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Abstract: The use of renewable energy and hydrogen technology is a sustainable solution for the
intermittent feature of renewable energies. Hence, the aim of the present work is to design a self-
sufficient system for a one-family house by coupling a solar photovoltaic array and an anion exchange
membrane water electrolyzer (AEMWE). The first step is the selection of the photovoltaic panel
by using PV-SYST 7.0 software. Then, the hydrogen production system is calculated by coupling
the electrolyzer and photovoltaic panel current–potential curves. A fuel cell is selected to use the
hydrogen produced when solar energy is not available. Finally, the hydrogen storage tank is also
estimated to store hydrogen for a design basis of four consecutive cloudy days according to the
hydrogen consumption of the fuel cell. The whole system is designed by a simple procedure for a
specific location in Ciudad Real (Spain) for January, which is known as the coldest month of the year.
The simple procedure described in this work could be used elsewhere and demonstrated that the
hydrogen production at low scale is a suitable technology to use renewable energy for self-energy
supporting in a residential application without any connection to the grid.

Keywords: photovoltaic coupling; alkaline exchange membrane water electrolyzer; hydrogen; re-
newable energy; electrical energy storage

1. Introduction

Renewable energy sources are the solution for the negative environmental impact
of fossil fuel combustion and the dependence on oil-producing countries. However, the
dependence of renewable energy on weather conditions makes it intermittent [1,2]. Hy-
drogen is an energy vector that can be coupled to renewable energy sources with many
applications in residential, transportation, and industries as an energy storage. However,
its efficient production and the storage persist as a problem that is necessary to solve [3].

Water electrolysis is a way to obtain pure hydrogen in combination with renewable
energy such as photovoltaic or wind energy. Anion exchange membrane water electrolyz-
ers (AEMWE) is a technology that starts to be available in the electrolyzer market. Recently,
AEMWE has attracted much attention due to its advantages in comparison to other tradi-
tional electrolyzers, e.g., alkaline water electrolyzers (AWE), solid oxide electrolyzer cell
(SOEC), and proton exchange membrane water electrolyzers (PEMWE) [4–6]. AEMWE
combines the advantage of conventional alkaline electrolysis (in terms of cost) and PEM (in
terms of production capacity and purity of hydrogen), so it can become the key electrolysis
technology for the future. These new designs aim at reducing ohmic overpotentials. In this
way, higher current densities are achieved, thus improving electrolysis efficiency [7].
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On the other hand, photovoltaic (PV) energy is an excellent and clean renewable
energy source [8]. Any photovoltaic unit depends on the solar irradiation and temperature.
However, due to this variation, the solar energy needs to be coupled with an energy storage
unit. Nowadays, this coupling is typically performed by using a battery [9], which stores
renewable energy in the form of chemical energy but with important limitations in terms
of capacity and lifetime. It is useful when the solar energy is not enough for covering the
electrical demand of a house, since an amount of energy is kept in the battery [10].

One interesting alternative to these conventional systems could be the use of the
electrolysis–fuel cell technology so-called “hybrid alternative energy system” [11], which
uses the excess of energy produced in a water electrolyzer to generate hydrogen. Later,
hydrogen, which can be easily stored, is transformed into electricity by using a fuel cell
when photovoltaic renewable energy is not available [12–15]. In order to get a maximum
global efficiency, the coupling between the photovoltaic panel and the electrolyzer must
be performed at the maximum power point (MPP) of the photovoltaic system [16,17].
Different strategies can be found in the available literature for the design of combined PV,
electrolyzer, and fuel cell systems. A combination of empirical electrochemical relationships,
thermodynamics, and heat transfer theory is used in many reports of a hybrid wind–PV
system performance investigation [2,9]. Other reports use energy–exergy and economic
analyses of the hybrid solar–hydrogen renewable energy system [12,13]. The optimization
of a stand-alone photovoltaic–hydrogen supply system by a remote-telecom application
has also been studied [14]. A comprehensive methodology to size, analyze, and assess
PV-H2 systems concerns many researchers that have written different works on the energy
balance and the efficacy of the system in terms of the levels of energy stored and the loading
requirements [18,19].

The current manuscript examines the direct coupling between a PV panel and an
AEMWE using the tools available in the market—for instance, the use of the commercial
PV-SYST software. Nowadays, the proposed coupling (PV panel and AEMWE) is a novelty,
since it is mostly carried out with PEMWE or AWE. The stack lifetime, the degradation,
and the energy consumption are some advantages of AEMWE. The idea is to design a
self-sufficient system for a residential application, i.e., for one-family house by a general
and simple procedure that could be used elsewhere for other similar applications. The
whole system is calculated and designed for a specific location in Ciudad Real (Spain) in
January, which is the coldest month of the year with the lowest radiation level.

