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Materials and Methods 

 
Figure S1. Test rig for conductivity measurements on cylindrical monoliths  
(density: ~0.3 g cm-3; length: ~12 mm; ⌀ ~7 mm).  

 

 
(a) 

 
(b) 

Figure S2. Electrode contacting (a) Left: Planar monolith CNT-K working electrode contacted by a copper 
sheet. Right: Steel foam counter electrode. Monolith and CE dimensions: ~35.0 x 30.5 x 2.7 mm. (b) Test 
rig for potential-controlled adsorption experiments. Within the test rig the electrodes were spaced 5 mm 
apart. The slots for the containment of the electrodes had the dimensions 30.5 x 32.0 x 5.0 mm. 
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Particle Characterization 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure S3. Agglomerates of CNT-K after (a) no ultrasonic treatment in DI-water, (b) 6 min ultrasonic 
treatment in DI-water, (c) oxidation and 6 min ultrasonic treatment, (d) 6 min ultrasonic treatment in 
SDBS 10 g L-1. Closed nanotube ends marked by circles and opened ends marked by squares respectively. 
Pictures taken by Dr. Sebastian Schwaminger and Chiara Turrina. 

CNT-K display a strong agglomeration behavior in DI-water. Most of the CNT-K 
tubes present closed ends due to the synthesis process (see Figure S3) [1, 2]. Upon ultra-
sonication, the nanotubes can be spatially separated as displayed in Figure 34b. No con-
siderable increase in opened and fractured nanotubes upon oxidation and ultrasonication 
could be observed through TEM imaging. Ultrasonication in SDBS (see Figure S3d) lead 
towards strong separation of the tubes. The blurred outline of the tubes can be attributed 
towards the accumulation of SDBS as it strongly adsorbs on the nanotubes surface [3, 4]. 
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Figure S4. FTIR spectra of untreated (green) and oxidized (blue) CNT particles. 

The peaks visible for purified CNTs indicate the presence of already oxidized species, 
possibly originated by the synthesis or purification of the nanotubes [5]. Nonetheless, as 
the peak intensity is considerably weaker compared to the oxidized species, an apparent 
effect of the surface oxidation is noticeable. A first broad peak present at 3361 cm-1 corre-
sponds to strong –OH stretching vibrations originated by –OH substituents of carboxyl 
groups, isolated alcohol groups, or water. The peak at 2925 cm-1 originates from the 
stretching of C-H bonds in carbonaceous material. A series of peaks ranging from   
1700 cm-1 – 1500 cm-1 indicates the presence of C=O groups in different configurations, 
while the peak visible at 1367 corresponds to C=C vibrations of the CNT backbone [6]. The 
pronounced peak at 1118 cm-1 can be associated with C-O stretching and indicates the 
presence of ester, ether, and alcohol groups on the surface [6]. Upon treatment in concen-
trated HNO3 a more dominant rise of the C=O stretch was reported by Stobinski et al. [7]. 
Nonetheless, for CNT-K, a considerable increase in the C-O stretch can be observed upon 
oxidation, showing the augmented presence of oxidized surface groups. Similar results 
were obtained by Avilés et al., for the oxidation of MWCNTs in 3 M HNO3 [5].   

 
Monolith Characterization 

 
(a) 

 
 (b) 

Figure S5. Mechanical strength of cylindrical and planar monoliths. (a) Three cylindrical monoliths (den-
sity 0.3 g cm-3, weight ~0.19 g per monolith) supporting a total weight of 3000 g and (b) tensile strength 
of planar monoliths. 

The synthesized monoliths are characterized by a high structural strength. For in-
stance, 3 cylindrical monoliths with a density of 0.3 g cm-3 can support a counterweight of 
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3000 g without signs of structural collapse, showing superior stability to other carbon aer-
ogels tested under similar conditions [8–10]. Planar monoliths displayed a maximum 
strength of 4 to 5 N mm-1 proving, that the synthesis of monoliths in different shapes is 
possible by a mold-pressing and heat drying approach.  
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