
applied
sciences

Article

Deep Learning-Based Method to Recognize Line Objects and
Flow Arrows from Image-Format Piping and Instrumentation
Diagrams for Digitization

Yoochan Moon 1, Jinwon Lee 1 , Duhwan Mun 1,* and Seungeun Lim 2

����������
�������

Citation: Moon, Y.; Lee, J.; Mun, D.;

Lim, S. Deep Learning-Based Method

to Recognize Line Objects and Flow

Arrows from Image-Format Piping

and Instrumentation Diagrams for

Digitization. Appl. Sci. 2021, 11, 10054.

https://doi.org/10.3390/

app112110054

Academic Editor: Manuel Armada

Received: 9 September 2021

Accepted: 25 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
ans9173@korea.ac.kr (Y.M.); jinwonlee@korea.ac.kr (J.L.)

2 Department of Precision Mechanical Engineering, Kyungpook National University, 2559, Gyeongsang-daero,
Sangju-si 37224, Gyeongsangbuk-do, Korea; sea3729@naver.com

* Correspondence: dhmun@korea.ac.kr; Tel.: +82-2-3290-3359; Fax: +82-2-926-9290

Abstract: As part of research on technology for automatic conversion of image-format piping and
instrumentation diagram (P&ID) into digital P&ID, the present study proposes a method for recog-
nizing various types of lines and flow arrows in image-format P&ID. The proposed method consists
of three steps. In the first step of preprocessing, the outer border and title box in the diagram are
removed. In the second step of detection, continuous lines are detected, and then line signs and
flow arrows indicating the flow direction are detected. In the third step of post-processing, using the
results of line sign detection, continuous lines that require changing of the line type are determined,
and the line types are adjusted accordingly. Then, the recognized lines are merged with flow arrows.
For verification of the proposed method, a prototype system was used to conduct an experiment of
line recognition. For the nine test P&IDs, the average precision and recall were 96.14% and 89.59%,
respectively, showing high recognition performance.

Keywords: deep learning; image processing; line object; object recognition; piping and instrumenta-
tion diagram

1. Introduction

Image recognition is a technology that has been studied for a long time in the field of
computer vision, as a technology for identifying information in an image. With the recent
developments of artificial intelligence, deep learning-based image recognition is being
applied in various industries, such as autonomous driving [1], medical diagnoses [2], facial
recognition [3], and smart farms [4]. In addition, various studies using deep learning have
been conducted in the engineering field, such as drawing digitization [5], manufacturability
verification [6], and fault diagnosis [7].

Piping and instrumentation diagrams (P&IDs) are developed based on process flow
diagram (PFD) information. A P&ID includes piping, instrumentation, equipment, and
fittings, which are components of each process, and the relationship between these compo-
nents and the flow of fluids are depicted in detail in the diagram. P&ID is a crucial means
of storing results in the basic design stage and is used as master data in the subsequent
stages of detailed design, construction, and operation. Therefore, when the need arises, the
engineering information stored in P&IDs must be quickly and accurately searched.

Presently, most engineering, procurement, and construction (EPC) companies use
digital P&IDs. However, even in the case of a newly constructed plant, the P&IDs created
in the front end engineering and design (FEED) stage or those provided by the equipment
and material manufacturers are in an image format in many cases due to contractual
relationships or issues of intellectual property security. Enterprises that operate plants also
apply digital P&IDs, but in the case of aging plants that have been in operation for a long

Appl. Sci. 2021, 11, 10054. https://doi.org/10.3390/app112110054 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4810-1014
https://orcid.org/0000-0002-5477-0671
https://doi.org/10.3390/app112110054
https://doi.org/10.3390/app112110054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110054
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110054?type=check_update&version=1

Appl. Sci. 2021, 11, 10054 2 of 21

time, a large amount of P&IDs are stored in image format, making digitization for these
image-format P&IDs necessary. In addition, these companies often undergo continuous
improvements and expansion of plants in the process of plant operation, and in these cases,
P&IDs are provided in image formats from external contractor companies.

In this regard, conversion of P&IDs from image formats into digital P&IDs is essential.
In the digitization of P&IDs, high-level objects in the image format diagram are identified,
the relationship between these objects is formed, and the engineering attributes required
for objects are input to create a digital diagram. The processes needed for the digitization
of P&ID can be categorized into a step of recognizing information objects constituting a
diagram in the image, identifying the relationship between the recognized objects, and
creating a digital P&ID from the obtained information. At present, these processes are
performed manually in most cases, which makes the process time-consuming and causes
the problem of varying quality, depending on the person who manually performs the
above operations.

As part of the abovementioned research, the present study proposes a method for
recognizing various types of line objects and flow arrows included in P&IDs. Lines used in
the P&ID include continuous lines and lines incorporating line signs. A flow arrow is a
symbol indicating the flow direction of a pipeline. In P&IDs, a flow arrow is included in
the line object and shows the direction of a fluid passing through the line object.

The proposed method consists of three steps. In the first step, the outer border and
title box in the diagram are removed. In the second step, continuous lines are detected, and
then line signs and flow arrows indicating the flow direction are detected. In the third step,
using the results from the line sign detection, continuous lines that require changing of the
line type are determined, and the line types are adjusted accordingly. Next, the recognized
lines are merged with flow arrows.

This research has the following academic contributions. First, unlike previous studies
that mainly identified continuous lines in image-format P&IDs, various types of lines were
recognized by combining techniques of image processing and deep learning. Second, the
flow arrows were recognized and merged as the sub-element of the recognized line. Third,
the format of the training data required for deep learning-based recognition of line signs
and flow arrows was defined, and the dataset was constructed.

The structure of this paper is organized as follows. Section 2 reviews related works.
Section 3 proposes a method for recognizing line objects after the definition of line ob-
jects to be addressed. Section 4 describes the results of constructing a dataset required
for training a deep neural network to apply line object recognition. Section 5 presents
the detailed element techniques used for each step of recognizing line objects and flow
arrows. Section 6 presents the implementation and experimental results. Finally, Section 7
concludes this study.

2. Related Work

Object detection is a technique in which object classification and object localization
are performed for multiple objects in an input image. In the case of conducting object
classification with image processing technique [8,9], features are extracted from the image
through the techniques such as histogram of oriented gradient (HOG) [10], scale invariant
feature transform (SIFT) [11], local binary pattern (LBP) [12], and modified census transform
(MCT) [13]. Then, from the distribution of the extracted features, the target object for
recognition is classified using a classifier, such as a support vector machine (SVM) [14]
and Adaboost [15]. In the process of performing object detection, feature sets in a specific
region are selected from the set of extracted features, and classification is performed using
the selected feature sets.

There has been recent development of a variety of object detection methods based
on convolutional neural networks (CNNs) [16]. The deep learning-based object detection
method can be divided into a one-stage detector and a two-stage detector. In the two-
stage detector, regional proposal and classification are performed in sequence. Here, the

Appl. Sci. 2021, 11, 10054 3 of 21

regional proposal searches the region where the candidate object is located in the image
using methods such as a sliding window [17]. Representative examples of two-stage
detectors include R-CNN [18], fast R-CNN [19], and faster R-CNN [20]. On the other
hand, the one-stage detector is a method in which the regional proposal and classification
are performed simultaneously. Representative examples of one-stage detectors include
YOLO [21], SSD [22], and RetinaNet [23]. In general, one-stage detectors have a fast
inference speed but low detection accuracy and two-stage detectors have a slow inference
speed but high detection accuracy. Recently, more advanced deep neural networks have
emerged with comparable detection accuracy to a two-stage detector and a comparable
inference speed to a one-stage detector, such as RetinaNet and M2Det [24].

The Hough transform [25] is a method commonly used for recognizing lines in an
image, and the main application area is lane detection [26]. When performing lane detection
using the Hough transform, the input image is converted into a binary image. Next, after
extracting the edge by applying the canny edge detector, the lane is detected using the
Hough transform. However, if the Hough transform is applied to the image in a diagram, a
problem arises in which one line is recognized as multiple lines due to the thickness of the
line. In order to address this problem, line thinning [27] has been employed. Line thinning
indicates converting a binary image with a thickness into an image with a thickness of
1 pixel. OpenCV implements two types of Hough line transform. First, a function detects
straight lines by performing the Hough transform on all pixels in an image. Second, a
function detects a line segment by performing a probabilistic Hough transform on some
pixels instead of all pixels.

Recently, active research has been underway on lane detection in video clips using
deep learning [28]. Point instance network (PINet) [29] is a representative example of deep
learning-based lane detection technology. In PINet, the existence of lanes in each receptive
field and offset are estimated from the images, and training on the lane classification is
performed so that lanes on the same line have similar features. The datasets used for
training lane detection are TuSimple [30] and CULane [31].

