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Abstract: Artificial neural networks are efficient learning algorithms that are considered to be
universal approximators for solving numerous real-world problems in areas such as computer vision,
language processing, or reinforcement learning. To approximate any given function, neural networks
train a large number of parameters—up to millions, or even billions in some cases. The large number
of parameters and hidden layers in neural networks make them hard to interpret, which is why they
are often referred to as black boxes. In the quest to make artificial neural networks interpretable
in the field of computer vision, feature visualization stands out as one of the most developed and
promising research directions. While feature visualizations are a valuable tool to gain insights
about the underlying function learned by the network, they are still considered to be simple visual
aids requiring human interpretation. In this paper, we propose that feature visualizations—class
visualizations in particular—are analogous to mental imagery in humans, resembling the experience
of seeing or perceiving the actual training data. Therefore, we propose that class visualizations
contain embedded knowledge that can be exploited in a more automated manner. We present a
series of experiments that shed light on the nature of class visualizations and demonstrate that class
visualizations can be considered a conceptual compression of the data used to train the underlying
model. Finally, we show that class visualizations can be regarded as convolutional filters and
experimentally show their potential for extreme model compression purposes.

Keywords: artificial neural networks; dataset compression; feature visualizations; knowledge distillation;
mental imagery; model compression; visual imagery

1. Introduction

Artificial Neural Networks (ANNs) are efficient computational algorithms considered
as universal approximators [1–3] for solving numerous real-world problems, in areas like
computer vision and image classification [4], translation [5], reinforcement learning [6], or
voice synthesis [7,8]. ANNs employ a large number of parameters to function as universal
approximators. Complex convolutional neural networks (CNNs) contain more than 60 mil-
lion parameters [9] and deep architectures that rely on fully connected layers; the number
of parameters to be trained can be in the billions [10].

The large number of parameters and hidden layers in ANNs makes them hard to
interpret, which is why they are often referred to as black boxes [11–13]. ANNs are black
boxes in the sense that while they can approximate any function, studying their structure
will not provide any insights on the function being approximated.

The field of ANN interpretability has recently been formed in response to an increasing
interest in making ANNs interpretable to humans. In the field of computer vision, the
area of feature visualization stands out as one of the most promising and developed
directions for ANN interpretability [14–20]. Over the last few years, feature visualization
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has accomplished significant advancements [14]; however, feature visualization techniques
do not offer a complete understanding of ANN learning, but they are considered a central
building block.

Feature visualization techniques are used to understand individual features or to
visualize class models learned by ANNs that are trained on image classification tasks. Given
that ANNs are differentiable with respect to their inputs, derivatives can be iteratively
used to tweak the input image towards a particular goal. In feature visualization, the goal
is to find an input that fires a particular internal neuron or causes the maximization of a
specific output class (class visualization) [21].

While feature visualizations can be valuable to gain insights about the underlying
function learned by the model, they are still regarded as simple visual aids requiring human
interpretation. However, is this really the case, or do feature visualizations contain knowl-
edge that can be exploited in a more automated way? Can feature visualizations—class
visualizations in particular—be considered as mental imagery developed by the ANN?

A mental image or mental picture in humans is a representation of the external
physical world inside a person’s mind. It is an experience that, while it occurs when the
relevant event or object is not present to the senses, resembles the real experience of feeling
or perceiving the actual phenomenon [22–24].

In this paper, we propose that class visualizations from ANNs are analogous to
mental imagery in humans, containing the knowledge extracted by the model from the
training data. Therefore, when correctly generated, class visualizations can be considered
as highly compressed versions—or conceptual compressions—of the data used to train the
underlying model, resembling the experience of seeing or perceiving the actual training
samples. Just as mental imagery resembles the real experience of feeling or perceiving the
actual physical event.

The main goal of this paper is to demonstrate that class visualizations must not be
considered simply as visual aids since they have exploitable embedded knowledge. To
achieve this goal we show that class visualizations can be used to train new models from
scratch, achieving, in some cases, the same accuracy as the underlying model. Additionally,
we explore the nature of class visualizations, through different experiments, to gain insights
on what exactly class visualizations represent and what knowledge is embedded in them.
To do so, we compare class visualizations to the class average image from the training
data, and demonstrate how the other classes (that a model is trained on) affect the shape
and knowledge embedded in the class visualization. We show that class visualizations are
equivalent to visualizing the weight matrices of the output neurons in shallow network
architectures and demonstrate that they can be used as pre-trained convolutional filters.
Finally, we experimentally show the potential of class visualization for extreme model
compression purposes.

In a nutshell, the main contributions of this paper include demonstrating that class
visualizations have exploitable embedded knowledge and showing the potential use of
class visualizations for dataset and model compression purposes, which to the best of our
knowledge, has never been proposed before.

As for the rest of the paper, it is organized as follows. Section 2 reviews relevant related
work. Sections 3 and 4 present the methodology and datasets used for experimentation,
respectively. Sections 5–10 show the experimentation and results, covering experimentation
on the use of class visualizations as training data, comparison of class visualizations
against the class average image, and the visualization of output neurons. Finishing with the
experimentation on how class visualizations can be used for extreme model compression
purposes. Finally, Section 11 presents conclusions and future work.

2. Related Work

This section reviews several recent feature visualization techniques, along with well-
known model compression approaches for ANNs in computer vision, followed by cognitive
research on mental imagery.
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2.1. Visualizations

The understanding of what an ANN has learned is fundamental to further improve
a deep learning model. For this reason, interactive interfaces and visualizations have
been designed and developed to help people understand what these models have learned
and how they make predictions [15,25]. As a result, the area of feature visualization
has emerged.

To understand individual features for a particular neuron or an entire channel, one
approach is to select samples that cause high activations. Now, if we are interested in
understanding a layer as a whole, approaches like the DeepDream objective [16] can be
used to produce images that a particular layer would find “interesting”, by gradually
adjusting an input image until the desired layer is activated.

On the other hand, if we are interested in creating examples that maximize a model’s
output for a particular class, the class probabilities generated after the softmax or the class
logits before the softmax function should be optimized. This particular type of feature
visualization is known as a class visualization.

We can think of the logits as the occurrence of each class of the neural network, and
the output probabilities after the softmax as the likelihood each class gets from these
occurrences. Rather than increasing the likelihood of the class of interest to boost the
probability that the softmax assigns to a particular class, optimization algorithms find it
easier to make the alternatives unlikely instead [15]. Therefore, to produce better quality
images, optimizing pre-softmax logits is generally preferred.