2. Methodology
2.1. General Design Considerations

The first design basis considers the typical electrical energy charges for a one-family
house as shown in Figure 1, where energy and hour daily operation are included for a
day [17]. As can be observed from the figure, the peak hour is at 8 p.m., when the total
electrical energy requirement increases up to 1015 Wh, being the period with the higher
electrical energy consumption from 8 p.m. to 11 p.m. This is a daily typical profile of
electrical energy charges for a Spanish house, which may widely vary depending on the
country. Hence, the total amount of electrical demand per day for this case of study is
7.635 kWh/day.
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The third design basis considers that the amount of energy to be stored in form of 
hydrogen should be enough for self-supplying the house for four consecutive days with-
out any PV energy production, since it is based on the meteorological data from this city 
supplied by the PV-SYST software, and January is the most restrictive month with four 
consecutive days without any radiation at all. Thus, if there is a cloudy day or not enough 
solar radiation is available, the house can receive the stored energy in form of hydrogen 
via a fuel cell. The electrical demand of the house for four days is 30.54 kWh. Hence, con-
sidering the hydrogen consumption of the fuel cell for supplying this electrical demand, 
the amount of hydrogen to consider is 1.8 kg, which is the design basis for the hydrogen 
storage tank. Another base design is the efficiency of both the fuel cell and electrolyzer, 
i.e., 73.5% and 45%, respectively. 

2.2. Design Path  
The design path is shown in Figure 2. Firstly, the PV module is selected with PV-

SYST 7.0, which is a powerful and commercially available software for designing photo-
voltaic systems [20]. The electrical energy charges (previously analyzed), geographic lo-
cation, and period of time (month) are the input variables to the software for the PV cal-
culation [21]. Furthermore, a universal regulator is added to the system. Note that alt-
hough a battery is required by the software in order to perform the calculations, it will be 
lately replaced by the electrolyzer–fuel cell system for the electrical energy storage. Hence, 
the aim of this first step is to calculate a preliminary solar PV array for self-electrical en-
ergy consumption and battery storage by direct coupling without any converter and an 
MPP tracker as a coupling system [22–25]. However, in other configurations, it is possible 
to include a battery with the electrolyzer to store rapid power fluctuations or in those 
situations where the AEM electrolyzer is not worth turning on.   
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The second design consideration is the temporal horizon of the full month of January.
Considering that this month is characterized by the lowest radiation level, and it is known
to be the coldest one, if the electrical demand is supplied by the proposed, designed system,
it could be generally considered that those requirements for any other month will be
fulfilled, too. Hence, our specific case study considers the weather data of Ciudad Real,
which is a city located in Spain. As a design basis, the electrical demand is the same for
all days.

The third design basis considers that the amount of energy to be stored in form of
hydrogen should be enough for self-supplying the house for four consecutive days without
any PV energy production, since it is based on the meteorological data from this city
supplied by the PV-SYST software, and January is the most restrictive month with four
consecutive days without any radiation at all. Thus, if there is a cloudy day or not enough
solar radiation is available, the house can receive the stored energy in form of hydrogen
via a fuel cell. The electrical demand of the house for four days is 30.54 kWh. Hence,
considering the hydrogen consumption of the fuel cell for supplying this electrical demand,
the amount of hydrogen to consider is 1.8 kg, which is the design basis for the hydrogen
storage tank. Another base design is the efficiency of both the fuel cell and electrolyzer, i.e.,
73.5% and 45%, respectively.

2.2. Design Path

The design path is shown in Figure 2. Firstly, the PV module is selected with PV-SYST
7.0, which is a powerful and commercially available software for designing photovoltaic
systems [20]. The electrical energy charges (previously analyzed), geographic location, and
period of time (month) are the input variables to the software for the PV calculation [21].
Furthermore, a universal regulator is added to the system. Note that although a battery is
required by the software in order to perform the calculations, it will be lately replaced by
the electrolyzer–fuel cell system for the electrical energy storage. Hence, the aim of this first
step is to calculate a preliminary solar PV array for self-electrical energy consumption and
battery storage by direct coupling without any converter and an MPP tracker as a coupling
system [22–25]. However, in other configurations, it is possible to include a battery with
the electrolyzer to store rapid power fluctuations or in those situations where the AEM
electrolyzer is not worth turning on.
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In the second step, the preliminary number of PV modules estimated by the software
will be recalculated by replacing the battery by the experimental electrolyzer curve obtained
in our lab (that will be described below) and a commercial fuel cell [26]. Considering that
the overall efficiency of the electrolyzer–fuel cell used for energy storage is much lower than
that of the battery (90–95%) [27], the final number of PV modules would be recalculated
according to an energy balance. Once the PVP is designed, the coupling of PV-EL is the
next step. It is based on the coupling of the current–potential curves of the experimental
electrolyzer cell and the PV module at the maximum power point of the latter. By this way,
the final number and area of the electrolysis cells can be obtained. It is a practical strategy
that can be used by the electrolyzer manufacturers.