The main components of a P&ID include symbols, the connection between the symbols
represented by a line, and the attributes assigned to the symbols and the lines through
texts or signs [32]. Here, symbols and lines have engineering meanings for the relevant
applications. To date, several studies [33–35] have reported the recognition of various
types of diagrams, such as electrical diagrams, engineering diagrams, logic diagrams, and
piping and instrumentation diagrams (P&ID). With recent developments in deep learning
algorithms, there has been active research on the application of CNN-based deep learning
methods in the process of diagram recognition [36–40]. In [36] recognition of a simple logic
diagram with general application targets was done. In the work in [37], although P&ID was
a recognition target, preprocessing of the diagrams was not considered, and the recognition
of lines and tables was not investigated. In [38], a method for recognizing symbols, lines,
and texts included in P&IDs was proposed. However, for line recognition, the target was
limited to continuous lines. In [39], R-CNN was employed to recognize symbols in P&IDs,
but there was no discussion on the recognition of texts or lines. In [40], a method for the
recognition of various types of symbols and texts was presented for high-density P&IDs.
Similar studies related to line recognition in P&ID include [25,38]. However, in both studies,
only continuous lines in vertical and horizontal directions were recognized by performing
pixel processing-based line recognition. Accordingly, the diagonal continuous line, and
types of lines other than continuous lines could not be recognized. In addition, the flow
arrow could not be processed.

3. Method of Recognizing Line Objects
3.1. Line Objects to Be Recognized in P&ID

The type of line objects to be recognized in P&IDs are a continuous line, a line
incorporated with a line sign, and a flow arrow, as shown in Figure 1. A continuous
line usually represents piping in P&IDs. The lines representing piping serve as a link

Appl. Sci. 2021, 11, 10054 4 of 21

between the flow of a fluid and the process in the P&ID. In addition to the continuous
line, a line incorporated with a line sign typically represents a signal line. The signal lines
transmit electrical, pneumatic, or data signals. Finally, the flow arrows serve to indicate the
flow direction of a fluid in the direction of the arrow.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21

3. Method of Recognizing Line Objects
3.1. Line Objects to Be Recognized in P&ID

The type of line objects to be recognized in P&IDs are a continuous line, a line incor-
porated with a line sign, and a flow arrow, as shown in Figure 1. A continuous line usually
represents piping in P&IDs. The lines representing piping serve as a link between the flow
of a fluid and the process in the P&ID. In addition to the continuous line, a line incorpo-
rated with a line sign typically represents a signal line. The signal lines transmit electrical,
pneumatic, or data signals. Finally, the flow arrows serve to indicate the flow direction of
a fluid in the direction of the arrow.

Information identified through the recognition of line objects includes class, location,
and flow arrow. The class represents the classification of line type. The location is the co-
ordinates of the start point and the end point of the line object. In representing the location,
a start point is at the left side in the case of a horizontal line and at the top in the case of a
vertical line. Flow arrows identify the directions, and with reference to the diagram, they
are expressed in four orientations: east, west, south, and north.

Figure 1. Definition of line objects to be recognized in P&IDs.

3.2. Method of Recognizing Line Objects
Figure 2b shows the result of recognized continuous lines from the image format

P&ID (Figure 2a) when pixel processing-based method adopted in [35] and [38] are ap-
plied. As shown in Figure 2b, the objects that only correspond to continuous lines are
correctly recognized. However, in other types of objects, occurred problems are shown as
error case 1, 2, and 3 of Figure 2. Error case 1 in Figure 2 shows a situation in which a line
incorporated with a symbol or text is recognized as a continuous line. Error case 2 in Fig-
ure 2 illustrates a problem when the line type was not recognized to fit the line sign em-
bedded in the continuous line. The error case 3 in Figure 2 shows a problem that the in-
formation of the flow arrow detection is not merged with the line object.

A way to solve these problems is to develop a method for robustly recognizing con-
tinuous lines and determining the line type after detecting line signals and flow arrow, or
to develop a new method for directly recognizing different types of lines. Image pro-
cessing techniques including pixel processing show high performance in recognizing con-
tinuous lines. However, it is not efficient for detecting line signs and flow arrows. On the
other hand, deep artificial neural networks [21–24] show high performance in detecting
objects of a set of anchor sizes and ratios. Therefore, it is suitable for detecting line signs
and flow arrows. However, it is difficult to detect a continuous line in which a line sign is
embedded and a change in length is very large. Considering this, it is feasible and effective
to apply the first method.

Figure 1. Definition of line objects to be recognized in P&IDs.

Information identified through the recognition of line objects includes class, location,
and flow arrow. The class represents the classification of line type. The location is the
coordinates of the start point and the end point of the line object. In representing the
location, a start point is at the left side in the case of a horizontal line and at the top in
the case of a vertical line. Flow arrows identify the directions, and with reference to the
diagram, they are expressed in four orientations: east, west, south, and north.

3.2. Method of Recognizing Line Objects

Figure 2b shows the result of recognized continuous lines from the image format P&ID
(Figure 2a) when pixel processing-based method adopted in [35,38] are applied. As shown
in Figure 2b, the objects that only correspond to continuous lines are correctly recognized.
However, in other types of objects, occurred problems are shown as error case 1, 2, and 3
of Figure 2. Error case 1 in Figure 2 shows a situation in which a line incorporated with
a symbol or text is recognized as a continuous line. Error case 2 in Figure 2 illustrates
a problem when the line type was not recognized to fit the line sign embedded in the
continuous line. The error case 3 in Figure 2 shows a problem that the information of the
flow arrow detection is not merged with the line object.

A way to solve these problems is to develop a method for robustly recognizing
continuous lines and determining the line type after detecting line signals and flow arrow,
or to develop a new method for directly recognizing different types of lines. Image
processing techniques including pixel processing show high performance in recognizing
continuous lines. However, it is not efficient for detecting line signs and flow arrows. On
the other hand, deep artificial neural networks [21–24] show high performance in detecting
objects of a set of anchor sizes and ratios. Therefore, it is suitable for detecting line signs
and flow arrows. However, it is difficult to detect a continuous line in which a line sign is
embedded and a change in length is very large. Considering this, it is feasible and effective
to apply the first method.

Appl. Sci. 2021, 11, 10054 5 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21

Figure 2. Problems when recognizing line objects using image processing techniques only. (a) An
image of P&ID. (b) Recognized continuous lines.

Following the first approach to the problems, we propose a method for the recogni-
tion of multiple types of lines included in P&IDs by utilizing object detection techniques
based on deep neural networks and image processing, which is a methodology clearly
differentiated from previous related works. The following techniques are applied for each
error case. In error case 1 of Figure 2, after detecting the continuous lines first, the lines
overlapping with the symbol and text objects are removed using the symbol and text
recognition data. In error case 2 in Figure 2, the line signs and flow arrows are detected
using a deep neural network that shows a high level of performance in object detection
from image. Then, the continuous lines overlapping with the detected line signs are iden-
tified, and the line types are changed according to the detected line signs. In error case 3
in Figure 2, after the recognition of line objects, the detected flow arrows are merged with
the overlapping line objects.

Figure 3 shows the procedure of line object recognition of P&ID in consideration of
the methods described above. The recognition process consists of a preprocessing step
(Figure 3a,b), a line detection step (Figure 3c–e), and a post-processing step (Figure 3f–i).
When the image-format P&ID is input, it is first converted into a binary image (Figure 3a).
Then, by identifying the outer border and title box of P&ID and removing them, a diagram
composed of high-level objects is extracted (Figure 3b). The line signs and flow arrows
embedded in the line object are detected using a deep neural network (Figure 3c). At the
same time, continuous lines are detected by applying image processing techniques, in-
cluding line thinning [27], pixel processing, Hough transform, and bitwise AND(&) oper-
ation (Figure 3d). At this time, among the recognized continuous lines, only the pure con-
tinuous lines are left by removing the continuous lines that overlap with the symbols and
texts (Figure 3e). By checking whether the pure continuous lines and the recognized line
signs overlap each other (Figure 3f), the type of the overlapping lines is changed to match
the line signs (Figure 3g). After checking the line type changes for all continuous lines, a
list of corrected lines is generated (Figure 3h). Finally, after merging the flow direction
information for the lines overlapping with flow arrows, the line object recognition result
is presented as an output (Figure 3i).

Figure 2. Problems when recognizing line objects using image processing techniques only. (a) An image of P&ID. (b) Recog-
nized continuous lines.

Following the first approach to the problems, we propose a method for the recognition
of multiple types of lines included in P&IDs by utilizing object detection techniques
based on deep neural networks and image processing, which is a methodology clearly
differentiated from previous related works. The following techniques are applied for each
error case. In error case 1 of Figure 2, after detecting the continuous lines first, the lines
overlapping with the symbol and text objects are removed using the symbol and text
recognition data. In error case 2 in Figure 2, the line signs and flow arrows are detected
using a deep neural network that shows a high level of performance in object detection from
image. Then, the continuous lines overlapping with the detected line signs are identified,
and the line types are changed according to the detected line signs. In error case 3 in
Figure 2, after the recognition of line objects, the detected flow arrows are merged with the
overlapping line objects.