Many researchers use gradient descent to find images that trigger higher activa-
tions [15,17] or lower activations [18], for output neurons. Simonyan and Zisserman pro-
pose a Class Model Visualization technique [15], where the task is to generate an image
that best represents a class. In their approach, the main objective is to find the image that
maximizes the score that the ANN assigns to a particular class.

The algorithm starts with a randomly generated input image, computes the gradient
with respect to the input with backpropagation, and then uses gradient ascent to find a
better input. This process is repeated until a local optimum input is found. This method is
similar to the optimization process used to train a neural network, but here, the input image
is optimized instead of the network’s weights, keeping the model and its weights fixed.

These gradient-based approaches are appealing due to their apparent simplicity.
However, this optimization process tends to generate images that do not resemble natural
images. Instead, these approaches end up producing a set of hacks that cause high output
activations without global structure [17,18,26].

Simonyan and Zisserman [15] showed that when properly regularizing the opti-
mization procedure through L2-regularization, it is possible to obtain slightly discernible
visualizations on a CNN. Mahendran and Vedaldi [19] also managed to improve the
optimization process by incorporating natural image-priors in their approach.

The approach proposed by Simonyan and Zisserman [15] makes use of backpropaga-
tion to find an L2-regularized image I, such that the score of its class Sc(I) is maximized:

arg maxSc(I)− λ‖I‖2
2, (1)

where λ is the regularization parameter.
Biasing the optimization has been shown to significantly improve the recognizability

of the images produced. Numerous regularization algorithms have been developed to
improve image quality, for instance: data-driven patch priors [20], total variation [27],
jitter [16], Gaussian blur [28], and α-norm [15].

Generating visualizations via optimization separates the inputs that merely correlate
with the causes from the genuinely essential inputs for classification. Therefore, rather
than simply selecting samples from the training data that cause the required behavior,
generating visualizations via optimization is a better way to understand what an ANN
model is looking for.
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2.2. Knowledge Distillation

Deep neural networks (DNNs) have received lots of attention in the last years, having
been successfully applied to solve a wide range of problems and achieving big accuracy
improvements in the solution of many tasks. These kinds of networks usually rely on
deep architectures composed of millions and sometimes even billions, of parameters [9,10].
However, most of these models are computationally too expensive to run, particularly on
mobile phones or embedded devices.

Nevertheless, the development of large models seems to be necessary to achieve
reasonable accuracy. Even though large models have the capacity to memorize complete
datasets [29], they seem to learn generalized solutions instead. Whereas fast and compact
models are not sufficiently accurate because they are not expressive enough and are not
capable of generalizing the data well, resulting in overfitting.

A current hypothesis to explain why large models are necessary for achieving good
accuracy is that they transform local minima into saddle points to make learning possi-
ble [30]. Moreover, they do not rely on precise weight values in order to discover robust
solutions [31]. To tackle this issue, approaches like model compression and knowledge
distillation have been developed [32,33]. These approaches refer to the idea of compressing
an ANN by guiding a smaller model step by step, telling it exactly what to do, using a
bigger already-trained network.

Model compression was first proposed by Caruana et al. [32]. In their work, the output
of a larger, high accuracy ANN was reproduced by a more compact model trained with
pseudo-data extracted from the larger network. To transfer the generalizability of the
larger model to the smaller one, Caruana and collaborators utilized the class probabilities
generated by the larger model as “soft targets” to train the compact model.

Soft targets with high entropy provide more information per training sample than
hard targets, and less variance in the gradient between training cases. Therefore, the small
model can often be trained on much less data than the original cumbersome model using
a higher learning rate. The same idea was further developed by Caruana et al. [34] and
Hinton et al. [33].

Caruana et al. [34] made use of the logits from the larger model—the outputs of
the network before the softmax activation—as the soft targets for training the smaller
model. Placing emphasis on all prediction targets by training with logit values makes
learning easier for the smaller network and helps the student model learn the fine-detailed
relationships between labels, making the whole learning process a lot easier.

Hinton et al. [33] used a softer probability distribution over classes in order to generate
the soft targets, referring to their approach as Knowledge Distillation. Artificial neural
networks generally produce class probabilities by using a softmax output layer, which
converts the logit, zi, generated for each class into a probability, qi, by comparing zi with
the other logits as shown in (2). Choosing a higher temperature value (T) generates a softer
probability distribution over classes.

qi =
exp(zi/T)

∑i exp(zj/T)
(2)

In the simplest form of knowledge distillation, knowledge is transferred to the distilled
(smaller) model by training it on a transfer training set. This transfer set uses a soft target
distribution for each training sample, which is produced by the larger model using a high
temperature in its softmax. The same high-temperature value is later used when training
the distilled model, but after being trained, the temperature is set back to one.

Basically, in model compression and knowledge distillation, a well-trained ANN
model plays the role of teacher, generating posterior probabilities of the training samples
to be used as new soft target labels to train smaller, simpler models. These posterior
probabilities are called soft targets since the class identities are not as deterministic as the
original one-hot hard targets.
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Although the approaches taken by Caruana and Hinton may seem simple, they have
been validated on several image classification benchmark datasets (MNIST, CIFAR-10,
CIFAR-100, SVHN, and AFLW) [33,34].

2.3. Mental Imagery

A mental picture or image is a representation of the external physical world inside a
person’s mind. It is an experience that, even though it occurs when the relevant event or object
is not present to the senses, resembles the real experience, feeling, or perception [22–24].

The nature of mental imagery and its purpose have been, for a long time, the subjects
of research interest in different areas such as psychology, cognitive science, philosophy,
and neuroscience. Modern researchers consider mental imagery to be any experience re-
sembling information from a sensory input to the human body. Therefore, a person may
experience, for example, visual, olfactory [35], or auditory mental imagery [36]. Neverthe-
less, most scientific and philosophical research focuses on the topic of visual mental imagery.
Nowadays, mental imagery is commonly perceived as internal or mental representations
that play an important role in memory and thinking [37–39].

The functional-equivalency hypothesis presents mental images as internal representa-
tions that produce the same outcome as the actual perception of a physical object, inducing
a comparable behavioral, cognitive, and/or physiological effect as having the correspond-
ing experience in the real world [40]. In other words, experiencing mental imagery can
produce the same effects as those generated by the real experience, acting as a substitution
of the actual physical event [41].

