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Abstract: Despite deep neural networks (DNNs) having achieved impressive performance in various
domains, it has been revealed that DNNs are vulnerable in the face of adversarial examples, which
are maliciously crafted by adding human-imperceptible perturbations to an original sample to cause
the wrong output by the DNNs. Encouraged by numerous researches on adversarial examples
for computer vision, there has been growing interest in designing adversarial attacks for Natural
Language Processing (NLP) tasks. However, the adversarial attacking for NLP is challenging because
text is discrete data and a small perturbation can bring a notable shift to the original input. In this
paper, we propose a novel method, based on conditional BERT sampling with multiple standards,
for generating universal adversarial perturbations: input-agnostic of words that can be concatenated
to any input in order to produce a specific prediction. Our universal adversarial attack can create
an appearance closer to natural phrases and yet fool sentiment classifiers when added to benign
inputs. Based on automatic detection metrics and human evaluations, the adversarial attack we
developed dramatically reduces the accuracy of the model on classification tasks, and the trigger is
less easily distinguished from natural text. Experimental results demonstrate that our method crafts
more high-quality adversarial examples as compared to baseline methods. Further experiments
show that our method has high transferability. Our goal is to prove that adversarial attacks are more
difficult to detect than previously thought and enable appropriate defenses.

Keywords: universal adversarial perturbations; conditional BERT sampling; adversarial attacks;
sentiment classification; deep neural networks

1. Introduction

Deep Neural Networks (DNNs) have made great success in various machine learn-
ing tasks, such as computer vision, speech recognition and Natural Language Processing
(NLP) [1–3]. However, recent studies have discovered that DNNs are vulnerable to ad-
versarial examples not only for computer vision tasks [4] but also for NLP tasks [5]. The
adversary can be maliciously crafted by adding a small perturbation into benign inputs
but can trigger the target model to misbehave, causing a serious threat to their safe ap-
plications. To better deal with the vulnerability and security of DNNs systems, many
attack methods have been proposed further to explore the impact of DNN performance
in various fields [6–8]. In addition to exposing system vulnerabilities, adversarial attacks
are also useful for evaluation and interpretation, that is, to understand the function of the
model by discovering the limitations of the model. For example, adversarial-modified
input is used to evaluate reading comprehension models [9] and stress test neural machine
translation [10]. Therefore, it is necessary to explore these adversarial attack methods
because the ultimate goal is to ensure the high reliability and robustness of the neural
network.

These attacks are usually generated for specific inputs. Existing research observes that
there are attacks that are effective against any input. In input-agnostic word sequences,
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when connected to any input of the data set, these tokens trigger the model to produce
false predictions. The existence of this trigger exposes the greater security risks of the DNN
model because the trigger does not need to be regenerated for each input, which greatly
reduces the threshold of attack. Moosavi-Dezfooli et al. [11] proved for the first time that
there is a perturbation that has nothing to do with the input in the image classification
task, which is called Universal Adversarial Perturbation (UAP). Contrary to adversarial
perturbation, UAP is data-independent and can be added to any input in order to fool the
classifier with high confidence. Wallace et al. [12] and Behjati et al. [13] recently demon-
strated a successful universal adversarial attack of the NLP model. In the actual scene,
on the one hand, the final reader of the experimental text data is human, so it is a basic
requirement to ensure the naturalness of the text; on the other hand, in order to prevent
universal adversarial perturbation from being discovered by humans, the naturalness of
adversarial perturbation is more important. However, the universal adversarial perturba-
tions generated by their attacks are usually meaningless and irregular text, which can be
easily discovered by humans.