Figure 3 shows the procedure of line object recognition of P&ID in consideration of
the methods described above. The recognition process consists of a preprocessing step
(Figure 3a,b), a line detection step (Figure 3c–e), and a post-processing step (Figure 3f–i).
When the image-format P&ID is input, it is first converted into a binary image (Figure 3a).
Then, by identifying the outer border and title box of P&ID and removing them, a diagram
composed of high-level objects is extracted (Figure 3b). The line signs and flow arrows
embedded in the line object are detected using a deep neural network (Figure 3c). At
the same time, continuous lines are detected by applying image processing techniques,
including line thinning [27], pixel processing, Hough transform, and bitwise AND(&)
operation (Figure 3d). At this time, among the recognized continuous lines, only the pure
continuous lines are left by removing the continuous lines that overlap with the symbols
and texts (Figure 3e). By checking whether the pure continuous lines and the recognized
line signs overlap each other (Figure 3f), the type of the overlapping lines is changed to
match the line signs (Figure 3g). After checking the line type changes for all continuous
lines, a list of corrected lines is generated (Figure 3h). Finally, after merging the flow
direction information for the lines overlapping with flow arrows, the line object recognition
result is presented as an output (Figure 3i).

Appl. Sci. 2021, 11, 10054 6 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 21

Figure 3. Procedure for recognizing line objects.

From the procedure of line object recognition in P&ID, the step of removing the P&ID
title and outer border is described in Section 5.1, the continuous line detection in Section
5.2, detecting line signs and flow arrows to determine the type of line and merging the
flow arrow recognition information in Section 5.3, and data format in which line recogni-
tion results are stored are described in Section 5.4, in more detail. In addition, the con-
structed dataset required for training a deep neural network will be described in detail in
Section 4.

4. Training Dataset Construction for Line Recognition
4.1. Preparation of Initial Training Dataset

For the training of a deep neural network that detects line signs and flow arrows in
P&ID, training data need to be prepared, as shown in Figure 4. For training data, annota-
tion files and class mapping data are required, along with image files. In the annotation
file, the image path, class name, and region of the object are stored. In the class mapping
file, the results of mapping the class name to be detected to a number are stored.

Figure 3. Procedure for recognizing line objects.

From the procedure of line object recognition in P&ID, the step of removing the P&ID
title and outer border is described in Section 5.1, the continuous line detection in Section 5.2,
detecting line signs and flow arrows to determine the type of line and merging the flow
arrow recognition information in Section 5.3, and data format in which line recognition
results are stored are described in Section 5.4, in more detail. In addition, the constructed
dataset required for training a deep neural network will be described in detail in Section 4.

4. Training Dataset Construction for Line Recognition
4.1. Preparation of Initial Training Dataset

For the training of a deep neural network that detects line signs and flow arrows in
P&ID, training data need to be prepared, as shown in Figure 4. For training data, annotation
files and class mapping data are required, along with image files. In the annotation file, the
image path, class name, and region of the object are stored. In the class mapping file, the
results of mapping the class name to be detected to a number are stored.

Appl. Sci. 2021, 11, 10054 7 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21

Figure 4. Composition of training data.

When creating annotation files for line signs and flow arrows, bounding boxes cor-
responding to the area of the object are created. In the process of bounding box creation,
for flow arrows, the size of the bounding box can be set to a constant value. However, in
the case of line objects with line signs such as ‘--’, ‘x’, ‘L’ in Figure 1, it is necessary to
consider appropriate size of the bounding box for each line signs. At first, the bounding
box of the line object, including the line sign, was divided, as shown in Figure 5. In the
case of dotted lines, the bounding box was set to include two short lines. In addition, since
the box ratio varies depending on the orientation of the line object (horizontal and verti-
cal), different labels were assigned accordingly. In this case, the label with the largest dif-
ference in bounding box ratio for the horizontal and vertical orientation is the dotted sign,
which has 7.78 and 0.13, respectively. In the legend used for P&ID, the symbol differs in
shape and size from company to company, but line sign and flow arrow are mostly similar
in shape and size. Therefore, the bounding box ratio for the line sign and flow arrow in
Figure 5 can be applied to other P&IDs in addition to the P&IDs used in this study.

Figure 5. Bounding box sizes for line signs and flow arrows.

Figure 4. Composition of training data.

When creating annotation files for line signs and flow arrows, bounding boxes cor-
responding to the area of the object are created. In the process of bounding box creation,
for flow arrows, the size of the bounding box can be set to a constant value. However,
in the case of line objects with line signs such as ‘–’, ‘x’, ‘L’ in Figure 1, it is necessary to
consider appropriate size of the bounding box for each line signs. At first, the bounding
box of the line object, including the line sign, was divided, as shown in Figure 5. In the
case of dotted lines, the bounding box was set to include two short lines. In addition, since
the box ratio varies depending on the orientation of the line object (horizontal and vertical),
different labels were assigned accordingly. In this case, the label with the largest difference
in bounding box ratio for the horizontal and vertical orientation is the dotted sign, which
has 7.78 and 0.13, respectively. In the legend used for P&ID, the symbol differs in shape and
size from company to company, but line sign and flow arrow are mostly similar in shape
and size. Therefore, the bounding box ratio for the line sign and flow arrow in Figure 5 can
be applied to other P&IDs in addition to the P&IDs used in this study.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21

Figure 4. Composition of training data.

When creating annotation files for line signs and flow arrows, bounding boxes cor-
responding to the area of the object are created. In the process of bounding box creation,
for flow arrows, the size of the bounding box can be set to a constant value. However, in
the case of line objects with line signs such as ‘--’, ‘x’, ‘L’ in Figure 1, it is necessary to
consider appropriate size of the bounding box for each line signs. At first, the bounding
box of the line object, including the line sign, was divided, as shown in Figure 5. In the
case of dotted lines, the bounding box was set to include two short lines. In addition, since
the box ratio varies depending on the orientation of the line object (horizontal and verti-
cal), different labels were assigned accordingly. In this case, the label with the largest dif-
ference in bounding box ratio for the horizontal and vertical orientation is the dotted sign,
which has 7.78 and 0.13, respectively. In the legend used for P&ID, the symbol differs in
shape and size from company to company, but line sign and flow arrow are mostly similar
in shape and size. Therefore, the bounding box ratio for the line sign and flow arrow in
Figure 5 can be applied to other P&IDs in addition to the P&IDs used in this study.

Figure 5. Bounding box sizes for line signs and flow arrows. Figure 5. Bounding box sizes for line signs and flow arrows.

Appl. Sci. 2021, 11, 10054 8 of 21

Using the method described above, an initial dataset consisting of 9108 data was
constructed, as shown in Figure 6, from 82 sheets of remodeled P&IDs by referring to the
P&IDs from a local Korean company.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 21

Using the method described above, an initial dataset consisting of 9108 data was con-
structed, as shown in Figure 6, from 82 sheets of remodeled P&IDs by referring to the
P&IDs from a local Korean company.

Figure 6. Summary of an initial dataset for line objects.

4.2. Augmentation of the Training Dataset
4.2.1. Change of Bounding Box Size for the Dotted Line

Pre-training was conducted with the prepared dataset (as above). RetinaNet was
used in this study for the deep neural network used for object detection. The hyperparam-
eter values of RetinaNet were set as the default values of [23] during pre-training. The
epoch was set to 50, and the step was set to 10,000. After pre-training, the regression loss
was 0.0381 and the classification loss was 0.05. As a result of performing a line sign detec-
tion test with the trained deep neural network, most of the line signs and flow arrows
were successfully detected with high accuracy, but dotted lines showed a low level of
detection performance. The reason for the low level of performance in the detection of
dotted lines is that compared to the bounding box ratio of other classes, dotted_line_h and
dotted_line_v had very large ratio values, so it was necessary to adjust the anchor ratios
and scale values for the detection of dotted_line. As a result of running the anchor opti-
mizer [41] on the initial training dataset in Figure 6 to find the appropriate anchor ratios
and scale values, the anchor ratios of 0.25, 1.0, 4.0 and anchor scales of 0.549, 0.866, and
0.931 were obtained. However, when the training was performed according to these val-
ues, a problem occurred that 5688 training data out of the total 9108 training data were
not correctly matched with the anchor.

To address this problem the size of the bounding box of the dotted line was changed.
Initially, the bounding box of the dotted line was set to include two short lines, as in Case
1 of Figure 7. However, after the change, the bounding box size was set to have only one
short line, as in Case 2. As a result, the dimension of the bounding box was changed to 60
× 18 and 18 × 60, and the ratio was changed to 3.33 and 0.3. As a result of applying the
anchor optimizer to the training dataset with Case 2 used for the dotted lines, the number
of training data that did not match the anchor was reduced to 16. In addition, because the
amount of dotted line data was doubled due to the change of the bounding box size of the
dotted lines, the total number of training data points was increased to 15,009.