Then, the fuel cell is selected according to the highest hourly energy consumption
value of the house (1015 Wh). Finally, the hydrogen storage tank is designed considering
that hydrogen should be stored for four consecutive days without any further production.
The complete system is shown in Figure S1 in Supplementary Materials.

3. Results and Discussions

In this section, the most relevant results and calculations will be shown for the four
main components of the whole system: the solar PV array, the electrolyzer, the hydrogen
tank, and the fuel cell.

3.1. Photovoltaic Panel

The preliminary design of the solar PV array is based on PV-SYST 7.0, which is
one useful software for the design of photovoltaic system anywhere in the market [20].
It allows defining an independent system or a general electric grid. In this work, the
system is independent, since it is a one-family house, which must be electrically isolated.
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The electrical charge (shown in Figure 1) was introduced in the software for the initial
calculation of the number of PV modules and the energy storage system in chemical form
with a battery.

The type of PV module is chosen from a list provided by the software, considering
the maximum current of the module and the electrolyzer [26]. Hence, taking into account
that the maximum current point of the electrolyzer is 4 A, according to the experimental
polarization curve obtained in our group, the selected PV is the model Solartec SST72
110 24 106W module with a maximum current of 3.3 A. In agreement with this, the PV
module to choose would have a maximum current point (IMPP) lower than 4 A. This PV
selected module is based on mono-crystalline silicon (c-Si), which is the most common
ones with standard dimensions of 1303 × 666 mm [24,25]. The I-V characteristic curves for
the selected module at different solar radiation levels are also displayed by the software as
shown in Figure S2 of the Supplementary Materials.

On the other hand, the battery system should also be considered at this time. Accord-
ing to the design basis of 4 consecutive days without any PV production and the electrical
energy charges of our case of study, a battery with a power capacity higher than 30.54 kWh
must be selected. In this case, from the list provided by the software, the selected battery is
one with 32.3 kWh of power capacity. The model is Cell HTCFR26650-3800mAh-3.2V. The
capacity is 749 Ah, and the voltage is 48 V. Note that the software warns if the battery is
appropriate or not for the application.

Once the specific types of PV module and battery are chosen, the number of PV
modules displayed in series in the solar PV array is introduced in the PV-SYST 7.0 software
following an optimization procedure, as described below. In this case, the aim is to find the
minimum number of PV modules that allows providing enough electrical energy for all the
days of January to avoid the energy running out with the combined photovoltaic–battery
system. This optimization procedure is performed according to the curves displayed by
the software, which shows the electrical power demand covered by the system and the
loss of energy associated with the fully charged battery (Figure 3). In this case, special
attention should be paid to find the lowest number of PV modules, which avoids the loss
of power demand (green line, secondary axis of Figure 3) for different temporal horizons.
This optimization has started with sixteen PV modules in series (Figure 3a). In this case,
it can be observed that for the temporal horizon of one day (1st January), the system can
self-supply the house, and the battery is not full, since a loss of energy is not shown in the
graph. On the other hand, as can be observed from Figure 3b, keeping this number of PV
modules, the electrical energy demand of the house for a whole week is not covered (the
first week of January). Hence, on the seventh day, the house does not receive any electricity,
since the battery has not received enough energy to be used later. Therefore, the number
of PV modules should be increased to completely charge the battery for its further use.
In this sense, the optimization continues with twenty-two PV modules. In this case (as
can be observed in Figure 3c), the electrical demand is fully covered for self- supporting
the house for the first week, but it seems not to be enough for the second one, since the
power demands fall to zero after the ninth day (as shown in the Figure 3d). Then, the
procedure is repeated for twenty-eight (Figure 3e) and thirty PV modules (Figure 3f), the
latter being the minimum number of PV modules required for covering the whole month
of January. According to this analysis, thirty PV modules and a battery with 32.3 kWh of
power capacity fulfill the preliminary design of the energy-production and storage system.
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The next step deals with the recalculation of the number of PV modules according to
our new proposed energy storage system, which replaces the battery by an EL-FC. At this
point, it should be noted that the software provides the output energy of the photovoltaic
system (Eo,PV30m), which has thirty PV modules—the optimal number for supplying the
electrical demand. Part of this energy is directly used by the one-family house (D), and
the excess energy (Ee,PV30m) is introduced to the battery. Both provided values of energy
are shown in Table 1, along with the electrical demand per day. With the efficiency of
the battery (90%), its output energy (Eo,BA) is calculated, which is also shown in Table 1.
This value should be equal to the output energy of the fuel cell (Eo,EL-FC), considering the
efficiency of the electrolyzer and fuel cell [28–33]. For that purpose, an energy balance is
now performed (as shown in Figure 4) to finally calculate the value of the input energy of
the electrolyzer (Ei,EL). Furthermore, there is an important consideration about the state of
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charge of the battery, since the software considers that the battery has the previous year´s
surpluses. However, it can continue to charge because it is not totally full.