3. Methodology

To explore the nature of class visualizations and evaluate whether they can be consid-
ered analogous to mental imagery in humans, the following methodology was designed.

3.1. Traditional Training

In the first stage of experimentation, a shallow ANN architecture without any hidden
layers was trained following a traditional approach. We started by selecting a dataset
to train on, and proceeded by training the network via stochastic gradient descent and
backpropagation until a target performance was reached.

Even though a shallow architecture was unlikely to result in a high accuracy model,
the selection of a shallow network architecture without any hidden layers helped us force
the network to generate only one “mental image” per class, facilitating the knowledge
extraction process. Given that the classification of each class is the “responsibility” of only
one output neuron, only one class visualization per class was required to extract all the
knowledge developed by the network.

3.2. Class Visualizations Extraction

The task in this stage was to generate an image that maximizes the score the network
assigns to a particular class. This process was repeated for each of the model’s classes. In
other words, one class visualization for each class was generated, following an approach
like the one presented by Simonyan and Zisserman [15]. After generating the class visual-
izations, they were fed to the network, while the output logits were saved to use as soft
targets in the next stage.

3.3. Training a New Model Using Class Visualizations

To prove that class visualizations had exploitable embedded knowledge, the generated
class visualizations were used as training data to train a new ANN from scratch. Just
like mental images can replace the need to experience the actual physical event, class
visualizations replace the need to see the actual training data.

The new model had the same network architecture as the original network. The train-
ing was conducted in a similar way, via gradient descent and backpropagation, but with a
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larger learning rate. The class visualizations’ output logits were used as soft targets as in
Model Compression or Knowledge Distillation [32–34]. The use of class visualizations with
soft targets provides more information per training sample and less variance in the gradient
between updates, allowing the new model to be trained using a larger learning rate.

3.4. From Shallow to Deeper

After using class visualizations as training data to train the same architecture from
scratch, further experimentation was done by using the class visualizations extracted from
the shallow ANN to train a slightly deeper network architecture. This was done to validate
whether the use of class visualizations as training data is architecture-dependent.

3.5. Analysis of the Nature of Class Visualizations

To understand the nature of class visualizations and the knowledge embedded in
them, a comparison between class visualizations and the class average training sample was
done. This was continued by comparing class visualizations of the same class extracted
from different network architectures and classification tasks.

The experimentation continued with the visualization of the output weights of a
trained shallow network to examine whether visualizations of the output weights are
analogous to class visualizations. Finally, experimentation using class visualizations was
conducted for model compression purposes by employing class visualizations as convolu-
tional filters of more compact architectures.

3.6. Metrics

To keep track of the performance of the models, the following accuracy metrics were
used: precision, recall, F1-Score, and overall accuracy.

Precision can be thought of as the ability of the classifier not to label a negative sample
as positive, and is given by:

Precision =
tp

tp + f p
(3)

where tp stands for the number of true positives, and f p for the number of false positives.
Recall can be thought of as the ability of the classifier to identify all the positive

samples and is given by:

Recall =
tp

tp + f n
(4)

where f n stands for the number of false negatives in (4).
The F1-Score is a metric that combines the model’s precision and recall. It is defined as

the harmonic mean of the precision and recall, where a perfect model has an F1-Score of 1.
The equation for calculating the F1-Score is the following:

F1 = 2× precision× recall
precision + recall

=
tp

tp + 1
2 ( f p + f n)

(5)

Finally, the overall accuracy measures the total number of predictions that the classifier
gets right and can be defined by the following equation:
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Accuracy =
tp + tn

tp + f p + tn + f n
(6)

where tn stands for true negatives.

4. Datasets

In this section, the three datasets used for experimentation are MNIST, Fashion-MNIST,
and the CIFAR-10 datasets.

4.1. MNIST

The MNIST database (Modified National Institute of Standards and Technology
database) [42] was selected for initial experimentation as it is a commonly used bench-
marking dataset in computer vision. The MNIST data is a large dataset of handwritten
digits (0–9). The digits are 28× 28 pixels in size, greyscale, size-normalized, and centered
images.

The MNIST data consist of two parts. The first part contains 60,000 images to be used
as training data. The images are scanned handwritten samples from 250 people (from US
Census Bureau employees and high school students 50/50). The second part of the MNIST
dataset contains 10,000 images from a different set of 250 people to be used as test data.

4.2. Fashion-MNIST

The Fashion-MNIST data is a dataset developed by Xiao et al. [43], for benchmarking
computer vision machine learning algorithms. Fashion-MNIST consists of 60,000 training
samples and a test set of 10,000 samples. Each sample is a 28× 28 grayscale, size-normalized
and centered image, paired with a label from 10 classes associated with fashion items (t-
shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot). The
Fashion-MNIST dataset is intended to serve as a drop-in replacement of the original MNIST
data in order to have a more complex dataset for benchmarking machine learning algo-
rithms.

Apart from being common benchmarking datasets, one of the main reasons for select-
ing the MNIST and Fashion-MNIST datasets was due to their size-normalized and centered
qualities. Being size-normalized and centered was helpful during the analysis of the nature
of class visualizations, as explained below.

4.3. CIFAR-10

The CIFAR-10 is a labeled subset of the 80 million tiny images in the dataset collected
by Alex Krizhevs.ky, Vinod Nair, and Geoffrey Hinton [44]. It is made of 60,000 (32× 32× 3)
color images with 6,000 images per class, belonging to 10 different classes. The data is divided
into a training and test set, with 50,000 images for training data and 10,000 test images. The
classes in the dataset are completely mutually exclusive and are identified with the following
labels: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

The CIFAR-10 dataset was selected to validate the results of the experimentation on a
harder database with different specifications. Figure 1 shows image samples from the three
image datasets used during experimentation.
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Figure 1. MNIST, Fashion-MNIST, and CIFAR-10 training samples.

5. Class Visualizations as Mental Imagery

This section shows the experimentation carried out using class visualizations as
training data by considering them analogous to mental imagery.

5.1. Training a Shallow Network Architecture on the MNIST Data

The experimentation began by training a shallow fully connected ANN architecture
consisting of only an input and output layer to perform classification on the MNIST dataset.
The model was implemented in Google Colaboratory using Python 3 and TensorFlow
version 1.15.2.