Figure 6. Summary of an initial dataset for line objects.

4.2. Augmentation of the Training Dataset
4.2.1. Change of Bounding Box Size for the Dotted Line

Pre-training was conducted with the prepared dataset (as above). RetinaNet was used
in this study for the deep neural network used for object detection. The hyperparameter
values of RetinaNet were set as the default values of [23] during pre-training. The epoch
was set to 50, and the step was set to 10,000. After pre-training, the regression loss was
0.0381 and the classification loss was 0.05. As a result of performing a line sign detection
test with the trained deep neural network, most of the line signs and flow arrows were
successfully detected with high accuracy, but dotted lines showed a low level of detection
performance. The reason for the low level of performance in the detection of dotted lines is
that compared to the bounding box ratio of other classes, dotted_line_h and dotted_line_v
had very large ratio values, so it was necessary to adjust the anchor ratios and scale values
for the detection of dotted_line. As a result of running the anchor optimizer [41] on the
initial training dataset in Figure 6 to find the appropriate anchor ratios and scale values,
the anchor ratios of 0.25, 1.0, 4.0 and anchor scales of 0.549, 0.866, and 0.931 were obtained.
However, when the training was performed according to these values, a problem occurred
that 5688 training data out of the total 9108 training data were not correctly matched with
the anchor.

To address this problem the size of the bounding box of the dotted line was changed.
Initially, the bounding box of the dotted line was set to include two short lines, as in Case 1
of Figure 7. However, after the change, the bounding box size was set to have only one
short line, as in Case 2. As a result, the dimension of the bounding box was changed to
60 × 18 and 18 × 60, and the ratio was changed to 3.33 and 0.3. As a result of applying the
anchor optimizer to the training dataset with Case 2 used for the dotted lines, the number
of training data that did not match the anchor was reduced to 16. In addition, because the
amount of dotted line data was doubled due to the change of the bounding box size of the
dotted lines, the total number of training data points was increased to 15,009.

Appl. Sci. 2021, 11, 10054 9 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

Figure 7. Change of bounding box set for the dotted line.

4.2.2. Data Augmentation
Performing deep neural network training with a small number of image data may

lead to a problem of overfitting. Overfitting refers to a phenomenon in which an accurate
prediction cannot be made for the new input data not used for training due to overtraining
with the training data. To resolve this overfitting problem, the amount of training data
was increased using the image augmentation technique, as shown in Figure 8.

Figure 8. Image modification for training data augmentation.

As the first augmentation method, the thickness of the lines in the diagram was ad-
justed using morphology operation in order to address the problem of detection failure
when the thickness of the lines is changed in the diagram. Basic morphology operations
include an erosion operation and a dilatation operation. If the dilatation operation of the
2 × 2 kernel is applied, as shown in (1) of Figure 8, the line thickness in the diagram be-
comes thinner. On the contrary, if the erosion operation of the 2 × 2 kernel is applied, the

Figure 7. Change of bounding box set for the dotted line.

4.2.2. Data Augmentation

Performing deep neural network training with a small number of image data may
lead to a problem of overfitting. Overfitting refers to a phenomenon in which an accurate
prediction cannot be made for the new input data not used for training due to overtraining
with the training data. To resolve this overfitting problem, the amount of training data was
increased using the image augmentation technique, as shown in Figure 8.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

Figure 7. Change of bounding box set for the dotted line.

4.2.2. Data Augmentation
Performing deep neural network training with a small number of image data may

lead to a problem of overfitting. Overfitting refers to a phenomenon in which an accurate
prediction cannot be made for the new input data not used for training due to overtraining
with the training data. To resolve this overfitting problem, the amount of training data
was increased using the image augmentation technique, as shown in Figure 8.

Figure 8. Image modification for training data augmentation.

As the first augmentation method, the thickness of the lines in the diagram was ad-
justed using morphology operation in order to address the problem of detection failure
when the thickness of the lines is changed in the diagram. Basic morphology operations
include an erosion operation and a dilatation operation. If the dilatation operation of the
2 × 2 kernel is applied, as shown in (1) of Figure 8, the line thickness in the diagram be-
comes thinner. On the contrary, if the erosion operation of the 2 × 2 kernel is applied, the

Figure 8. Image modification for training data augmentation.

As the first augmentation method, the thickness of the lines in the diagram was
adjusted using morphology operation in order to address the problem of detection failure
when the thickness of the lines is changed in the diagram. Basic morphology operations

Appl. Sci. 2021, 11, 10054 10 of 21

include an erosion operation and a dilatation operation. If the dilatation operation of
the 2 × 2 kernel is applied, as shown in (1) of Figure 8, the line thickness in the diagram
becomes thinner. On the contrary, if the erosion operation of the 2 × 2 kernel is applied, the
line thickness in the diagram becomes thicker. The second augmentation method generates
images with noise application, as shown in (2) of Figure 8. In order to address the problem
where the line sign object in the image is not detected due to the noise in the diagram
image, the training data was augmented by the application of noise. Among various types
of noise, salt and pepper noise was applied to generate images. Salt and pepper noise
refers to the case where the noise is generated by changing the pixel value to 0 or 255 in the
original image with a set probability. That is, black noise is generated in each pixel of the
original image with a specified probability.

The final training dataset generated by applying the above image augmentation
methods is shown in Figure 9. In the case of the dotted lines, the number of data was
doubled because the process of generating the training data was changed to Case 2 in
Figure 7 (total number of training data: 15,009). Here, by changing the line thickness and
adding noise to all data, the amount of data for each label increased by six times. As a
result, after data augmentation, the number of training data was increased to 90,054.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21

line thickness in the diagram becomes thicker. The second augmentation method gener-
ates images with noise application, as shown in (2) of Figure 8. In order to address the
problem where the line sign object in the image is not detected due to the noise in the
diagram image, the training data was augmented by the application of noise. Among var-
ious types of noise, salt and pepper noise was applied to generate images. Salt and pepper
noise refers to the case where the noise is generated by changing the pixel value to 0 or
255 in the original image with a set probability. That is, black noise is generated in each
pixel of the original image with a specified probability.

The final training dataset generated by applying the above image augmentation
methods is shown in Figure 9. In the case of the dotted lines, the number of data was
doubled because the process of generating the training data was changed to Case 2 in
Figure 7 (total number of training data: 15,009). Here, by changing the line thickness and
adding noise to all data, the amount of data for each label increased by six times. As a
result, after data augmentation, the number of training data was increased to 90,054.

Figure 9. Summary of a final dataset of line objects.

5. Element Technologies for Line Recognition
5.1. Removal of P&ID Title and Outer Border

Figure 10 shows the method of removing the title and outer border in P&ID. First,
the original diagram image is converted into a binary image. Then, a search is performed
from the left-center to the right of the diagram to find the first pixel having a value greater
than or equal to a threshold. Then, all pixels connected to this pixel are searched. The
searched pixels compose the title and outer border of the diagram. Finally, for the
searched pixels, erosion operation and then dilation operation is performed in turn among
the morphology operations to detect titles and outline areas. The detected title and outer
borders are removed accordingly.

Figure 9. Summary of a final dataset of line objects.

5. Element Technologies for Line Recognition
5.1. Removal of P&ID Title and Outer Border

Figure 10 shows the method of removing the title and outer border in P&ID. First,
the original diagram image is converted into a binary image. Then, a search is performed
from the left-center to the right of the diagram to find the first pixel having a value greater
than or equal to a threshold. Then, all pixels connected to this pixel are searched. The
searched pixels compose the title and outer border of the diagram. Finally, for the searched
pixels, erosion operation and then dilation operation is performed in turn among the
morphology operations to detect titles and outline areas. The detected title and outer
borders are removed accordingly.

Appl. Sci. 2021, 11, 10054 11 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21

Figure 10. Removal of outline border and title area. (a) An image of P&ID. (b) After detecting one pixel of the outline, all
connected pixel values are stored. (c) Detects and removes the title and outline area by performing the opening operation
of the morphology operation. (d) Result of removing outline and title area of image drawing.

5.2. Detection of Continuous Lines in a Diagram
The continuous lines in a diagram have various thicknesses. When detecting contin-

uous lines using the Hough transform [25], a line with 2-pixel-or-more thickness may be
detected as multiple lines. In order to prevent this problem, the line thinning process, as
shown in Figure 11, is necessary so that the thickness of all lines in the diagram is set to 1
pixel. When the line after line thinning is called a skeleton line, the skeleton line should
have the following features. First, the thickness of the skeleton line should be 1 pixel. Ad-
ditionally, the skeleton line should be located at the center of the line. In addition, the
skeleton line must maintain the connectivity of the original image. For this purpose, the
length of the skeleton line must not be reduced compared to the length of the original line.
In this study, the algorithm of Zhang and Suen [27] was applied for line thinning.

Figure 11. Lining thinning.