In this article, we focus on designing natural triggers using text-generated models.
In particular, we use a BERT-based text sampling method, which is to generate some
natural language sentences from the model randomly. Our method sets the enforcing
word distribution and decision function that meets the general anti-perturbation based
on combining the bidirectional Masked Language Model and Gibbs sampling [3]. Finally,
it can obtain an effective universal adversarial trigger and maintain the naturalness of
the generated text. The experimental results show that the universal adversarial trigger
generation method proposed in this paper successfully misleads the most widely used
NLP model. We evaluated our method on advanced natural language processing models
and popular sentiment analysis data sets, and the experimental results show that we are
very effective. For example, when we targeted the Bi-LSTM model, our attack success rate
on the positive examples on the SST-2 dataset reached 80.1%. In addition, we also show
that our attack text is better than previous methods on three different metrics: average
word frequency, fluency under the GPT-2 language model, and errors identified by online
grammar checking tools. Furthermore, a study on human judgment shows that up to
78% of scorers believe that our attacks are more natural than the baseline. This shows
that adversarial attacks may be more challenging to detect than we previously thought,
and we need to develop appropriate defensive measures to protect our NLP model in the
long term.

The remainder of this paper is structured as follows. In Section 2, we review the related
work and background: Section 2.1 describes deep neural networks, Section 2.2 describes
adversarial attacks and their general classification, Sections 2.2.1 and 2.2.2 describe the
two ways adversarial example attacks are categorized (by the generation of adversarial
examples whether to rely on input data). The problem definition and our proposed scheme
are addressed in Section 3. In Section 4, we give the experimental results with analysis.
Finally, we summarize the work and propose the future research directions in Section 5.

2. Background and Related Work
2.1. Deep Neural Networks

The deep neural network is a network topology that can use multi-layer non-linear
transformation for feature extraction, and utilizes the symmetry of the model to map
high-level more abstract representations from low-level features. A DNN model generally
consists of an input layer, several hidden layers, and an output layer. Each of them is
made up of multiple neurons. Figure 1 shows a commonly used DNN model on text data:
long-short term memory (LSTM).
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Figure 1. The LSTM models in texts.

The recent rise of large-scale pretraining language models such as BERT [3], GPT-2 [14],
RoBertA [15] and XL-Net [16], which are currently popular in NLP. These models first
learn from a large corpus without supervision. Then, they can quickly adapt to down-
stream tasks via supervised fine-tuning, and can achieve state-of-the-art performance on
several benchmarks [17,18]. Wang and Cho [19] showed that BERT can also produce high
quality, fluent sentences. It inspired our universal trigger generation method, which is an
unconditional Gibbs sampling algorithm on a BERT model.

2.2. Adversarial Attacks

The purpose of adversarial attacks is to add small perturbations ε in the normal
sample x to generate adversarial example x′, so that the classification model F makes
misclassification. The formula descriptions is F(x′) 6= y, where x′ = x + ε, |ε| < δ. δ is a
threshold to limit the size of perturbations. We classify existing adversarial attack methods
according to different criteria. Figure 2 summarizes these categories.

Adversarial attacks

Knowledge based
White-box

Black-box

Target based
Targeted

Non-targeted

 Granularity based

Character-level

Word-level

Sentence-level

 Input based

Input-dependent 

Input-
agnostic(universal)

The attacker can grasp the complete 
information of the target model to be attacked

The attacker cannot access the specific structure 
and training parameters of the target model

The attack generates specific triggers for each 
different input to a classifier

The attack uses exactly the same trigger on any 
input

Figure 2. Categories of adversarial attack methods on textual deep learning models.

According to the attacker’s understanding of the model, attacks can be divided into
white-box attacks and black-box attacks. In white-box attack, the attack requires the
access to the model’s full information, including architecture, parametrers, loss functions,
activation functions, input and output data. They can obtain excellent adversarial examples.
A black-box attack does not require the knowledge about target models, but can access
the input and output. This type of attack often relies on heuristics to generate adversarial
examples, and it is more practical, as in many real-world applications the details of the
DNN is a black box to the attacker.

According to the purpose of adversaries, adversarial attacks can be divided into
targeted attacks and non-targeted attacks. In a targeted attack, the generated adversarial
example x is deliberately classified into the nth category, which is the target of the attacker.
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In a non-directed attack, the adversary is merely to fool the model. The result y′ can be any
class except for y.