The network’s specifications are the following:

• 784 input neurons (28× 28 pixels images).
• 10 output neurons with softmax activation function.
• Cross entropy as the cost function to minimize.
• Learning rate = 0.5, minibatch size = 100.

Before training the network, the accuracy of the untrained model was verified to be
around 10% (completely random). It will not be mentioned for the remainder of the paper,
but every time a new model is trained, its accuracy on untrained weights is verified to be
around 10%.

After training the model on the MNIST training data (60,000 images) the accuracy
achieved on the test set (10,000 images) was 91.76% accuracy (8.24% error). Table 1 shows
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the confusion matrix for the model trained on the MNIST data, showing the actual class
horizontally, and the predicted class vertically. Table 2 shows the Precision, Recall, and
F1-Score metrics for each class. The Support metric shows the number of occurrences of
each label.

Table 1. Confusion Matrix of shallow neural network trained on the MNIST dataset. Correct results
are highlighted in bold.

0 1 2 3 4 5 6 7 8 9

0 963 0 3 2 0 3 6 1 2 0
1 0 1117 2 2 0 2 4 2 6 0
2 8 10 911 17 14 1 12 12 37 10
3 3 2 22 923 0 22 2 10 15 11
4 1 4 2 1 908 0 11 2 5 48
5 9 4 6 46 9 760 18 5 26 9
6 15 3 8 2 11 11 906 1 1 0
7 3 12 20 10 6 1 0 936 3 37
8 9 15 9 31 9 30 11 12 831 17
9 11 8 2 11 27 7 0 18 4 921

Table 2. Accuracy metrics of shallow neural network trained on the MNIST dataset.

0 1 2 3 4 5 6 7 8 9

Precision 0.942 0.951 0.925 0.883 0.923 0.908 0.934 0.937 0.894 0.875
Recall 0.983 0.984 0.883 0.914 0.925 0.852 0.946 0.911 0.853 0.913

F1-Score 0.962 0.967 0.903 0.898 0.924 0.879 0.940 0.924 0.873 0.893
Support 980 1135 1032 1010 982 892 958 1028 974 1009

5.2. Class Visualization Extraction

Next, one class visualization per class from the trained model was extracted. That is
one visualization for each digit (0–9). The task here was to generate an image that best
represents a class by finding the image I that maximizes the score Sc(I), that the ANN
assigns to class c. The algorithm starts with a blank image I (all zeros), computes the
gradient with respect to I with backpropagation, and makes use of gradient ascent to find
a better I. This process is repeated until a local optimum I is found.

Even when the goal is to generate a class visualization that maximizes the output
of a particular class, while minimizing the output of the rest, some probabilities for the
rest of the classes are always obtained. Therefore, once a class visualization is generated,
it is fed to the network, saving the output logits to use as soft targets in the next stage—as
soft targets provide more information about the knowledge developed by the underlying
model.

The images shown in Figure 2 were obtained once the class visualization extraction
process was complete. The class visualizations vaguely resemble the digit from the class
they are representing. Somewhat natural-looking visualizations were obtained thanks to
the nature of the dataset (being size-normalized and centered).

Figure 2. Class visualizations obtained from a shallow network trained on the MNIST dataset.

Class visualizations give us an insight into what the network is looking for in an image
to make a classification. To make the class visualizations more natural-looking, image priors
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can be included to bias the optimization algorithm. However, since the goal is to validate
whether or not class visualizations contain exploitable embedded knowledge—and not the
interpretability of the visualizations—image priors were not included.

5.3. Class Visualizations as Training Data

The experimentation continued by training a new network from scratch to perform
classification on the MNIST dataset. This network had the same number of layers and
neurons; however, the class visualizations previously generated were used as the training
set (10 images in total) instead of the 60,000 images from the MNIST training data.

Two other important differences were the use of batch gradient descent and a larger
learning rate value, since the 10 class visualizations coupled with soft targets provide
more information and less variance in the gradient. Additionally, we do not care about
overfitting the training data. In fact, we want to overfit since we are proposing that all the
knowledge developed by the first model is contained in the 10 class visualizations.

After training the new network using the class visualizations as training data, the
model’s accuracy was calculated on the test set (10,000 images), achieving a 91.62% accuracy
(8.38% error). This result shows that, at least for the MNIST dataset and this particular
network architecture, class visualizations can function as a compressed version of the
original training set, achieving virtually the same accuracy as the original model trained
on the MNIST training data (60,000 images). In other words, class visualizations were
equivalent to seeing the entire MNIST training data, just as mental imagery resembles the
real experience of feeling or perceiving the actual event.

The entire process is shown in Figure 3. Where Figure 3a presents a shallow network
architecture trained on the entire MNIST training data in the traditional way. Figure 3b
shows the extraction of one class visualization per class, and finally, Figure 3c shows the
use of class visualizations as training data to train the same network architecture from
scratch.

Tables 3 and 4 show the confusion matrix and accuracy metrics of the ANN trained
with class visualizations, and Figure 4 shows the F1-Score values of both models to visually
compare the two models. It can be seen from Figure 4 and Table 5 that the performances
of both models are very close, almost overlapping, hinting that both models developed
the same insights. These results show that we have managed to transfer the knowledge
developed by the first model to the second one through class visualizations.

Table 3. Confusion matrix of shallow neural network trained using class visualizations as training
data. Correct results are highlighted in bold.

0 1 2 3 4 5 6 7 8 9

0 952 0 4 1 1 5 13 1 2 1
1 0 1110 3 2 1 1 4 2 12 0
2 5 12 892 24 13 2 14 13 48 9
3 3 2 20 903 2 18 5 10 35 12
4 0 1 3 1 909 1 12 2 13 40
5 10 3 1 47 13 756 20 3 30 9
6 7 3 5 2 7 12 918 2 2 0
7 3 7 21 7 6 0 0 927 9 48
8 4 11 6 22 8 28 12 5 872 6
9 8 5 2 9 30 3 0 15 14 923

Table 4. Accuracy metrics of shallow neural networks trained using class visualizations as train-
ing data.

0 1 2 3 4 5 6 7 8 9

Precision 0.960 0.962 0.932 0.887 0.918 0.915 0.920 0.946 0.841 0.881
Recall 0.971 0.978 0.864 0.894 0.926 0.848 0.958 0.902 0.895 0.915

F1-Score 0.966 0.970 0.897 0.891 0.922 0.880 0.939 0.923 0.867 0.897
Support 980 1135 1032 1010 982 892 958 1028 974 1009
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Figure 3. Process of using class visualizations as training data.
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Figure 4. F1-Score comparison of model trained on the MNIST dataset vs.. model trained using class
visualizations.