Table 1. Photovoltaic panel energy, battery energy, and electrolyzer energy.

t Eo,PV30m Ee,PV30m Eo,BA Ei,EL Ei,BAe Ee,PVn
(Days) (kWh/Day) (kWh/Day) (kWh/Day) (kWh/Day) (kWh/Day) (kWh/Day)

1 14 6.365 5.729 17.314 1.731 19.045

2 6.81 0.000 0.000 0.000 0.000 0.000

3 4.613 0.000 0.000 0.000 0.000 0.000

4 7.021 0.000 0.000 0.000 0.000 0.000

5 13.65 6.015 5.414 16.362 1.636 17.998

6 6.598 0.000 0.000 0.000 0.000 0.000

7 1.697 0.000 0.000 0.000 0.000 0.000

8 5.79 0.000 0.000 0.000 0.000 0.000

9 7.528 0.000 0.000 0.000 0.000 0.000

10 4.938 0.000 0.000 0.000 0.000 0.000

11 4.883 0.000 0.000 0.000 0.000 0.000

12 15.78 8.145 7.331 22.155 2.216 24.371

13 16.51 8.875 7.988 24.141 2.414 26.555

14 4.798 0.000 0.000 0.000 0.000 0.000

15 10.5 2.865 2.579 7.793 0.779 8.572

16 10.14 2.505 2.255 6.814 0.681 7.495

17 18.53 10.895 9.806 29.636 2.964 32.599

18 6.235 0.000 0.000 0.000 0.000 0.000

19 8.691 1.056 0.950 2.872 0.287 3.160

20 3.597 0.000 0.000 0.000 0.000 0.000

21 11.45 3.815 3.434 10.377 1.038 11.415

22 10.07 2.435 2.192 6.623 0.662 7.286

23 5.58 0.000 0.000 0.000 0.000 0.000

24 11.45 3.815 3.434 10.377 1.038 11.415

25 7.557 0.000 0.000 0.000 0.000 0.000

26 8.529 0.894 0.805 2.432 0.243 2.675

27 1.435 0.000 0.000 0.000 0.000 0.000

28 1.357 0.000 0.000 0.000 0.000 0.000

29 1.593 0.000 0.000 0.000 0.000 0.000

30 17.85 10.215 9.194 27.786 2.779 30.565

31 20.24 12.605 11.345 34.287 3.429 37.716
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The calculation of Ei,EL value for each specific day is performed by using Equation (1),
obtained from the energy balance schematically shown in Figure 4b, which requires the
efficiency of the electrolyzer (ηEL) and fuel cell (ηFC).

EO,EL-FC = ηEL·ηFC·Ei,EL (1)

The obtained values are summarized in Table 1, along with the values of the following
reported parameters: energy of the back-up battery (Ei,Bae) and excess of solar energy
(Ee,PVn). At this point, it should be noted that an oversizing is performed in order to keep
10% of the energy as a back-up battery (Ei,BAe), since most of the strategies found in the
literature use a battery as an additional storage notwithstanding the hydrogen tank [34–38].

Taking into account the extra energy that the solar PV array must produce using
the EL-FC instead of the battery, an oversizing factor can be calculated by Equation (2)
considering the relation between the solar PV array energy of the proposed system and
that of the preliminary solar PV array of thirty PV modules. The obtained sizing factor
is 3, which means that the final number of PV modules required with our new storage
system is ninety. The proposed system requires more PV modules because the efficiency of
a battery (90%) is higher than the efficiency of the EL-FC system (33%) as known. However,
the charge/discharge cycles that spoil a battery lead to a short lifetime, and the efficiency
is reduced by up to 40% at the end of the year of use. In addition, the ratio of electrical
energy returned by the system EL-FC over its lifetime to the electrical equivalent energy
required to build this system is also affected. Furthermore, the components of the battery
are less environment friendly with a high amount of pollutants. The lifetime estimation of
our system is about 20 years, as many referees have reported [39–42].

fPV =
Ee,PVnm

Ee,PV30m
(2)

Our system contains in total ninety PV modules, and considering that one PV module
area is 0.868 m2, the total area of the solar PV array is 78.12 m2, which perfectly fits the
standard dimensions of the roof of the house. This final value agrees well with those of
the solar PV array areas found in other studies for similar applications, whose calculation
approaches were 65.2 m2 for a PV system integrated into a one-family house at Zollbrück,
Switzerland [43] and 65 m2 as the optimal area for direct coupling between a solar PV array
and a proton exchange membrane water electrolyzer [26].

