S and the
decimal value Mn of each ai secret bits and (d) shows the final result of modified image
I′. In the first step, utilize the AMBTC algorithm to compute the block bi and obtain
two quantization levels li and hi. As ai is 3, S will be partitioned into multiple groups
and each group contains three secret bits. Then, convert each group of ai secret bits into
decimal value Mn. The positions of r1 and r2 are utilized to substitute the values of li and
hi, respectively. Moreover, no secret bits are embedded in them. As such Mr1 and Mr2 , we
use N/A to represent. In the next step, embed Mn into each pn using Equation (8). And
finally, S can be embedded into the block bi and obtain the modified block b′i .
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3.2. Extraction and Recovery Phase

The processes for the extraction and recovery phases are shown in Figure 6. S will be
extracted from modified image I′. When the block bi belongs to a non-embedding case,
there are only two values in it. Therefore, we do not need any extra information to record
whether this block has secret data or not.

Input: Modified image I′.
Output: Secret data S and the cover image I.
Step 1. Divide I′ into k× k non-overlapping blocks b′i ’s.
Step 2. Calculate the frequency f of the number of different pixels in the current

processing block b′i . The Algorithm 2 is described as follows.

Algorithm 2. Procedure for calculating the frequency.

Output: Frequency f
for i = 0 to k × k − 1. do

if p′i+1 6= p′0,1,...j. then
f = f + 1;

endif
j++;

end for

Step 3. Determine the value of f. If f > 2, go to step 4. Otherwise, go back to Step 2.
Step 4. Sort all p′n’s in the block b′i in ascending order. The first and last values in

the sorted sequence are li and hi, respectively. And the positions of li and hi are r1 and r2,
respectively.

Step 5. Compute the values of di and ai utilizing Equations (6) and (7), respectively.
Extract the secret data from p′n’s using Equation (10).

Mn =

{
hi − p′n, if p′n > li+ hi

2 and n 6= r1 or r2

p′n − li, if p′n < li+ hi
2 and n 6= r1 or r2

. (10)

Then, convert Mn into ai secret bits and add in S.
Step 6. Recover block b′i using Equation (11).

pn =

{
hi, if p′n > li+ hi

2
li, if p′n < li+ hi

2
. (11)

Step 7. Repeat Step 2 to Step 6 until all modified blocks b′i ’s are processed.
Step 8. Obtain the cover image I and secret data S.
After all steps are computed, we can extract S from modified block b′i and recover each

b′i using min{p′n} and max{p′n} after sorting. We used li and hi to replace the positions of
FL and LH, respectively. This allows us to know li and hi utilizing the ascending order of
all p′n’s in modified block b′i while extracting. This approach can avoid the problem when
the value of Mn is 0. We also provide a detailed example of the extraction and recovery
phases in Figure 7. In Figure 7, (a) presents the modified block b′i that follows the previous
example in Figure 5, (b) shows the results of extracted Mn and S in binary form and (c)
is the resulting block bi after recovery. Firstly, calculate the frequency f and determine
whether the value of f is greater than 2. Then, all p′n’s in the modified block b′i will be sorted
in ascending order. The first and last values are li and hi, respectively. According to the
first and last values in a sorted sequence corresponding positions in modified block b′i ,
the positions of r1 and r2 are 1 and 14, respectively. Next step, Mn will be extracted from
modified block b′i using Equation (8). Each Mn will be converted into ai secret bits and
added in the S. In the last step, recover each p′n using Equation (9). Finally, we can get block
bi and extract S from the modified block b′i .
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4. The Proposed Scheme

The section provides some experimental results to show the hiding capacity (bits)
and image quality (dB) of our proposed scheme. In Figure 8, all of the experiments were
performed with six commonly used grayscale test images: Lena, F-16, Sailboat, Girl, Toys,
and Barbara. All are of the same size, 512× 512. The size of each block bi is 4× 4. The
embedded secret data are composed of a random bit-stream that was produced from a
random number generator.

In these experiments, the visual quality of the modified images was evaluated by
using peak signal-to-noise ratio (PSNR) as defined in Equation (12).

PSNR = 10× log10

(
2552

MSE

)
, (12)

The definition of mean square error (MSE) is shown in Equation (13).