Table 5. Overall accuracy comparison of different models.

Trainset Class Vis. Class Vis. Deeper Avg. Images Output W’s

MNIST 91.76% 91.62% 91.63% 86.02% 91.75%
FMNIST 82.95% 82.01% 82% 75.9% 83.14%
CIFAR10 40.08% 39.65% 38.85% 10% 39.65%

5.4. Repeating the Experiment on the Fashion-MNIST and CIFAR-10 Datasets

To validate the results obtained on the MNIST database, the experimentation was
repeated on the Fashion-MNIST and CIFAR-10 datasets. After training a shallow fully
connected ANN architecture with no hidden layers on the Fashion-MNIST dataset, the
accuracy achieved on the test set was 82.95%. Next, class visualizations from the trained
network were extracted. The class visualizations obtained from this network are shown in
Figure 5a. After the class visualizations were extracted, they were used to train the same
network architecture from the ground up. The accuracy achieved by the new network on
the Fashion-MNIST test data was 82.01%; virtually the same accuracy as the one achieved
when training the network using all of the Fashion-MNIST training data.

On the CIFAR-10 dataset, a 40.08% accuracy on the test set was achieved after training
an ANN architecture with no hidden layers using the CIFAR-10 training data. After extract-
ing one class visualization per class from the trained model and using class visualizations
to train the same architecture from scratch, a 39.65% accuracy on the test set was achieved.
Figure 5b shows the class visualizations obtained for the CIFAR-10 dataset. Unlike the class
visualizations generated from the MNIST and Fashion-MNIST datasets, the visualizations
obtained from the CIFAR-10 data do not resemble the classes they represent, however
this fact does not seem to matter when using the visualizations to train a new network
from scratch.
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Figure 5. Class visualizations obtained from shallow networks trained on the Fashion-MNIST and
CIFAR-10 datasets.

Figure 6a shows a comparison of the F1-Score per class for the network trained on
the entire Fashion-MNIST training data versus F1-Score per class for the network trained
using class visualizations. Figure 6b shows the same comparison for CIFAR-10. For the
Fashion-MNIST classification task, there is a complete overlap between both models, as for
CIFAR-10, both models are very close together, almost overlapping as well.

These results further validate the results obtained on the MNIST dataset and the
potential for class visualizations to be used as compressed, anonymized versions of the
training data. Having a compressed version of the training data would facilitate the
distribution of training datasets by providing a compact and anonymized version of
the training data.
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Figure 6. Comparison of F1-Scores values between models—Fashion-MNIST and CIFAR-10 datasets.

6. Migrating Class Visualizations from a Shallow to Deeper Network Architecture

To assess whether the use of class visualizations as training data is architecture-
dependent, the MNIST class visualizations previously extracted from a shallow network
were used to train a slightly deeper network, as shown in Figure 7. The specifications of
the deeper architecture are the following:

• 784 input neurons.
• 1 hidden layer with 30 neurons and relu activation function.
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• 10 output neurons with softmax activation function.

Figure 7. Using class visualizations obtained from shallow network to train a deeper neural network
architecture.

After using the class visualizations extracted from the shallow network to train this
new architecture, the accuracy achieved on the MNIST test set was 91.63% accuracy (8.37%
error). Even though class visualizations generated by a different network architecture were
used, virtually the same accuracy as the original model is achieved. Tables 6 and 7 show
the confusion matrix and accuracy metrics for this new model. Figure 8 shows that the
F1-Score metrics from the shallow network trained using the MNIST training data and the
F1-Score metrics obtained from the deeper network trained with class visualizations are
very close to one another, almost overlapping, hinting that the deeper network trained
with class visualizations developed the same insights as the original model where the class
visualizations were extracted from.

Table 6. Confusion matrix of deeper network architecture trained on class visualizations from shallow
network. Correct results are highlighted in bold.

0 1 2 3 4 5 6 7 8 9

0 963 0 2 1 0 3 7 1 3 0
1 0 1114 2 2 0 3 4 1 9 0
2 6 12 892 27 12 1 14 13 47 8
3 3 2 18 918 1 24 4 9 22 9
4 1 2 5 2 914 0 9 1 11 37
5 10 4 4 50 8 759 17 2 32 6
6 13 3 6 2 13 14 903 1 3 0
7 3 10 23 7 8 2 0 931 5 39
8 4 13 5 35 8 25 9 4 862 9
9 9 6 2 15 38 11 0 14 7 907

Table 7. Accuracy metrics of deeper network architecture trained on class visualizations from shallow
network.

0 1 2 3 4 5 6 7 8 9

Precision 0.952 0.955 0.930 0.867 0.912 0.901 0.934 0.953 0.861 0.894
Recall 0.983 0.981 0.864 0.909 0.931 0.851 0.943 0.906 0.885 0.899

F1-Score 0.967 0.968 0.896 0.887 0.921 0.875 0.938 0.929 0.873 0.896
Support 980 1135 1032 1010 982 892 958 1028 974 1009
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Figure 8. F1-Score comparison of model trained on the MNIST dataset vs. deeper model trained
using class visualizations.

These results demonstrate that, at least for this particular case, the use of class visual-
izations as compressed training data is not restricted to the same network architecture from
which they were obtained. The only limitation would be that even when the newer, deeper
network has the capacity to achieve better accuracy on the MNIST data, the best accuracy
is limited to the accuracy of the model from which the class visualizations were obtained.

Figure 6a,b show that similar results are obtained for both the Fashion-MNIST and
CIFAR-10 datasets. Virtually the same accuracy as the model where the class visualizations
were extracted is achieved on both datasets when a deeper architecture is trained using
class visualizations from a shallow network (82% and 38.85% accuracy, respectively).

7. Class Visualization vs. the Class Average Training Sample

After successfully employing class visualizations as compressed training data, two
questions emerged. What exactly do class visualizations represent? Why do visualizations
work as a conceptual compression of the training data? Suspicion arose that class visu-
alizations represent the average of all image samples in the training data belonging to a
particular class. Given the characteristics of the MNIST database (size-normalized and cen-
tered images), this assumption could easily be verified by averaging all the training samples
from each class and comparing these class average images against class visualizations.