Horizontal and vertical continuous lines are searched using pixel processing tech-
niques. For vertical lines, black pixels are searched while moving from the top to the bot-
tom of the image. If the coordinate of the current kernel location is (x, y), the pixel value
of (x, y + 1) is investigated repeatedly until the black pixel is no longer detected. For hori-
zontal lines, black pixels are searched while moving from the leftmost to the right of the

Figure 10. Removal of outline border and title area. (a) An image of P&ID. (b) After detecting one pixel of the outline, all
connected pixel values are stored. (c) Detects and removes the title and outline area by performing the opening operation of
the morphology operation. (d) Result of removing outline and title area of image drawing.

5.2. Detection of Continuous Lines in a Diagram

The continuous lines in a diagram have various thicknesses. When detecting contin-
uous lines using the Hough transform [25], a line with 2-pixel-or-more thickness may be
detected as multiple lines. In order to prevent this problem, the line thinning process, as
shown in Figure 11, is necessary so that the thickness of all lines in the diagram is set to 1
pixel. When the line after line thinning is called a skeleton line, the skeleton line should
have the following features. First, the thickness of the skeleton line should be 1 pixel.
Additionally, the skeleton line should be located at the center of the line. In addition, the
skeleton line must maintain the connectivity of the original image. For this purpose, the
length of the skeleton line must not be reduced compared to the length of the original line.
In this study, the algorithm of Zhang and Suen [27] was applied for line thinning.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21

Figure 10. Removal of outline border and title area. (a) An image of P&ID. (b) After detecting one pixel of the outline, all
connected pixel values are stored. (c) Detects and removes the title and outline area by performing the opening operation
of the morphology operation. (d) Result of removing outline and title area of image drawing.

5.2. Detection of Continuous Lines in a Diagram
The continuous lines in a diagram have various thicknesses. When detecting contin-

uous lines using the Hough transform [25], a line with 2-pixel-or-more thickness may be
detected as multiple lines. In order to prevent this problem, the line thinning process, as
shown in Figure 11, is necessary so that the thickness of all lines in the diagram is set to 1
pixel. When the line after line thinning is called a skeleton line, the skeleton line should
have the following features. First, the thickness of the skeleton line should be 1 pixel. Ad-
ditionally, the skeleton line should be located at the center of the line. In addition, the
skeleton line must maintain the connectivity of the original image. For this purpose, the
length of the skeleton line must not be reduced compared to the length of the original line.
In this study, the algorithm of Zhang and Suen [27] was applied for line thinning.

Figure 11. Lining thinning.

Horizontal and vertical continuous lines are searched using pixel processing tech-
niques. For vertical lines, black pixels are searched while moving from the top to the bot-
tom of the image. If the coordinate of the current kernel location is (x, y), the pixel value
of (x, y + 1) is investigated repeatedly until the black pixel is no longer detected. For hori-
zontal lines, black pixels are searched while moving from the leftmost to the right of the

Figure 11. Lining thinning.

Horizontal and vertical continuous lines are searched using pixel processing tech-
niques. For vertical lines, black pixels are searched while moving from the top to the
bottom of the image. If the coordinate of the current kernel location is (x, y), the pixel
value of (x, y + 1) is investigated repeatedly until the black pixel is no longer detected. For
horizontal lines, black pixels are searched while moving from the leftmost to the right of
the image. The pixel value of (x + 1, y) is investigated repeatedly until no black pixel is
detected. When the detection process of the horizontal and vertical lines is completed, the
start and end points of the line are defined by recording the coordinates of the last pixel.

Appl. Sci. 2021, 11, 10054 12 of 21

The above pixel processing technique is effective when searching horizontal and
vertical continuous lines. However, it is not easy for diagonal lines to apply this method,
so a different method is applied. The method of diagonal line detection is illustrated
in Figure 12. First, all continuous lines in the diagram are searched using the Hough
transform. Then, horizontal and vertical lines are removed from the searched lines to
construct a candidate set of diagonal lines. One line of the candidate set is drawn on an
empty image. Then, the bitwise AND(&) operation is performed between the diagonal line
drawn on the empty image and the original image so that the diagonal line overlapping
with a line of the original image is found. Finally, the start and end points of the detected
diagonal lines are measured.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21

image. The pixel value of (x + 1, y) is investigated repeatedly until no black pixel is de-
tected. When the detection process of the horizontal and vertical lines is completed, the
start and end points of the line are defined by recording the coordinates of the last pixel.

The above pixel processing technique is effective when searching horizontal and ver-
tical continuous lines. However, it is not easy for diagonal lines to apply this method, so
a different method is applied. The method of diagonal line detection is illustrated in Fig-
ure 12. First, all continuous lines in the diagram are searched using the Hough transform.
Then, horizontal and vertical lines are removed from the searched lines to construct a can-
didate set of diagonal lines. One line of the candidate set is drawn on an empty image.
Then, the bitwise AND(&) operation is performed between the diagonal line drawn on
the empty image and the original image so that the diagonal line overlapping with a line
of the original image is found. Finally, the start and end points of the detected diagonal
lines are measured.

Figure 12. The process to recognize continuous diagonal lines. (a) Construct a diagonal candidate
set using the Hough transform. (b) Draw a continuous diagonal line on the empty image. (c) Find a
diagonal line from the candidate set that overlaps for a diagonal line of the diagrams. (d) Find the
start and end points of the detected diagonal line.

Since the results of continuous line detection include lines incorporated with the sym-
bol or text, these must be removed after the detection of continuous lines. For this, after
detecting continuous lines, the continuous lines located in the bounding box of symbols
and texts are removed using the symbol and text recognition data. Figure 13 shows the
method of eliminating continuous lines overlapping with the symbol and text area. In this
figure, the rectangle represents the bounding box of a symbol or text. As shown in Figure
13a, if both points of a continuous line are within the bounding box, this continuous line
is removed. On the other hand, continuous lines with only one point within the bounding
box or both points outside the bounding box are not removed.

Figure 12. The process to recognize continuous diagonal lines. (a) Construct a diagonal candidate set using the Hough
transform. (b) Draw a continuous diagonal line on the empty image. (c) Find a diagonal line from the candidate set that
overlaps for a diagonal line of the diagrams. (d) Find the start and end points of the detected diagonal line.

Since the results of continuous line detection include lines incorporated with the
symbol or text, these must be removed after the detection of continuous lines. For this, after
detecting continuous lines, the continuous lines located in the bounding box of symbols
and texts are removed using the symbol and text recognition data. Figure 13 shows the
method of eliminating continuous lines overlapping with the symbol and text area. In
this figure, the rectangle represents the bounding box of a symbol or text. As shown in
Figure 13a, if both points of a continuous line are within the bounding box, this continuous
line is removed. On the other hand, continuous lines with only one point within the
bounding box or both points outside the bounding box are not removed.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21

image. The pixel value of (x + 1, y) is investigated repeatedly until no black pixel is de-
tected. When the detection process of the horizontal and vertical lines is completed, the
start and end points of the line are defined by recording the coordinates of the last pixel.

The above pixel processing technique is effective when searching horizontal and ver-
tical continuous lines. However, it is not easy for diagonal lines to apply this method, so
a different method is applied. The method of diagonal line detection is illustrated in Fig-
ure 12. First, all continuous lines in the diagram are searched using the Hough transform.
Then, horizontal and vertical lines are removed from the searched lines to construct a can-
didate set of diagonal lines. One line of the candidate set is drawn on an empty image.
Then, the bitwise AND(&) operation is performed between the diagonal line drawn on
the empty image and the original image so that the diagonal line overlapping with a line
of the original image is found. Finally, the start and end points of the detected diagonal
lines are measured.

Figure 12. The process to recognize continuous diagonal lines. (a) Construct a diagonal candidate
set using the Hough transform. (b) Draw a continuous diagonal line on the empty image. (c) Find a
diagonal line from the candidate set that overlaps for a diagonal line of the diagrams. (d) Find the
start and end points of the detected diagonal line.

Since the results of continuous line detection include lines incorporated with the sym-
bol or text, these must be removed after the detection of continuous lines. For this, after
detecting continuous lines, the continuous lines located in the bounding box of symbols
and texts are removed using the symbol and text recognition data. Figure 13 shows the
method of eliminating continuous lines overlapping with the symbol and text area. In this
figure, the rectangle represents the bounding box of a symbol or text. As shown in Figure
13a, if both points of a continuous line are within the bounding box, this continuous line
is removed. On the other hand, continuous lines with only one point within the bounding
box or both points outside the bounding box are not removed.

Figure 13. Removal of continuous lines corresponding to texts and symbols. (a) Both points of a continuous line are inside
bounding boxes of symbols and texts. (b) Both points of a continuous line are not inside bounding boxes of symbols and
texts.