NLP models usually use character encoding or word encoding as model input features,
so text adversarial samples can be divided according to the level of disturbance for these
features. According to the different attack targets, it can be divided into character-level
attacks, word-level attacks, and sentence-level attacks. Character-level attacks act on char-
acters, including letters, special symbols, and numbers. A adversarial sample is constructed
by modifying characters in the text, such as English letters or Chinese characters. Different
from character-level attacks, the object of word-level attacks is the words in the original
input. The primary method is to delete, replace or insert new words in the keywords in
the original text. At present, the method of sentence-level attack is to treat the original
input of the entire sentence as the object of disturbance, with the intention of generating
an adversarial example that has the same semantics as the original input but changes the
judgment of the target model. Commonly used sentence level attack methods include
paraphrasing, re-decoding after encoding and adding irrelevant sentences.

Whether the generation of adversarial examples depends on each input data, we di-
vide the attack methods into input-dependent adversarial attacks and universal adversarial
attacks. Figure 3 shows a schematic diagram of a adversarial attack.

trigger

+

Figure 3. The schematic diagram of adversarial attacks.

2.2.1. Input-Dependent Attacks

These attacks make specific triggers for each different input of the model. Under the
white box condition, we can use the model loss function to solve the gradient information
and then guide adversarial examples. For example, Papernot et al. [5] disturbed the word
embedding vector of the original input text. Ebrahimi et al. [20] carefully designed the
character conversion perturbation and used the direction of the model loss gradient to select
the best perturbation to replace the words of the benign text, resulting in performance
degradation. Lei et al. [21] use embedded transformation to introduce a replacement
strategy. Under the black box condition, Alzantot et al. [22] proposed an attack method
based on synonym substitution and genetic algorithm. Zang et al. [23] proposed an attack
method based on original word replacement and particle swarm optimization algorithm.

2.2.2. Universal Attacks

Wallace et al. [12] and Behjati et al. [13] also proposed a universal adversarial distur-
bance generation method that can be added to any input text. Both papers used gradient
loss to guide the search direction to find the best perturbation to cause as many benign
inputs in the data set as possible to fool the target NLP model. However, the attack word
sequence generated in these two cases is usually unnatural and meaningless. In contrast,
our goal is to obtain a more natural trigger. When a trigger that does not depend on any
input samples is added to the normal data, it will cause errors in the DNN model.
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3. Universal Adversarial Perturbations

In this section, we are going to formalize the problem of finding the universal adver-
sarial perturbations for a text classifier and introduce our methods.

3.1. Universal Triggers

We seek an input-agnostic perturbation, which can be added to each input sample and
deceive a given classifier with a high probability. If the attack is universal, the adversarial
threat is higher: use the same attack on any input [11,24]. The advantages of universal
adversarial attacks are: they do not need to access the target model during testing; and they
significantly reduce the opponent’s barrier to entry: the trigger sequence can be widely
distributed, and anyone can fool the machine learning model.

3.2. Problem Formulation

Consider a trained text classification model f , a set of benign input text t with truth
labels y and correctly predicted by the model f (t) = y. Our goal is to connect the found
trigger tadv in series with any benign input, which will cause the model f to predict errors,
that is, f (tadv; t) 6= y.

3.3. Attack Trigger Generation

In order to ensure that the trigger is natural, fluent, and diversified to generate more
universal disturbances, we use the Gibbs sampling [19] on a BERT model. This is a flexible
framework that can sample sentences from the BERT language model under specific criteria.
The input is a customized initial word sequence. In order not to increase the additional
restrictions of the trigger, we initialize it to a full mask sequence as in Equation (1).

X0 = (x0
1, x0

2, . . . , x0
T). (1)

In each iteration, we randomly sample a position i uniformly, and then replace the
token at the ith position with a mask.The process can be formulated as follows:

xi = [MASK], i = (1, 2, . . . , T), (2)

where [MASK] is a mask token. We get the word sequence at time t, as shown in
Equation (3).