The images generated for each digit are shown in Figure 9a. These images were
obtained after averaging all the training samples per class, as shown in Algorithm 1,
and plotting them to visually compare them to class visualizations.

It can be observed from Figure 9a that the class average images are not visually
similar to the class visualizations previously obtained. However, even when the class
average images are not visually similar to the class visualizations, they may be equivalent
in the information embedded within them. To corroborate this, the same shallow network
architecture was trained from the ground up, using the class average images as training
data.

After training the ANN using the set of class average images, the accuracy of the model
on the test data was calculated, achieving 86.02% accuracy (13.98% error). Tables 8 and 9
show the confusion matrix and accuracy metrics for the ANN trained using the set of class
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average images. Figure 10 shows that there is no overlap between the F1-Scores from the
model trained on the MNIST data and the model trained using the class average images.

Figure 9. Class average image samples—MNIST and Fashion-MNIST datasets.

Figure 10. F1-Score comparison of model trained on the MNIST dataset vs. model trained on class
average images vs. model trained on output W’s as images.
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Algorithm 1 Class average Image generation

Require: Training image samples from class C

for each training sample image I in class C do
for each pixel p in image I do

classAverageImage[p]+=I[p]/#trainingsamples
end for

end for

These results show that although the class average images contain exploitable knowl-
edge, it is less than the class visualizations. One possibility for the difference in accuracy
could be due to the potential errors in the size-normalization and centering processes.
A second possibility for the difference in accuracy is that class visualizations not only
contain information about their own class, but also about the other classes, which the
model can classify.

Table 8. Confusion matrix of shallow network architecture trained using the class average training
sample. Correct results are highlighted in bold.

0 1 2 3 4 5 6 7 8 9

0 921 0 6 9 0 13 19 1 11 0
1 0 1069 8 4 1 7 4 0 42 0
2 7 12 827 70 15 1 25 15 52 8
3 3 2 19 905 1 22 6 12 22 18
4 2 10 5 3 825 1 17 2 22 95
5 12 6 10 119 15 669 15 6 24 16
6 16 4 15 3 13 34 869 0 4 0
7 3 21 28 7 9 0 3 900 16 41
8 4 10 8 105 5 30 13 10 774 15
9 16 10 13 19 42 12 1 35 18 843

Table 9. Accuracy metrics of shallow network architecture trained using the class average train-
ing samples.

0 1 2 3 4 5 6 7 8 9

Precision 0.936 0.934 0.881 0.727 0.891 0.848 0.894 0.917 0.786 0.814
Recall 0.940 0.942 0.801 0.896 0.840 0.750 0.907 0.875 0.795 0.835

F1-Score 0.938 0.938 0.839 0.803 0.865 0.796 0.901 0.896 0.790 0.824
Support 980 1135 1032 1010 982 892 958 1028 974 1009

Repeating the same experiment on the Fashion-MNIST database obtained similar
results. Figure 9b shows the class average images obtained for the Fashion-MNIST database.
After generating and using the Fashion-MNIST class average images to train a shallow
network, a 75.9% accuracy is achieved, 6.11% lower than the accuracy achieved using class
visualizations.

Figure 6a shows that there is no overlap between the F1-Scores from the model trained
on the Fashion-MNIST data and the model trained using the class average images. These
findings support the results obtained on the MNIST dataset.

For the case of the CIFAR-10 dataset, this experimentation could not be replicated
since the CIFAR-10 training samples are not size-normalized and centered images. Not
surprisingly, averaging the training samples from each class yields a noisy image, as shown
in Figure 11. Using these images as training data results in a completely random model
with an average overall accuracy of 10%.
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Figure 11. Average image sample from one class of CIFAR-10.

8. Comparing Class Visualizations Obtained from Different Networks

A new model was trained on only two out of the ten classes from the MNIST database
to explore the possibility that the shape of class visualizations—and the knowledge embed-
ded within them—is influenced by the other classes that the model is trained on. For this
task, the digits three and four were arbitrarily chosen. The purpose of this experiment was
to compare class visualizations for digits three and four taken from a ten-class model that
classifies all ten digits (0–9) against visualizations taken from a two-class model that only
classifies digits three and four.

The new network architecture to be trained is a shallow architecture without hidden
layers and two output neurons—one output neuron for digit three and one for digit four.
Therefore, only the training image samples from the MNIST dataset that correspond to
those two digits were used as the training data. In the same way, only the validation
samples for digits three and four were used to calculate the accuracy of this new model,
achieving an overall classification accuracy of 99.7% after training.

Class visualizations for both classes (digits three and four) were generated as be-
fore. Next, the class visualizations obtained were used as training data to train the same
architecture from scratch. The accuracy achieved using the two class visualizations as
training data was 99.7%. In other words, the exact same accuracy was achieved by training
the model with class visualizations similar to when all the training data was used. The
accuracy achieved shows that the knowledge developed by the first model was successfully
extracted into the two class visualizations. The important question now was, are these new
class visualizations equivalent to the class visualizations from the 10-class model for digits
three and four?

Figure 12 shows that the class visualizations generated for digits three and four
from the two-class model (three vs. four models) are visually different from the class
visualizations obtained from the 10-class model. These results support the idea that the
shape of, and possibly the knowledge embedded in, a class visualization is affected by the
other classes that a model is trained on. It was suspected that the more classes a model
can classify, the more detail from each class the network needs to learn to differentiate one
class from the rest. Therefore, the more difficult the classification task is (i.e., more classes
a model can classify), the more detail and embedded knowledge the class visualization
will have.

To corroborate this assumption, the set of class visualizations obtained from the 10-
class model were taken, swapping the class visualization of digit three with the class
visualization of digit three from the 2-class model. The new set of ten class visualiza-
tions was used as training data to train a new 10-class model from scratch, achieving a
classification accuracy of 80.39% on the validation set. The performance achieved was
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considerably lower from the accuracy obtained by training the same architecture with the
original 10-class visualizations (91.76% accuracy).

Table 10 shows the confusion matrix for this new model. As expected, the confusion
matrix shows that the decrease in accuracy was caused by an increase in false positives
(shown in red) for the digit three class. These results point to the class visualization of digit
three as the most likely culprit for the decrease in accuracy.