Appl. Sci. 2021, 11, 10054 13 of 21

5.3. Detecting Line Signs and Flow Arrows in a Diagram and Determining Line Types

When detection of continuous lines is completed, line signs and flow arrows are
identified, and then some continuous lines undergo changes in the line type, and flow
direction information is added to some lines. Figure 14 illustrates this procedure. First, a
high-resolution (9933 × 7016) diagram image is received as input, and this is segmented
into several small images. From the segmented images, line signs and flow arrows are
detected using a deep neural network. After completing the detection, the line sign and
flow arrow detection results performed on multiple-segmented images are merged into
one. Also, if a line sign is situated on a specific continuous line, the type of the continuous
line is changed to match the line sign. Also, if a flow arrow is located on a particular line,
flow direction information is added to the corresponding line.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

Figure 13. Removal of continuous lines corresponding to texts and symbols. (a) Both points of a
continuous line are inside bounding boxes of symbols and texts. (b) Both points of a continuous line
are not inside bounding boxes of symbols and texts.

5.3. Detecting Line Signs and Flow Arrows in a Diagram and Determining Line Types
When detection of continuous lines is completed, line signs and flow arrows are iden-

tified, and then some continuous lines undergo changes in the line type, and flow direc-
tion information is added to some lines. Figure 14 illustrates this procedure. First, a high-
resolution (9933 × 7016) diagram image is received as input, and this is segmented into
several small images. From the segmented images, line signs and flow arrows are detected
using a deep neural network. After completing the detection, the line sign and flow arrow
detection results performed on multiple-segmented images are merged into one. Also, if
a line sign is situated on a specific continuous line, the type of the continuous line is
changed to match the line sign. Also, if a flow arrow is located on a particular line, flow
direction information is added to the corresponding line.

Figure 14. Change of line types and addition of flow directions using a deep learning model.

5.3.1. Deep Neural Network for Line Sign Recognition in a Diagram
In this study, RetinaNet [23] was applied to detect line signs and flow arrows. Reti-

naNet has the feature pyramid net architecture, as shown in Figure 15. Unlike the existing
detection algorithms in which cross-entropy loss is used for classifier loss calculation,
RetinaNet uses a focal loss, which is a modification of the cross-entropy loss. Focal loss is
a loss function developed to resolve the problem of class imbalance between the fore-
ground where the target object is located and the background where the target object is
not located. A case in which the number of data that each class has in a dataset is different
is referred to as class imbalance. Since the dataset constructed in this study shows the
imbalance in which the number of data for certain line signs such as double slash sign
lines is very small compared to other line signs, RetinaNet using focal loss is an appropri-
ate deep neural network for this case.

Figure 15. The architecture of RetinaNet [23].

Figure 14. Change of line types and addition of flow directions using a deep learning model.

5.3.1. Deep Neural Network for Line Sign Recognition in a Diagram

In this study, RetinaNet [23] was applied to detect line signs and flow arrows. Reti-
naNet has the feature pyramid net architecture, as shown in Figure 15. Unlike the existing
detection algorithms in which cross-entropy loss is used for classifier loss calculation,
RetinaNet uses a focal loss, which is a modification of the cross-entropy loss. Focal loss is a
loss function developed to resolve the problem of class imbalance between the foreground
where the target object is located and the background where the target object is not located.
A case in which the number of data that each class has in a dataset is different is referred
to as class imbalance. Since the dataset constructed in this study shows the imbalance in
which the number of data for certain line signs such as double slash sign lines is very small
compared to other line signs, RetinaNet using focal loss is an appropriate deep neural
network for this case.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

Figure 13. Removal of continuous lines corresponding to texts and symbols. (a) Both points of a
continuous line are inside bounding boxes of symbols and texts. (b) Both points of a continuous line
are not inside bounding boxes of symbols and texts.

5.3. Detecting Line Signs and Flow Arrows in a Diagram and Determining Line Types
When detection of continuous lines is completed, line signs and flow arrows are iden-

tified, and then some continuous lines undergo changes in the line type, and flow direc-
tion information is added to some lines. Figure 14 illustrates this procedure. First, a high-
resolution (9933 × 7016) diagram image is received as input, and this is segmented into
several small images. From the segmented images, line signs and flow arrows are detected
using a deep neural network. After completing the detection, the line sign and flow arrow
detection results performed on multiple-segmented images are merged into one. Also, if
a line sign is situated on a specific continuous line, the type of the continuous line is
changed to match the line sign. Also, if a flow arrow is located on a particular line, flow
direction information is added to the corresponding line.

Figure 14. Change of line types and addition of flow directions using a deep learning model.

5.3.1. Deep Neural Network for Line Sign Recognition in a Diagram
In this study, RetinaNet [23] was applied to detect line signs and flow arrows. Reti-

naNet has the feature pyramid net architecture, as shown in Figure 15. Unlike the existing
detection algorithms in which cross-entropy loss is used for classifier loss calculation,
RetinaNet uses a focal loss, which is a modification of the cross-entropy loss. Focal loss is
a loss function developed to resolve the problem of class imbalance between the fore-
ground where the target object is located and the background where the target object is
not located. A case in which the number of data that each class has in a dataset is different
is referred to as class imbalance. Since the dataset constructed in this study shows the
imbalance in which the number of data for certain line signs such as double slash sign
lines is very small compared to other line signs, RetinaNet using focal loss is an appropri-
ate deep neural network for this case.

Figure 15. The architecture of RetinaNet [23]. Figure 15. The architecture of RetinaNet [23].

Appl. Sci. 2021, 11, 10054 14 of 21

Anchor refers to a bounding box with a predetermined size and ratio that is used to
detect various types of objects in an image. The anchor facilitates relatively fast convergence
of the loss function during training and affects the accuracy of object detection. If the
inappropriate size of an anchor is set, it leads to a difference from the bounding box of
the object to be detected, resulting in poor learning performance. Therefore, to achieve
enhanced learning performance, selecting appropriate anchor parameters is important. The
basic anchor sizes used in [23] are322, 642, 1282, 2562, 5122, the basic anchor ratios are 0.5,
1, 2, and the basic anchor scales are 1, 1.269, 1.587. However, in the case of the horizontal O
sign line, the size is 50 × 25, and the vertical length is smaller than the minimum anchor
size of 32. In the case of the horizontal dotted line symbol, the ratio is 3.33, showing
the difference from the basic anchor ratio. In this study, we have set the optimal anchor
parameters for the training dataset using the anchor optimizer. The selected optimal anchor
parameters are 322, 642, 1282, 2562, 5122 in size, 0.289, 0.581, 1.0, 1.721, 3.457 in ratio, and
0.949, 1.182, and 1.543 in scale, respectively.

5.3.2. Changing of Line Types and Merging of Lines of the Same Types

It is necessary to determine whether the line signs and the continuous lines overlap to
change the line type. The procedure to assess the overlapping of the line signs with the
continuous lines is as follows. In the first step, the distance from the center of the bounding
box of the line sign is calculated for a specific continuous line. If the computed distance is
shorter than the width and height of the bounding box, proceed to the next step. In the
second step, it is examined whether this continuous line crosses the bounding box of the
line sign or a part of the continuous line is contained in the bounding box. If this is the case,
it is judged that this continuous line overlaps with the line sign, and the type of continuous
line is changed according to the line sign.

After changing the line type, post-processing is performed through which multiple
lines that have the same type and are connected to each other are merged into one line.
For example, after changing the line type, there are cases in which multiple dotted lines
exist, as shown in Figure 16a. If these dotted lines are located on the same infinite line and
connected to each other, they are merged into one dotted line.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 21

Anchor refers to a bounding box with a predetermined size and ratio that is used to
detect various types of objects in an image. The anchor facilitates relatively fast conver-
gence of the loss function during training and affects the accuracy of object detection. If
the inappropriate size of an anchor is set, it leads to a difference from the bounding box
of the object to be detected, resulting in poor learning performance. Therefore, to achieve
enhanced learning performance, selecting appropriate anchor parameters is important.
The basic anchor sizes used in [23] are322, 642, 1282, 2562, 5122, the basic anchor ratios are
0.5, 1, 2, and the basic anchor scales are 1, 1.269, 1.587. However, in the case of the hori-
zontal O sign line, the size is 50 × 25, and the vertical length is smaller than the minimum
anchor size of 32. In the case of the horizontal dotted line symbol, the ratio is 3.33, showing
the difference from the basic anchor ratio. In this study, we have set the optimal anchor
parameters for the training dataset using the anchor optimizer. The selected optimal an-
chor parameters are 322, 642, 1282, 2562, 5122 in size, 0.289, 0.581, 1.0, 1.721, 3.457 in ratio,
and 0.949, 1.182, and 1.543 in scale, respectively.

5.3.2. Changing of Line Types and Merging of Lines of the Same Types
It is necessary to determine whether the line signs and the continuous lines overlap

to change the line type. The procedure to assess the overlapping of the line signs with the
continuous lines is as follows. In the first step, the distance from the center of the bounding
box of the line sign is calculated for a specific continuous line. If the computed distance is
shorter than the width and height of the bounding box, proceed to the next step. In the
second step, it is examined whether this continuous line crosses the bounding box of the
line sign or a part of the continuous line is contained in the bounding box. If this is the
case, it is judged that this continuous line overlaps with the line sign, and the type of
continuous line is changed according to the line sign.