Xt
−i = (xt

1, . . . , xt
i−1, [MASK], xt

i+1, . . . , xt
T). (3)

Then calculate the word distribution pt+1 of the language model on the BERT vocabu-
lary according to the Equation (4) and sample a replacement word x̃t

i from it.

pt+1 =
p(xt

1, . . . , xt
i−1, y, xt

i+1, . . . , xt
T)

∑y p(xt
1, . . . xt

i−1, y, xt
i+1, . . . xt

T)
. (4)

We used the decision function h() to decide whether to use the proposed word x̃t
i

or keep the word xt−1
i in the previous iteration. Thus the next word sequence is as in

Equation (5).

Xt = (xt
1, . . . , xt

i−1, x̃t
i , xt

i+1, . . . , xt
T) (5)

We repeated this procedure many times and only select one sample at intervals during
the sampling process. After many iterations, we get the desired output. Figure 4 provides
an overview framework of our attack algorithm.
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Figure 4. Overview of our attack. At each step, we concatenate the current trigger to a batch of
examples. Then, we sample sentences conditioned on the loss value and classification accuracy
computed for the target adversarial label over the batch from a BERT language model.

4. Experiments

In this part, we describe the conducted a comprehensive experiment to evaluate the
effect of our trigger generation algorithm on sentiment analysis tasks.

4.1. Datasets and Target Models

We chose two benchmark datasets, including SST-2 and IMDB. SST-2 is a binary senti-
ment classification data set containing 6920 training samples, 872 verification samples, and
1821 test samples [25]. The average length of each sample is 17 words. IMDB [26] is a large
movie review dataset consisting of 25,000 training samples and 25,000 test samples, labeled
as positive or negative. The average length of each sample is 234 words. As for the target
models, we choose the widely used universal sentence encoding models, namely bidirec-
tional LSTM (BiLSTM).Its hidden states are 128-dimensional, and it uses 300-dimensional
pre-trained GloVe [27] word embeddings. Figure 5 provides the BiLSTM framework.

4.2. Baseline Methods

We selected the recent open-source general adversarial attack method as the baseline,
and used the same data set and target classifier for comparison [28]. The baseline exper-
iment settings were the same as those in the original paper. Wallace et al. [28] proposed
a gradient-guided general disturbance search method. They first initialize the trigger
sequence by repeating the word the, subword a, or character a, and connect the trigger
to the front/end of all inputs. Then, they iteratively replace the tokens in the triggers to
minimize the loss of target predictions for multiple examples.

4.3. Evaluation Metrics

In order to facilitate the evaluation of our attack performance, we randomly selected
500 correctly classified samples in the data set according to the positive and negative cate-
gories as the test input. We evaluated the performance of the attack model, including the
composite score, the attack success rate, attack effectiveness, and the quality of adversarial
examples. The details of our evaluation indicators are listed in Table 1. We will describe
these evaluation indicators in detail.
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Figure 5. BiLSTM framework.

Table 1. Details of evaluation metrics. “Auto” and “Human” represent automatic and human
evaluations respectively. “Higher” and “Lower” mean the higher/lower the metric, the better a
model performs.

Metrics Evaluation Method Better?

Composite score Auto Higher
Success Rate Auto Higher

Word Freqency Auto Higher
Grammaticality Auto (Error Rate) Lower

Fluency Auto (Perplexity) Lower
Naturality Human (Naturality Score) Higher

(1) The attack success rate is defined as the percentage of samples incorrectly predicted
by the target model to the total number of samples. In this experiment, these samples are
all connected to the universal trigger. The formula is defined as follows

S =
1
N

N

∑
i=1

( f (t, xi) 6= yi), (6)

where N is the total number of samples, f represents the target model, t represents the
universal trigger, xi represents the ith test sample, and yi represents the actual label of xi.

(2) We divide it into four parts for the quality of triggers, including word frequency [29],
grammaticality, fluency, and naturality [23]. The average frequency of the words in the
trigger is calculated using empirical estimates from the training set of the target classifier.
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The higher the average frequency of a word, the more times the word appears in the
training set. Grammaticality is measured by adding triggers of the same number of words
to benign text, and then using an online grammar check tool (Grammarly) to obtain the
grammatical error rate of the sentence. With the help of GPT-2 [14], we utilize Language
Model Perplexity (PPL) to measure fluency. Naturalness reflects whether an adversarial
example is natural and indistinguishable from human-written text.

