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Even though plasma is the most common state of aggregation in the known universe,
its complex chemistry and physics, as well as its specifics and particular characteristics, are
not yet fully understood [1,2]. However, this medium has made possible a wide range of
quite different everyday products and applications—and still does and most certainly will
do in the future.

Following the pioneer works by Georg Christoph Lichtenberg, Werner von Siemens,
Sir William Crookes, Sir Joseph John Thomson, Irving Langmuir, and others, plasma
generators have quite rapidly been established as ozone or light sources. Even though
conventional plasma-based fluorescent lamps have been available since the 1930s, plasmas
still feature a high potential in lightening technology. Here, novel radiation sources with
unique properties, such as, for example, extremely short wavelengths [3] for lithography
purposes or highest homogeneity [4], well suited for calibration processes [5], were intro-
duced recently. Moreover, the potential of plasmas as functional devices for the generation
of short light pulses in modern Q-switched laser sources was reported [6].

Since the 1960s, technical plasmas have been well established in modern manufactur-
ing and especially in coating technology or surface cleaning, functionalisation, activation,
and modification. Here, the improvement of adhesion characteristics is one of the most
important and advantageous plasma-induced effects. In the last few decades and years,
the use of plasmas as an enabling key technology has allowed for the development of
novel approaches and methods in quite different fields of applications. For instance,
novel plasma-based healthcare solutions were recently established—which is essential
progress, especially with respect to the persisting COVID-19 pandemic [7]. The application
of plasmas has also become a powerful tool in dermatology [8] or even minimal-invasive
endoscopic cancer therapy [9]. Other comparatively novel branches for plasma applications
are food technology and agriculture [10].

Furthermore, plasma technology acts as a driving force for the development of com-
pletely novel manufacturing methods or cutting-edge techniques. For instance, plasmas
have turned out to allow an enhanced synthesis of nanoparticles [11], the generation of
nanoassemblies [12], the development of cloaking devices [13], and the design of efficient
power units in astronautics [14]. Another quite new approach is the simultaneous com-
bination of plasmas with other tools or phenomena, such as laser irradiation [15,16], in
order to induce advantageous synergies and provide hybrid manufacturing techniques
with improved accuracy and efficiency.

Apart from such technical applications, constant research has led to a better under-
standing of the aggregation state plasma and its interaction with other media [17,18]. Such
understanding allows plasma-based materials analysis with high accuracy via inductively
coupled plasma atomic emission spectroscopy (ICP-AES) [19] or laser-induced breakdown
spectroscopy (LIBS) [20,21]. Even though the latter technique is one of the oldest laser
applications, it is highly topical, for example, in space research: In August 2012, a LIBS
device named ChemCam was put into operation on Mars, revealing the presence of hy-
drogen. Most recently, in February 2021, a second LIBS apparatus—the SuperCam on
board the Perseverance Rover—was successfully sent to Mars [22]. Here, plasma science
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and technology allows the exploration of distant planets—and maybe the discovery of
indications or even evidence of extra-terrestrial life one day . . . ?
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