After changing the line type, post-processing is performed through which multiple
lines that have the same type and are connected to each other are merged into one line.
For example, after changing the line type, there are cases in which multiple dotted lines
exist, as shown in Figure 16a. If these dotted lines are located on the same infinite line and
connected to each other, they are merged into one dotted line.

Figure 16. Merging multiple lines of the same type into one line. (a) Multiple dotted lines. (b) One
dotted line after merging.

5.4. Storing Line Recognition Results
When the procedure of line recognition is completed, the results are saved in a file in

extensible markup language (XML) format, as shown in Figure 17. The file structure is as
follows. <class> indicates the type of line. <edge> represents the coordinates of the start
and end points of the line. The coordinates of the start point are expressed as <xstart>,
<ystart>, and the coordinates of the end point are expressed as <xend>, <yend>. <flow>
stores the flow arrow information. <direction> indicates the direction of the flow arrow.
Finally, <bndbox> means the bounding box of the flow arrow.

Figure 16. Merging multiple lines of the same type into one line. (a) Multiple dotted lines. (b) One dotted line after merging.

5.4. Storing Line Recognition Results

When the procedure of line recognition is completed, the results are saved in a file
in extensible markup language (XML) format, as shown in Figure 17. The file structure
is as follows. <class> indicates the type of line. <edge> represents the coordinates of the
start and end points of the line. The coordinates of the start point are expressed as <xstart>,
<ystart>, and the coordinates of the end point are expressed as <xend>, <yend>. <flow>
stores the flow arrow information. <direction> indicates the direction of the flow arrow.
Finally, <bndbox> means the bounding box of the flow arrow.

Appl. Sci. 2021, 11, 10054 15 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21

Figure 17. Line recognition data format.

6. Implementation and Experiment
6.1. Experimental Setup

In accordance with the method proposed in this research, a system prototype was
implemented that recognizes lines in image-format P&IDs. The prototype system was im-
plemented in Python 3.7 on Windows 10 OS. A deep neural network for the detection of
line signs and flow arrows was implemented using Keras 2.4 and Tensorflow 2.3.0 librar-
ies. For the hardware, a computer with an AMD RYZEN 7 2700X CPU, 64GB RAM, and
two Nvidia GeForce RTX 2080Ti graphics cards were used.

The P&IDs used in the experiment are 82 P&IDs remodeled based on the data pro-
vided by the ‘K’ company. The resolution of the diagram was 9933 × 7016. For detection
of line signs and flow arrows, nine sheets out of the 82 sheets of diagrams are used as a
test set for performance evaluation. Of the remaining 73 sheets of diagrams, 90% were
used as the training dataset, and 10% were used as the validation dataset. Figure 18 shows
the P&IDs included in the test set. Recognition results of lines in the areas indicated as
(a)–(e) are shown in Figure 19.

Figure 17. Line recognition data format.

6. Implementation and Experiment
6.1. Experimental Setup

In accordance with the method proposed in this research, a system prototype was
implemented that recognizes lines in image-format P&IDs. The prototype system was
implemented in Python 3.7 on Windows 10 OS. A deep neural network for the detection of
line signs and flow arrows was implemented using Keras 2.4 and Tensorflow 2.3.0 libraries.
For the hardware, a computer with an AMD RYZEN 7 2700X CPU, 64GB RAM, and two
Nvidia GeForce RTX 2080Ti graphics cards were used.

The P&IDs used in the experiment are 82 P&IDs remodeled based on the data provided
by the ‘K’ company. The resolution of the diagram was 9933 × 7016. For detection of line
signs and flow arrows, nine sheets out of the 82 sheets of diagrams are used as a test set for
performance evaluation. Of the remaining 73 sheets of diagrams, 90% were used as the
training dataset, and 10% were used as the validation dataset. Figure 18 shows the P&IDs
included in the test set. Recognition results of lines in the areas indicated as (a)–(e) are
shown in Figure 19.

Appl. Sci. 2021, 11, 10054 16 of 21
Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21

Figure 18. Test P&IDs used for the experiment.

Performance in each training epoch is assessed based on the validation dataset. In the
learning training, the epoch was set to 50, and the step was set to 2500. After performing
the training under the set epoch and step, a sufficient level of convergence was confirmed
with the regression loss at 0.118 and the classification loss at 0.0374. Table 1 shows the
network parameters set during training with the deep neural network. When line signs
and flow arrows are detected through the deep neural network, class, bounding box, and
prediction confidence are calculated. Usually, multiple candidates bounding boxes are
detected for one object. A greedy non-maximum suppression (NMS) algorithm extracted
the bounding box with the highest confidence among the candidate bounding boxes. The
greedy NMS algorithm calculates the intersection over union (IOU) between boxes de-
tected as the same object, selects boxes with an IOU threshold above a specific value,
leaves only the box with the highest confidence, and deletes the rest. A threshold score of
0.5 and an IOU threshold of 0.5 was applied in this experiment.

Table 1. Parameters of the deep neural network used for learning.

Parameter Value
Diagram resolution 9933 × 7016

Segmentation resolution 512 × 512
Segmentation stride 300

Epoch, step 50, 2500

Anchor
Size 322, 642, 1282, 2562, 5122

Stride 8, 16, 32, 64, 128

Figure 18. Test P&IDs used for the experiment.

Performance in each training epoch is assessed based on the validation dataset. In the
learning training, the epoch was set to 50, and the step was set to 2500. After performing
the training under the set epoch and step, a sufficient level of convergence was confirmed
with the regression loss at 0.118 and the classification loss at 0.0374. Table 1 shows the
network parameters set during training with the deep neural network. When line signs
and flow arrows are detected through the deep neural network, class, bounding box, and
prediction confidence are calculated. Usually, multiple candidates bounding boxes are
detected for one object. A greedy non-maximum suppression (NMS) algorithm extracted
the bounding box with the highest confidence among the candidate bounding boxes. The
greedy NMS algorithm calculates the intersection over union (IOU) between boxes detected
as the same object, selects boxes with an IOU threshold above a specific value, leaves only
the box with the highest confidence, and deletes the rest. A threshold score of 0.5 and an
IOU threshold of 0.5 was applied in this experiment.

Appl. Sci. 2021, 11, 10054 17 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 21

Arrow_e 2268 1.0 1.0 1
Arrow_w 2148 1.0 1.0 1
Arrow_s 4914 1.0 0.9666 7
Arrow_n 3414 1.0 1.0 1

The line recognition results for nine test P&IDs are depicted in Figure 19. In Figure
19, different colors are used for the display of different line types. The lines including
continuous_line, dotted_line, double_slash_sign_line, x_sign_line, and flow arrow are
presented in light green, red, pink, light blue, and dark blue, respectively. Figure 19a
shows the result of recognizing lines incorporated with flow arrows. Figure 19b shows the
recognition results of continuous_line and dotted_line. Figure 19c shows the recognition
result of continuous_line, dotted_line, double_slash_sign_line, and lines with flow ar-
rows. Figure 19d shows the recognition result of continuous_line, dotted_line, and
x_sign_line. Figure 19e shows the recognition result of continuous_line and dotted_line.

Figure 19. Line recognition results for test P&IDs.

The following is the outline of example cases where the line recognition was not per-
formed correctly. First, there was a case where the line sign was not recognized (error case
1 in Figure 20). If the line sign was not identified, the line type could not be correctly
determined. Second, there was a case where the diagonal line was not recognized (error
case 2 in Figure 20). Third, a continuous line included in an object other than a line in the
diagram was detected (error case 3 in Figure 20). It is considered that the problem of not
recognizing the line signs or flow arrows (error case 1) is to be solved by increasing the
number of training data or applying the latest network. The problem of not recognizing a
diagonal line (error case 2) requires additional research for searching diagonal lines un-
detected in this study. Finally, the problem that a line included in an object other than a
line is recognized (test case 3) is related to the results of symbol and text recognition. If
there is no recognition information of a specific object in the process of removing the con-
tinuous lines overlapping with the symbol and text area, error case 3 occurs. Therefore, it
is thought that error case 3 can be prevented by improving the recognition accuracy of
symbols and texts.

Figure 19. Line recognition results for test P&IDs.

Table 1. Parameters of the deep neural network used for learning.

Parameter Value

Diagram resolution 9933 × 7016

Segmentation resolution 512 × 512

Segmentation stride 300

Epoch, step 50, 2500

Anchor

Size 322, 642, 1282, 2562, 5122
Stride 8, 16, 32, 64, 128
Ratio 0.289, 0.581, 1.0, 1.721, 3.457
Scale 0.949, 1.182, 1.543

Threshold score 0.5

IOU threshold 0.5

In the proposed line recognition method, the results of recognizing symbols and texts
included in P&ID are used as input. Therefore, using the method in [40], the symbols and
texts included in the test P&IDs were recognized prior to the experiment.