(3) We construct a composite score Q to comprehensively measure the performance of
our attack method. The formula is defined as follows

Q = λ · S + µ ·W − ν · G− δ · P (7)

where S is the attack success rate of the trigger, W is the average word frequency of
the trigger, G is the grammatical error rate of the trigger, and P is the perplexity of the
GPT-2 [14]. W, G, P are all normalized. λ, µ, ν, δ is the coefficient of each parameter, and
λ + µ + ν + δ = 1. In order to balance the weight of each parameter, we set λ, µ, ν and δ to
0.25. The higher the Q score, the better the attack performance.

To further verify that our attack is more natural than the baseline, we conducted a
human evaluation study. We provide 50 pairs of comparative texts. Each team contains one
trigger and one baseline trigger (with or without benign text). Workers are asked to choose
a more natural one, and humans are allowed to choose an uncertain option. For each
instance, we collected five different human judgments and calculated the average score.

4.4. Attack Results

Table 2 shows the results of our attack and baseline [28]. We observe that our attack
achieves the highest composite score Q on all the two datasets, proving the superiority
of our model over baselines. For both positive and negative situations, our method has
a higher attack success rate. It can be found that the success rate of triggers on SST-2
or IMDB data has reached more than 50%. Furthermore, our method achieved the best
attack effect on the Bi-LSTM model trained on the SST-2 data set, with a success rate of
80.1%. Comparing the models trained on the two data sets, the conclusion can be drawn:
The Bi-LSTM model trained on the SST-2 data set is the easiest to be attacked by general
adversarial attacks.

Table 2. Universal attack results. The composite score Q of our attack is higher than the baseline method. Our attacks are
slightly less successful in terms of attack success rate but generate a more natural trigger.

Task Test Data
Our Attack Baseline

Trigger Success Rate(%) Q (%) Trigger Success Rate(%) Q (%)

SST-2

negative

genius ensemble
plays a variety
scripts dealing
with disease

74.0 6.25

death fearlessly
courageous
courageous
terror terror

sentimentalizing
sentimentalizing

triteness

84.3 5.12

positive

speedy empty
constraints

both on
aimlessly

80.1 7.78
wannabe hip

timeout timeout
ill infomercial

89.1 6.33
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Table 2. Cont.

Task Test Data
Our Attack Baseline

Trigger Success Rate(%) Q (%) Trigger Success Rate(%) Q (%)

IMDB

negative

harmonica
fractured
absolutely
amazing
enjoyable
fantasia

suite symphony
energetically

51.3 0.15

unparalleled
heartwrenching
heartwarming
unforgettably
wrenchingly

movie relatable
relatable
heartfelt

65.2 −2.20

positive

red martin on
around a keen
cherry drinks

then limp
unfunny sobbing

from a waste
entrance

50.1 −0.15

miserable moron
unoriginal
unoriginal

unengaging
ineffectual
delicious

crappiest stale
lousy

57.6 −4.10

Figure 6 shows the comparison of word frequency between benign text and different
attack methods. Because a higher word frequency indicates that the word is more common,
and a lower frequency indicates that the word is rare. Figure 6 shows that the average
word frequency of natural text is the highest. The average word frequency of our trigger is
always higher than the baseline method and closer to natural text. Figure 7 compares the
Grammarly automatic detection of grammatical error rates when our attack results and
baseline results are connected to benign samples simultaneously. Again, it can be seen that
our attack has a lower grammatical error rate.

Figure 6. Word frequency. The average frequency and root mean squared error of different triggers
in the target model training set (normalized).
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Figure 7. Grammatical error rate in triggers and benign text as the grammar checkers—Grammarly
(https://www.grammarly.com) (accessed on 10 October 2021).