3.2. AEMWE Electrolyzer

In this work, we have used for the coupling, as shown in Figure 5, the current–potential
curves experimentally obtained in our lab with a self-prepared membrane electrode assem-
bly (MEA). It is based on two electrodes, an anode and cathode, made of metallic Ni-Fe
sputtered by the magnetron sputtering technique [26,44–46] on Carbon Gas Diffusion
Layers (GDL) and a Fumapem FAA-3-50 membrane [4], which is located in the middle of
both electrodes [47]. The electrolysis unit also includes a corrosion-resistant 5 cm2 anode
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and cathode nickel flow fields. For this work, a polarization curve of this experimental
electrolyzer is used for the coupling, as shown in Figure 5. The experimentation to ob-
tain the sweep voltammetry was carried out in a potassium hydroxide solution (1 M) at
40 ◦C temperature.
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According to previous studies [18,26], the most efficient coupling of the PV module
with the experimental electrolyzer occurs at the maximum power point of the PV module
at the highest radiation level, 1000 W/m2. However, the maximum power point of the
experimental electrolyzer is much lower than that of the PV module. In terms of current,
the maximum current of the PV module is close to the maximum value of the experimental
electrolyzer. However, it is not possible in terms of voltage, since the electric potential
of the electrolyzer is much lower. For this reason, the number of cells in series in the
electrolyzer must be modified until reaching the maximum power point of the PV module,
whose coupling is shown in Figure 6.

As can be observed from Figure 6, fifteen AEMWE cells are required per PV module
for reaching the maximum power point of the PV module. It means that a high number of
cells will be required for the ninety PV modules. This is due to the low geometric area of the
electrodes (5 cm2) of the experimental lab-scale electrolyzer used. Hence, considering that
the electrode area of a commercial AEM electrolyzer is typically between 50 and 200 cm2,
selecting the area of the electrolyzer is a good approach for obtaining a system of large scale
and reduces the number of electrolyzer cells into the stack. According to the polarization
curve, as shown in Figure 5, the I-V curve for an electrolyzer with an area of 50 cm2 is
obtained through it (Figure S3). Hence, considering that the maximum current point of the
electrolyzer (IMPP) is 40 A, the last PV module is not a good approach for this new coupling.
For this reason, a new PV module with more current than the last one must be chosen. The
selected PV model is a Solartec SSW72 08 108 Wp module, with a maximum current per
module of 8 A. For this reason, a PV string with five PV modules in parallel is required to
reach 40 A of current. It was not necessary with the 5 cm2 electrolyzer, since the maximum
current point was 4 A as the PV module point, and the coupling in terms of the current
was fixed. The I-V curve of the selected module is shown in Supplementary Materials; see
Figure S4.



Appl. Sci. 2021, 11, 9582 10 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 19 
 

 
Figure 5. Polarization curve of the experimental AEMWE. 

According to previous studies [18,26], the most efficient coupling of the PV module 
with the experimental electrolyzer occurs at the maximum power point of the PV module 
at the highest radiation level, 1000 W/m2. However, the maximum power point of the ex-
perimental electrolyzer is much lower than that of the PV module. In terms of current, the 
maximum current of the PV module is close to the maximum value of the experimental 
electrolyzer. However, it is not possible in terms of voltage, since the electric potential of 
the electrolyzer is much lower. For this reason, the number of cells in series in the electro-
lyzer must be modified until reaching the maximum power point of the PV module, 
whose coupling is shown in Figure 6.  

  
Figure 6. Coupling Solartec SST72 110 24 106W PV module −5 cm2 electrolyzer. 
Figure 6. Coupling Solartec SST72 110 24 106W PV module −5 cm2 electrolyzer.

Following the same procedure explained for the electrolyzer of 5 cm2 (Figure 3), the
number of PV strings required by the electrolyzer of 50 cm2 was found to be five. This
optimization of the number of PV strings in series is shown in Supplementary Materials;
see Figure S5. Applying the sizing factor obtained in Section 3.1 by Equation (2), fifteen
PV strings are required by the system EL-FC, and seventy-five PV modules are contained
in the solar PV array for the coupling with EL-FC system. The area of solar PV array is
65.325 m2, considering that the photovoltaic module area is 0.871 m2, which are close to
the values reported in the available literature [26,43].

As can be observed from the coupling shown in Figure 7, six electrolyzer cells are
required per PV string for reaching the maximum power point. According to this, the total
number of electrolyzer cells is really lower than before; thirty electrolyzer cells are required
by the solar PV array.