Figure 12. Comparison between class visualizations obtained from the 10-class model against visual-
izations obtained from the 3 vs. 4 and 3 vs. All models.

Table 10. Confusion Matrix of shallow neural network trained on class visualizations taken from the
10-class model with the visualization of digit three swapped with the class visualization obtained
from the three vs. four model. Correct results are highlighted in bold.

0 1 2 3 4 5 6 7 8 9
0 811 0 2 152 0 1 10 0 2 2
1 0 1092 0 32 0 1 3 2 5 0
2 2 6 605 359 12 0 11 10 14 13
3 0 1 7 985 2 3 1 2 3 6
4 2 1 4 0 901 0 9 3 7 55
5 7 3 1 445 15 369 16 5 21 10
6 7 3 4 12 9 4 915 3 1 0
7 2 5 12 82 4 0 0 870 3 50
8 3 8 6 335 11 12 12 5 559 23
9 6 6 2 30 20 1 0 10 2 932

It can be observed that for digit three, the number of false positives when the digit
was actually a four is zero. This suggests that the class visualization of digit three has
embedded knowledge to help differentiate a three from a four but lacks the knowledge to
differentiate a three from the rest of the digits, resulting in high false positives for the other
classes (if the digit is not a four, it must be a three).

To further confirm these results, a new 2-class model to classify the digit three against
any other digit was trained (three vs. All model). By increasing the difficulty of the classifi-
cation task, the generation of a more detailed, and more (embedded) knowledgeable class
visualization of the digit three was expected.
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A new model using all of the MNIST training samples corresponding to digit three
and a subset of the rest of the digits (to have a balanced dataset) was trained; achieving a
classification accuracy of 97.82% on the test set after training. Next, class visualizations for
each of the two classes (class three and not class three) were extracted from the model. In
order to verify the quality of the visualizations generated, the two class visualizations were
used to train the same architecture from scratch, achieving a 97.39% accuracy. The class
visualizations obtained from the network are shown in Figure 12 (three vs. All model). It
can be observed that this new class visualization, of digit three, is visually more similar to
the visualization of digit three from the 10-class model.

Next, a new 10-class model was trained using the original ten class visualizations
extracted from the 10-class model, swapping the visualization of digit three with the
visualization of the digit three from the three vs. All model. After training, a classification
accuracy of 88.78% on the MNIST validation set was achieved. This accuracy is closer to
the original accuracy achieved with the original 10 class visualizations. Table 11 shows the
confusion matrix for this new model. This time, the number of false negatives (shown in
red) increased and the number of false positives for class three decreased, showing that
training with this new class three visualization forces the network to be more careful when
classifying a digit as three.

Table 11. Confusion matrix of shallow neural network trained on the class visualizations taken from
the 10-class model with the class visualization of digit three swapped with the class visualization
obtained from the three vs. All model. Correct results are highlighted in bold.

0 1 2 3 4 5 6 7 8 9

0 955 0 2 0 0 4 11 1 6 1
1 0 1108 4 0 0 1 4 2 15 1
2 7 12 903 1 9 2 17 15 58 8
3 12 2 69 576 2 103 13 19 174 40
4 2 1 9 0 890 0 7 3 19 51
5 11 4 4 5 6 770 20 3 53 16
6 7 3 5 0 7 13 916 3 4 0
7 3 7 26 1 5 0 0 934 12 40
8 4 11 6 1 4 23 12 5 902 6
9 8 5 2 0 19 4 0 23 24 924

Figure 13 presents a comparison of the F1-Score metrics for the models trained in this
section. These results show that the increased difficulty of differentiating the digit three
from any other digit produced a better-quality class visualization with more embedded
knowledge. This supports the notion that class visualizations not only contain information
about their class, but also about the other classes that the network can classify.
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Figure 13. Comparison of F1-Score values between models—swapping class visualization of number
three.

9. Visualizations of Output Neurons vs. Class Visualizations

After validating that class visualizations do not correspond to the class average
training sample, it was suspected that a class visualization could be analogous to the
compression of all the weights in the network that are relevant for the classification of a
particular class. Given the simple architecture of our network for the classification of the
MNIST data (no hidden layers), identifying the weights that are relevant to the activation
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of a particular class can be done in a straightforward way—using only the weights of the
output neuron of the class in question.

To verify this premise, the weight matrix of each output neuron was taken and plotted
as a 28× 28 image by treating the weight values as pixel intensities, as shown in Figure 14.
The images obtained after plotting the weight matrices of the output neurons are shown in
Figure 15.

Figure 14. Visualizing the weight matrix of an output neuron as an image—MNIST.

Figure 15. Visualizations of the weight matrices of output neurons taken as images—MNIST.

It can be observed from the images shown in Figure 15 that the weight matrices of the
output neurons plotted as images look very similar to the class visualizations obtained at
the first stages of experimentation.

In order to verify how analogous the weight matrices of the output neurons are to the
class visualizations, a new shallow ANN was trained from scratch, using the weight matri-
ces of the output neurons as training data. After training this new model, the best accuracy
achieved on the test set was 91.75% (8.25% error). At this point, we must emphasize that
the accuracy achieved by using the weight matrices of the output neurons as training data
was virtually the same accuracy as the one obtained using class visualizations as training
data, or when the entire MNIST training set was used. Tables 12 and 13 show the confusion
matrix and accuracy metrics of the new model.

It can be observed in Figure 10 that the F1-Score metrics from the shallow network
trained on the MNIST training data and the metrics from the network trained using
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the weight matrices as training data are very close to one another. Additionally, Table 5
shows that the overall accuracy from the model trained using class visualizations and
the accuracy from the model trained using the weight matrices as training data are very
close to one another. This hints at the possibility of class visualizations being equivalent
to a compression of all weights in the network that are important for the activation of a
particular class.

Table 12. Confusion matrix of shallow neural network trained on class visualizations made from
weight matrices of output neurons. Correct results are highlighted in bold.

0 1 2 3 4 5 6 7 8 9

0 955 0 2 1 1 5 12 1 2 1
1 0 1113 2 2 0 1 4 2 11 0
2 4 12 898 19 13 3 15 9 50 9
3 3 2 20 900 2 19 5 9 38 12
4 1 1 4 1 910 0 11 0 14 40
5 10 4 1 41 11 752 22 3 38 10
6 8 3 5 3 9 11 917 0 2 0
7 3 8 24 5 7 0 0 917 12 52
8 4 11 6 18 7 23 12 2 884 7
9 8 5 2 6 29 2 0 13 15 929

Table 13. Accuracy metrics of shallow neural network trained on class visualizations made from
weight matrices of output neurons.