In addition, we measure sentence fluency by language model perplexity. Specifically,
we evaluated the perplexity of the triggers generated by different methods in the GPT-2
model as shown in Figure 8, and the implementation results show that our trigger has a
lower perplexity than the baseline. Therefore, the triggers we generated are better than the
baseline method in this comparative information and are closer to the natural text input.

The results of human evaluations are displayed in Table 3. We observed that 78.6% of
staff agree that our attack triggers were more natural than the baseline. At the same time,
when the trigger is connected to the benign text, 71.4% of people think that our attack is
more natural. This shows that our attacks are more natural to humans than the baseline
and harder to detect. As we can see from the above discussion, although our trigger is
slightly less aggressive than the baseline method, our trigger is more natural, fluent, and
readable than the baseline.

Figure 8. Language model perplexity. We utilize the language model perplexity to measure the
fluency with the help of GPT-2 . The y-coordinate is in log-2 scale.

https://www.grammarly.com
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Table 3. Human evaluation results. “Trigger only” means only the text of the trigger sequence.
“Trigger + benign” represents sentences where we connect triggers to natural text. “ours” means
that our attacks are judged more natural, “baseline” means that the baseline attacks are judged more
natural, and “not sure” means that the evaluator is not sure which is more natural.

Condition Ours Baseline Not Sure

Trigger-only 78.6% 19.0% 2.4%

Trigger+benign 71.4% 23.8% 4.8%

4.5. Transferability

We evaluated the attack transferability of our universal adversarial attacks to differ-
ent models and datasets. In adversarial attacks, it has become an important evaluation
metric [30]. We evaluate the transferability of adversarial examples by using BiLSTM to
classify adversarial examples crafted attacking BERT and vice versa. Transferable attacks
further reduce the assumptions made: for example, the adversary may not need to ac-
cess the target model, but instead uses its model to generate attack triggers to attack the
target model.

The left side of Table 4 shows the attack transferability of Triggers between different
models trained in the sst data set. We can see the transfer attack generated by the BiLSTM
model, and the attack success rate of 52.8∼45.8% has been achieved on the BERT model.
The transfer attack generated by the BERT model achieved a success rate of 39.8% to 13.2%
on the BiLSTM model.

Table 4. Attack transferability results. We report the attack success rate change of the transfer
attack from the source model to the target model, where we generate attack triggers from the
source model and test their effectiveness on the target model. Higher attack success rate reflects
higher transferability.

Test Class

Model Architecture Dataset

BiLSTM BERT SST IMDB
⇓ ⇓ ⇓ ⇓

BERT BiLSTM IMDB SST

positive 52.8% 39.8% 10.0% 93.9%
negative 45.8% 13.2% 35.5% 98.0%

The right side of Table 4 shows the attack transferability of Triggers between different
data sets in the BiLSTM model. We can see that the transfer attack generated by the BiLSTM
model trained on the SST-2 data set has achieved a 10.0∼35.5% attack success rate on the
BiLSTM model trained on the IMDB data set. The transfer attack generated by the model
trained on the IMDB data set has achieved an attack success rate of 99.9∼98.0% on the
model trained on the SST-2 data set. In general, for the transfer attack generated by the
model trained on the IMDB data set, the same model trained on the SST-2 data set can
achieve a good attack effect. This is because the average sentence length of the IMDB data
set and the amount of training data in this experiment are much larger than the SST2 data
set. Therefore, the model trained on the IMDB data set is more robust than that trained
on the SST data set. Hence, the trigger obtained from the IMDB data set attack may also
successfully deceive the SST data set model.

5. Conclusions

In this paper, we propose a universal adversarial disturbance generation method
based on a BERT model sampling. Experiments show that our model can generate both
successful and natural attack triggers. Furthermore, our attack proves that adversarial
attacks can be more brutal to detect than previously thought. This reminds us that we
should pay more attention to the safety of DNNs in practical applications. Future work
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can explore better ways to best balance the success of attacks and the quality of triggers
while also studying how to detect and defend against them.
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