3.3. Fuel Cell

In this section, the aim is the selection of an appropriate fuel cell. On the daily demand
per hour of the one-family house (see Figure 1), the peak maximum of electrical power
is achieved at 8 pm, 1.015 kW. The selected fuel cell must be available for supplying this
power demand when the solar energy is null. Considering this, the maximum power
per hour that the fuel cell must supply is 1.218 kW according to a 20% of oversizing.
A possible commercially available option among different manufacturers is the model
Fcgen-1020ACS, which is a proton exchange membrane (PEMFC) that can be scaled up
to meet power requirements from 450 W to 3 kW. The physical characteristics per stack
of fifty-six fuel cells is 363 × 103 × 351 mm; the fuel flow rate per fuel cell is 0.5 standard
liters per minute (slpm), and the rated power is 41.1 W/cell. It is an air-cooled fuel cell
stack with an open-cathode and a self-humidifying MEA, which allows eliminating the
humidifier, coolant pump, and radiator. Therefore, to cover the power of 1.218 kW, thirty
fuel cells are necessary in the FC stack. For more information of the fuel cell, see Figure S6
in Supplementary Materials.
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An estimation of the hydrogen consumption is taken into account, since the Ballard
manufacturer provides the consumption of hydrogen, 0.5 L/min per cell. In terms of mass,
it is 0.059 kg/day per cell. This hydrogen consumption is for a production of 30 kWh per
day. As in our system, the maximum electrical demand per day is 7.635 kWh, and the fuel
cell consumes 0.45 kg for obtaining this energy. For this reason, considering the design
basis of four consecutive days without solar energy, the amount of hydrogen that must be
stored in the tank is 1.8 kg.

3.4. Hydrogen Tank

Different methods have been reported for hydrogen storage as hydrogen hydrates,
which have been compared in the bibliography with existing hydrogen storage technolo-
gies [47,48]. This type of storage is useful when a large distance transport is required [49,50].
However, for low-scale application and for single-entry production–consumption, the com-
pressed hydrogen storage (CGH2) is the best choice. In this study, a typical mathematic
method for the design of pressurized tanks has been used [51]. The main design basis is
the conditions and amount of hydrogen to be stored (1.8 kg, as already mentioned). A
commercial AEMWE, such as the ones commercialized, achieved the maximum hydrogen
pressure conditions of 35 bars [52]. Hence, for the current study, the pressure and tempera-
ture conditions are fixed in 30 bars and 298 K. Due to this outlet pressure, a compressor is
not required for this residential application. The tank volume is calculated by the equation
of Mench [19,51], which is defined as follows:

P
n3 ·V

3 +

(
-
P·b
n2 -

Ru·T
n2

)
·V2 +

a
n
·V-a·b = 0 (3)

where P is the pressure (3 × 106 Pa), V is the tank volume (m3), n is the number of moles
(900), Ru is the universal gas constant (8.314 J/mol K), T is the temperature (298 K), and a
and b are constant calculated by Equations (4) and (5), respectively.

a =
27
64

·R
2
u·T2

c
Pc

(4)
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b =
Ru
8
·Tc
Pc

(5)

where Tc is the critical temperature and Pc is the critical pressure of the hydrogen gas.
The initial hydrogen conditions are collected in Table S2. All this allows calculating the
tank volume achieving a theoretical value of 0.758 m3. Considering an oversizing of 20%,
a final volume of 0.91 m3 is obtained for the hydrogen tank. Concerning the recipient
material, carbon steel is the preferred one for indoor pressure equipment according to the
ASME BPVC Section VIII code [53]. Future developments of new composite materials
would increase the tensile strength above that of steel, although most of the reports use
a wide range of steel types, e.g., stainless steel [54]. Then, the specific dimensions of the
hydrogen tank are calculated using the Mijalev monogram (see Figure S7 in Supplementary
Materials) [55], which shows two axes, reduced pressure (MPa) and tank volume (m3).
Reduced pressure is estimated with Equation (6):

Pred =
Pcal

10·[σ]·C (6)

where Pred is the reduced pressure (MPa), Pcal is the calculation pressure (3.6 MPa), [σ] is
the permissible tension of carbon steel (107.1 MPa), and C is the overthickness by corrosion
(0.002 m). These parameters are according to carbon steel material [52].

Once the tank volume (0.91 m3) and reduced pressure (1.6807 MPa) are calculated, the
Mijalev monogram is used to know the optimal diameter, 0.7 m. As the tank is cylindri-
cal, the height is calculated with the diameter and volume. The optimal dimensions are
2.4 m × 0.7 m.