0 1 2 3 4 5 6 7 8 9

Precision 0.959 0.960 0.932 0.904 0.920 0.922 0.919 0.959 0.829 0.876
Recall 0.974 0.981 0.870 0.891 0.927 0.843 0.957 0.892 0.908 0.921

F1-Score 0.967 0.970 0.900 0.897 0.923 0.881 0.938 0.924 0.867 0.898
Support 980 1135 1032 1010 982 892 958 1028 974 1009

For the Fashion-MNIST and CIFAR-10 datasets, similar results were obtained. Figure 16
shows the visualizations of the output weight matrices of a shallow network architecture
trained on the Fashion-MNIST and the CIFAR-10 data, respectively. As with the MNIST data,
the visualizations of the output weight matrices, for both Fashion-MNIST and CIFAR-10, look
very similar to the class visualizations obtained from their respective networks.

Figure 6a shows that, for the Fashion-MNIST dataset, training the same model from
scratch using the visualizations of the output weight matrices as training data, yields
exactly the same accuracy as when using the entire training data or class visualizations,
achieving 83.14% accuracy on the test set. Similar results were obtained for the CIFAR-10
dataset. Training the same model from scratch using the visualizations of the output weight
matrices as training data achieves the same performance as training the model using class
visualizations, 39.65% accuracy. These results are shown in Figure 6b.

The obtained results are quite significant. If, in fact, class visualizations represent all
the weights in the network that are important for the activation of a particular class then,
correctly extracted visualizations from an ANN could potentially be used as convolutional
filters for extreme model compression purposes. Extreme model compression using class
visualizations could potentially be accomplished by employing class visualizations as
output neurons of a compact model, leaving only the biases of the output neurons to
be trained.
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Figure 16. Visualization of the weight matrices of output neurons taken as images for the Fashion-
MNIST and CIFAR-10 datasets.

10. Class Visualizations and Model Compression

After achieving results suggesting that visualizations of the output neuron weights
are analogous to class visualizations in shallow architectures without hidden layers, exper-
imentation with class visualizations for model compression purposes followed.

Experimentation started by training a three-layer neural network (784 input layer, 30
neurons hidden layer, 10 neurons output layer) on the MNIST training data (60,000 training
samples), achieving an accuracy of 95.42% on the MNIST test set after training. Proceeding
with the generation of one class visualization per class as previously done, via class
maximization and backpropagation to the input, they were run through the network to
generate soft target labels. Having generated 10 class visualizations (one per class), they
were used as training data to train the same network architecture from scratch.

After training the same model from the ground up using class visualizations, an
overall accuracy of 86.38% was achieved on the MNIST test set. The decrease in accuracy
is believed to be due to the need of more than just one class visualization per class to
successfully extract all the knowledge developed by the model. Having a network with
more than one layer means that the model can generate more than one “mental image” per
class. This is because, more than one combination of the 30 neurons in the hidden layer
could be possible for the activation of a particular class. Therefore, a more robust approach
would be needed to generate all the class visualizations that are required to extract all the
knowledge that deeper networks develop. This will remain for future work.

Next, the ten class visualizations obtained were used to attempt the transfer of the
knowledge embedded in them to a more compact network—an ANN with ten output
neurons and no hidden layers. The goal here was to transfer the 86.38% accuracy achieved
when using the class visualizations as training data to a more compact model. To achieve
this, each class visualization was taken and placed as the weight matrix of an output neuron
of the compact model.
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Only the task of training the biases of the output neurons (10 biases) remained. To
train the biases, all the network’s weights were frozen and the MNIST training data
was used to train the biases via backpropagation. After training the biases, the accuracy
achieved on the MNIST test data was 86.38%, which is exactly the same accuracy achieved
when using the ten class visualizations to train the deeper network. It is important to
note that this accuracy was achieved after training only 10 parameters of the network
(10 biases). Figure 17 shows that the F1-Score metrics from the shallow network that uses
class visualizations as convolutional filters and the F1-Score metrics obtained from the
deeper network trained with class visualizations are very close to one another.

Figure 17. Per class F1-Score comparison—model compression.

The results obtained in this section show that class visualizations have the potential
to be used for extreme model compression purposes, by using class visualizations as
convolutional filters of a more compact network. Although, the development of techniques
to extract all the knowledge developed by deeper architectures into class visualizations is
required, the fundamentals of how model compression could potentially be implemented
using class visulizations is presented here. Figure 18 shows the approach followed in this
section for the use of class visualizations for model compression purposes.
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Figure 18. Diagram showing the use of class visualizations as convolutional filters for model com-
pression purposes.

11. Conclusions and Future Work

The main contribution of this paper is showing that class visualizations are not
just visual aids that provide insights on what an ANN is looking for. We show that
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class visualizations contain actual embedded knowledge that can be exploited in a more
automatic manner by considering them analogous to mental imagery in humans.

By considering class visualizations analogous to mental imagery, they can be used
as a conceptual compression of the entire training data. Having a highly compressed,
conceptual version of the training data enables the distribution of training datasets in a
compact and anonymized way, providing confidentiality to the data being shared while
facilitating its distribution.

Another important contribution of this paper is providing insights into the nature
of class visualizations. We demonstrate that a class visualization is not equivalent to the
class average training sample and that its shape and embedded knowledge is not only
influenced by the training samples from its own class, but by the other classes that the
network is trained on as well.

We show that class visualizations are analogous to the visualization of the weight
matrices of the output neurons in shallow architectures without hidden layers. Finally, we
demonstrate that class visualizations can be used as convolutional filters and show how
class visualizations could potentially be used for extreme model compression.

In general, the main focus of this paper is to explore the nature of class visualizations
to gain a better understanding of the knowledge embedded in them and to experiment
with potential applications of class visualizations. While we show the potential of class
visualizations for dataset and model compression, more work is needed on these topics.
However, the fundamentals regarding implementation are presented here.

Future work will focus on developing more robust and generalized methods that can
be applied on a wide variety of network architectures and data, to enable the extraction
of class visualizations for dataset and model compression purposes. In particular, we are
beginning experimentation with the use of autoencoders to generate class visualizations
directly from training data, without first needing to train a classification network.
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