MSE =
1

H ×W ∑
H
k ×

W
k −1

i=0 ∑k×k−1
n=0

(
p′ in − pi

n

)2
, (13)

where p′ in and pi
n are the stego pixels and original pixels in each modified block and original

block, respectively.
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To demonstrate the performance results for our proposed scheme, our method was
compared with previous reversible data hiding methods in two aspects. In the first group,
the proposed scheme was compared with other BTC-based schemes [21–24]. Figure 9a and
Table 2 show the results of this comparison. Figure 9a shows, the good performance for
embedding capacity that was achieved in our scheme. The proposed method can embed
56 bits in each 4× 4 pixel block while the difference between two quantization levels is
larger than 32. However, Lin et al.’s scheme can embed 16 bits in each 4× 4 pixel block.
And in the schemes of Chang et al.’s, Li et al.’s, and Sun et al.’s, each 4× 4 pixel block can
only be embedded 1, 2 and 4 bits, respectively. In our scheme, the capacity for, “Lena”,
“F-16”, “Sailboat”, “Girl”, “Toys” and “Barbara”, were 324,548 (bits); 267,386 (bits); 432,796
(bits); 388,780 (bits); 292,250 (bits) and 449,876 (bits), respectively.

Table 2. Comparative performance of PSNR (dB) for six test images between our method and other
methods base on BTC.

Scheme Lena F-16 Sailboat Girl Toys Barbara Average

Our scheme 32.59 32.22 30.16 33.30 32.12 28.82 31.54

Lin et al.’s [24] 33.05 31.64 30.32 33.36 30.99 28.63 31.33

Li et al.’s [22] 32.34 31.93 30.41 33.44 31.15 28.82 31.34

Chang et al.’s [21] Cannot be constructed by the modified code stream

Sun et al.’s [23] Cannot be constructed by the modified code stream

In our scheme, the image obtained a higher embedding capacity even with complex
images such as “Barbara” and “Sailboat”, because our adaptive interpolation technique
is related to the difference of two quantization levels. However, the capacity is relatively
small in smooth images, such as “Lena”, “F-16′ and “Toys”. Table 2 shows a comparison
of image quality. In Chang et al.’s and Sun et al.’s schemes, the cover image cannot be
directly obtained from a stego compression code. Therefore, the two methods cannot be
compared in terms of image quality of a modified image. From Table 2, the proposed
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scheme cannot achieve the best PSNR in every test image. In the “Lena”, Lin et al.’s scheme
achieves the best results, and Li et al.’s scheme provides the best results in the “Sailboat”.
But our method achieves a higher average. In brief, the first experiment shows that our
scheme achieves the higher embedding capacity while maintaining relative good, modified
image quality.
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In the second group, we compared some reversible data methods that are not based on
a BTC-compressed technique [4,20,25]. These three other techniques hide secret data in the
spatial domain. As shown in Figure 9b and Table 3, our method obtains good performance
in comparison with the other methods. In Chiou et al.’s scheme, secret data cannot be
embedded into the blocks in the first row and first column. Tai et al.’s scheme and Celik
et al.’s cannot embed secret data in some cases. In our method, although secret data cannot
be embedded when the difference of two quantization levels is smaller than 4, our scheme
still can obtain a better hiding capacity than other schemes when conditions were similar
for PSNR. The experimental results show that, our proposed scheme was better than other
reversible data hiding schemes.

Table 3. Comparative performance of PSNR (dB) for six test images between our method and
other schemes.

Scheme Lena F-16 Sailboat Girl Toys Barbara Average

Our scheme 32.59 32.22 30.16 33.30 32.12 28.82 31.54

Chiou et al.’s [4] 31.05 30.23 28.43 31.11 28.73 25.53 29.18

Celik et al.’s [20] 32.54 31.33 30.41 32.76 31.15 29.82 31.34

Tai et al.’s [25] 31.61 29.84 27.25 31.43 34.84 28.42 30.57

5. Conclusions

This paper proposed an adaptive reversible image hiding method using AMBTC
compression by considering the quantization level difference of each block. According
to our adaptive embedding strategy, more bits are embedded into the image sub-block
located in regions where the value of QLD is larger. However, in order to ensure the quality
of the image, when the value of the QLD of a sub-block is greater than the threshold, this
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block will not embed information. Experimental results showed that the performance of
the proposed scheme is better than the previous schemes in terms of payload and modified
image quality.
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