As it is an indoor pressure tank, the shell is indispensable for the safety of the sys-
tem [51]. The thickness of the shell is calculated according to Equation (7):

Scal= max

{
Pdesign·D

2·∅·[σ]-Pdesign
;

Ptest·D
2·∅·[σ]test-Ptest

}
(7)

where Scal is the shell thickness (m), Pdesign is the indoor pressure tank (3 × 106 Pa), D is the
diameter (0.7 m), ∅ is the welding factor (1), [σ] is the permissible tension of carbon steel
(107.1 × 106 Pa), Ptest is the test pressure (4.5 × 106 Pa), and [σ]test is the test permissible
tension (97.364 × 106 Pa) [56–58].

To sum up, the shell thickness obtained is 0.0166 m. An overthickness by corrosion of
0.002 m is taken into account following the ASME code [53]. Then, the total thickness of the
shell is 0.0186 m. The final dimensions are graphically shown in Supplementary Materials;
see Figure S8. This design method considers the design criteria in which the amount of
material is minimum. For this reason, an optimization of material is automatically made.

4. Economic Evaluation

In this section, the EL-FC system is economically analyzed for comparing the useful-
ness of this from a different point of view, which is followed by the economic comparison
with the conventional system with a battery. Some parameters have been considered such
as the Levelized Cost of Energy (LCOE), which is used for evaluating the cost of the system;
the LCOE value can be calculated through the Nizetic et al., equation [59,60]:

LCOE =
IC·CRF + OM

EO
(8)

where IC is the installation cost, OM is the operation and maintenance cost, CRF is the
capital recovery factor, and EO is the average annual overall energy output from the system.
The CRF factor is calculated according to the next equation:

CRF =
(1 + i)n·i
(1 + i)n−1

(9)
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where p is the interest rate and n is the amortization period. In this case, the interest rate is
10% and the amortization period is twenty years.

Furthermore, two economic parameters have been calculated for clarifying the finan-
cial part. On the one hand, the Net Present Value (NPV) is an economic tool used to equate
the total cost of a project over a specified period to the total cost today, taking into account
the time value of money. On the other hand, the Internal Rate of Return (IRR) is a financial
parameter to estimate the profitability of potential investments [27,61].

NPV =
n

∑
0

C
(1 + i)n (10)

where C is the net cash flow; i and n were previously defined.
The technical specification of the photovoltaic panel, electrolyzer, fuel cell, and bat-

tery were mentioned in the corresponding section of each equipment, and the economic
specifications are summarized in Table 2. The hydrogen tank investment was calculated in
order to measure the amount of carbon steel required (see Equation (11)). The equipment
investment is shown in Table 3, and the total investment of the system is similar to other
reports [18,62].

m = ρ·S·
(

4·V
D

+1.04·D2
)

(11)

where m is the amount of carbon steel, ρ is the carbon steel density, S is the thickness, V is
the volume, and D is the diameter of the tank.

Table 2. Economic and technical specification for the components of EL-FC/conventional system.

System Component Data Specification

EL-FC

Photovoltaic Panel
Size (Wp/module) 109

Lifetime (years) 20
Capital Cost (€) 3052

O&M Cost (€/year) 5
Electrolyzer
Size (cm2) 50

Lifetime (years) 20
Capital Cost (€) 5493

O&M Cost (€/year) 10
Fuel Cell
Size (W) 1013
Lifetime 15,000

Capital Cost (€) 2436
O&M Cost (€/year) 4

Hydrogen Tank
Size (m3) 0.91

Lifetime (years) 20
Capital Cost (€) 1846

O&M Cost (€/year) 3

Conventional

Photovoltaic Panel
Size (Wp/module) 106

Lifetime (years) 20
Capital Cost (€) 3562

O&M Cost (€/year) 6
Battery

Nominal Capacity (kWh) 32.3
Lifetime (years) 1
Capital Cost (€) 7273

O&M Cost (€/year) 12
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Table 3. Equipment investment and economic parameters for both systems: the electrolyzer–fuel cell
system without a battery and the conventional system (photovoltaic panel with battery).

System Component Cost
(€)

Total
(€) NPV (€) IRR

(%)
LCOE

(€/kWh)

Photovoltaic Panel 3052

12,827 660 10.61 0.541
Electrolyzer 5493

Fuel Cell 2436
EL-FC

Hydrogen Tank 1846

Photovoltaic Panel 3562
BATTERY

Battery 7273
10,835 2164 12.31 0.534

Once the equipment investment is known, the rest of the investments are calculated
by the Vian Method (see Table S3 in Supplementary Materials); following it, the total invest-
ment is 15803 € and 13348 € for the EL-FC system and conventional system, respectively.
The datasheet of the battery indicates that the efficiency of 90% is only maintained for a
year of use. According to this design, a new battery has to be bought every year because
the design was carried out with this efficiency. The rest of the equipment has roughly a
life of 20 years of use, as many researchers have supported [63,64]. For this reason, the
investment period is 20 years, as has been shown in Table 2.

The aim of the economic evaluation is obtaining the value of the above-mentioned
parameters for comparing the systems (NPV, IRR, CRF, LCOE); the results are shown in
Table 3. For this, a series of parameters is required including fixed capital investment,
working capital investment (10% of the fixed capital investment), invested funds, benefits,
amortization, and cash flow (see Table S4 in Supplementary Materials). Currently, the
conventional system presented a more sympathetic economic part, since the NPV and IRR
is higher, 2164 and 12.31%, respectively. The main barrier for the El-FC system is their high
initial investment cost and the reliability of novel energy technologies. According to the
economic results, the LCOE value of our system is higher than the conventional system
due to the novelty of our system, which involves an anion exchange membrane water
electrolyzer that has been little developed so far, corresponding to a high cost (see Table 3).
However, the values of LCOE are coming up between both and are similar to other reports
(see Figure 8) [62,65].
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5. Conclusions

The obtained results demonstrate that the introduction of a hydrogen and photo-
voltaic system into a domestic application is a viable option to supply energy without
any connection to the grid. For isolated locations from the electricity grid, this method of
coupling is a good approach to produce energy.

The design takes place in Spain, but the procedure developed in this work can be
generally used elsewhere, since it implies the use of a commercial PV software and available
general information.

The present study is based on a novel and simple procedure to design a photovoltaic–
hydrogen system, but the obtained sizing results of the different components are in good
agreement with previous studies, which typically used more complex models or experi-
mental procedures, which supports the information reported here.

An initial solar PV array is calculated by using the commercial software PV-SYST 7.0,
which considers the energy storage within a battery. However, in the next steps, the battery
is replaced by the electrolyzer–fuel cell system because the battery has a short lifetime and
charge/discharge cycles. Furthermore, the battery components are less friendly with the
environment. In this way, the study obtains the most sustainable way of producing energy
in an isolated location. These results demonstrate that it is possible to use hydrogen for a
self-sufficient energy system for low-scale domestic application as an alternative method
to conventionally used batteries.

This study leads to an increase in the final area of the solar PV array to a final value
of 65.325 m2, which is feasible within the standard dimensions of the roof of a house and
agrees well with previous results published in the literature. The optimal final dimensions
of the hydrogen tank were found to be 2.4 × 0.7 m at 30 bars as storage pressure, being the
selected material carbon steel. These dimensions are close to the dimensions of the diesel
tank that nowadays is commonly being used at home. In addition, the final number of
cells in the electrolyzer has been calculated according to the commercial AEMWE units
available in the market. A PEM fuel cell is chosen in order to achieve the maximum power
required in the application. All the equipment can be laid down in any one-family house.

This paper has demonstrated that the EL-FC system needs only 12827 € of initial
capital with an LCOE of 0.541 €/kWh, which are competitive values with the results
reported in the bibliography. In addition, this system is sustainable with the environment
because it has a lower environmental impact than the conventional system. We hope that
the scientific community continues to push up the development of the anion exchange
membrane water electrolyzer coupling with renewable sources.
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Nomenclature

BA Battery
EEL Consumed energy by the electrolyzer per kg of hydrogen, 45.29 kWh/kgH2
I Current, A
ηBA Efficiency of battery, 0.9
ηFC Efficiency of fuel cell, 0.65
D Electrical demand, Wh/day or kWh/day
SEL Electrolyzer area
EL Electrolysis cell
E Energy, kWh
EBae Energy of the extra battery, kWh/day
Ee Excess energy, kWh/day
BAe Extra battery
FC Fuel cell
HT Hydrogen tank
Ei Input energy, kWh/day
Ei,EL Input energy of electrolyzer, kWh/day
NEL Number of EL cells in series
NPV Number of PV modules in series
PV1m One photovoltaic module
So,EL Optimal area of electrolyzer
NPV,OP Optimal number of PV modules in series
Eo Output energy, kWh/day
Eo,BA Output energy of battery, kWh
Eo,FC Output energy of fuel cell, kWh/day
Eo,PVnm Output energy of n photovoltaic module, kWh/day; n: number of photovoltaic modules.
Po,FC Output power of fuel cell, kW
OT Oxygen tank
SPVp Photovoltaic array area
SPVm Photovoltaic module area
P Power, kW
IMPP PV Current at the maximum power point (MPP), A
VMPP PV Voltage at the maximum power point (MPP), V
fEL Sizing factor of electrolyzer
fPV Sizing factor of photovoltaic panel
PVP Solar PV array
G Solar radiation, W/m2

SSEL Stack electrolyzer area
T Time, hour or day
V Voltage, V
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