6.2. Experimental Results

Table 2 shows the results of recognition performance for each test P&ID. Approxi-
mately 50 min were taken for each case to perform the detection of continuous lines, and
about 300 s to complete the detection of line signs and flow arrows, respectively. Most of
the time taken for continuous line recognition was spent on the line thinning process (about
90% of the recognition time). The recognition performance for each test P&ID was assessed
in terms of precision and recall. Precision is the percentage of true positives from the results
the network detected. That is, it is the ratio of correctly recognized line objects among the
finally recognized line objects. Recall refers to the percentage of the network predicted
as true positives out of the true positives in the input. That is, it indicates the number of
correctly predicted line objects among line objects existed in the image. Table 2 outlines the

Appl. Sci. 2021, 11, 10054 18 of 21

results of measuring precision and recall for the nine sheets of test P&IDs. The average
values of the precision and recall for the test P&IDs were 96.14% and 89.59%, respectively.

Table 2. Performance evaluation result for test P&IDs.

Test P&ID Precision Recall

1 0.9657 0.9038
2 0.9732 0.9316
3 0.9787 0.9150
4 0.9531 0.8592
5 0.9709 0.9009
6 0.9183 0.8654
7 0.9771 0.8649
8 0.9412 0.9195
9 0.9750 0.8931

Average 0.9614 0.8959

Table 3 shows the performance evaluation results for each type of line sign and flow
arrow included in the test P&IDs. As a result, the recall of Dotted_line_h, which makes up
a large part of the training dataset was lower than that of other line signs and flow arrows
(except Double_slash_sign_line_v and Arrow_s). And among the fewer object types in
the dataset, the recall of Double_slash_sign_line_v and Arrow_s was low; their recall was
lower than that of Dotted_line_h. Through this, it can be determined that the detection
performance of each object type using the deep artificial neural network is affected not
only by the number of training data but also by the detection difficulty of the object shape.

Table 3. Performance evaluation result by line sign and flow arrow types in test P&IDs.

Test P&ID Object Number
in Training Dataset Precision Recall Rank

X_sign_line_h 840 1.0 1.0 1
Dotted_line_h 31,896 1.0 0.9647 8
Dotted_line_v 38,916 1.0 1.0 1

Double_slash_sign_line_h 684 1.0 1.0 1
Double_slash_sign_line_v 1722 1.0 0.8572 9

Arrow_e 2268 1.0 1.0 1
Arrow_w 2148 1.0 1.0 1
Arrow_s 4914 1.0 0.9666 7
Arrow_n 3414 1.0 1.0 1

The line recognition results for nine test P&IDs are depicted in Figure 19. In Figure 19,
different colors are used for the display of different line types. The lines including continu-
ous_line, dotted_line, double_slash_sign_line, x_sign_line, and flow arrow are presented
in light green, red, pink, light blue, and dark blue, respectively. Figure 19a shows the result
of recognizing lines incorporated with flow arrows. Figure 19b shows the recognition
results of continuous_line and dotted_line. Figure 19c shows the recognition result of con-
tinuous_line, dotted_line, double_slash_sign_line, and lines with flow arrows. Figure 19d
shows the recognition result of continuous_line, dotted_line, and x_sign_line. Figure 19e
shows the recognition result of continuous_line and dotted_line.

The following is the outline of example cases where the line recognition was not
performed correctly. First, there was a case where the line sign was not recognized (error
case 1 in Figure 20). If the line sign was not identified, the line type could not be correctly
determined. Second, there was a case where the diagonal line was not recognized (error
case 2 in Figure 20). Third, a continuous line included in an object other than a line in the
diagram was detected (error case 3 in Figure 20). It is considered that the problem of not
recognizing the line signs or flow arrows (error case 1) is to be solved by increasing the
number of training data or applying the latest network. The problem of not recognizing

Appl. Sci. 2021, 11, 10054 19 of 21

a diagonal line (error case 2) requires additional research for searching diagonal lines
undetected in this study. Finally, the problem that a line included in an object other than
a line is recognized (test case 3) is related to the results of symbol and text recognition.
If there is no recognition information of a specific object in the process of removing the
continuous lines overlapping with the symbol and text area, error case 3 occurs. Therefore,
it is thought that error case 3 can be prevented by improving the recognition accuracy of
symbols and texts.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 21

Figure 20. Representative image of recognition results for test P&IDs.

7. Conclusions
A novel method for recognizing various types of lines in image-format P&ID was

proposed. Compared with previous studies [35,38], the academic significance and unique
contribution of this research lie in that the proposed method enables the recognition of
various types of lines and flow arrows in addition to continuous lines. The proposed
method consists of (1) a preprocessing step to remove the title and outer border, (2) a
detection step to detect continuous lines, line signs, and flow arrows, and (3) a post-pro-
cessing step to change line types and merge. For detection of continuous lines, line thin-
ning, and pixel processing techniques were applied to horizontal and vertical lines, and
Hough transform was used for diagonal lines. Training data was composed for line signs
and flow arrows, parameters optimized for line recognition were defined, and training
was performed with RetinaNet. As for the recognition results of the lines for nine test
P&IDs, average precision and average recall were 96.14% and 89.59%, respectively,
demonstrating high recognition performance.

For the line signs and flow arrows constructed through this study, augmentation of
the training data is required because the number of data in some classes is small. Further-
more, in order to improve the recognition performance of various line signs and flow ar-
rows, the latest deep neural network other than RetinaNet is planned to be applied. In
addition, the following additional research will be conducted to shorten the line recogni-
tion time. First, time required will be shortened by changing the thinning method. Second,
a method of recognizing a diagonal continuous line will also be applied to recognizing a
horizontal and vertical continuous line. Third, a method to recognize all continuous lines
in the diagram by applying a deep artificial neural network will be studied.

Author Contributions: The contribution of the authors for this publication article are as follows:
Y.M.: methodology, software, data preparation, writing—original draft preparation, writing—re-
viewing and editing. J.L.: software, writing—reviewing and editing. S.L.: software, data prepara-
tion. D.M.: conceptualization, methodology, supervision, writing—original draft preparation, writ-
ing—reviewing and editing. All authors have read and agreed to the published version of the man-
uscript.

Funding: This research was supported by the AI-based gasoil plant O&M Core Technology Devel-
opment Program (Project ID: 21ATOG-C161932-01) funded by the Korean government (MOLIT), by
the Industrial Technology Innovation Program (Project ID: 20012462, 20006952) funded by the Ko-
rean government (MOTIE).

Figure 20. Representative image of recognition results for test P&IDs.

7. Conclusions

A novel method for recognizing various types of lines in image-format P&ID was
proposed. Compared with previous studies [35,38], the academic significance and unique
contribution of this research lie in that the proposed method enables the recognition of
various types of lines and flow arrows in addition to continuous lines. The proposed
method consists of (1) a preprocessing step to remove the title and outer border, (2) a
detection step to detect continuous lines, line signs, and flow arrows, and (3) a post-
processing step to change line types and merge. For detection of continuous lines, line
thinning, and pixel processing techniques were applied to horizontal and vertical lines, and
Hough transform was used for diagonal lines. Training data was composed for line signs
and flow arrows, parameters optimized for line recognition were defined, and training was
performed with RetinaNet. As for the recognition results of the lines for nine test P&IDs,
average precision and average recall were 96.14% and 89.59%, respectively, demonstrating
high recognition performance.

For the line signs and flow arrows constructed through this study, augmentation of the
training data is required because the number of data in some classes is small. Furthermore,
in order to improve the recognition performance of various line signs and flow arrows, the
latest deep neural network other than RetinaNet is planned to be applied. In addition, the
following additional research will be conducted to shorten the line recognition time. First,
time required will be shortened by changing the thinning method. Second, a method of
recognizing a diagonal continuous line will also be applied to recognizing a horizontal and
vertical continuous line. Third, a method to recognize all continuous lines in the diagram
by applying a deep artificial neural network will be studied.

Appl. Sci. 2021, 11, 10054 20 of 21

Author Contributions: The contribution of the authors for this publication article are as follows: Y.M.:
methodology, software, data preparation, writing—original draft preparation, writing—reviewing
and editing. J.L.: software, writing—reviewing and editing. S.L.: software, data preparation.
D.M.: conceptualization, methodology, supervision, writing—original draft preparation, writing—
reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the AI-based gasoil plant O&M Core Technology Develop-
ment Program (Project ID: 21ATOG-C161932-01) funded by the Korean government (MOLIT), by the
Industrial Technology Innovation Program (Project ID: 20012462, 20006952) funded by the Korean
government (MOTIE).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fujiyoshi, H.; Hirakawa, T.; Yamashita, T. Deep learning-based image recognition for autonomous driving. IATSS Res. 2019, 43,

244–252. [CrossRef]
2. Tanzi, L.; Vezzetti, E.; Moreno, R.; Aprato, A.; Audisio, A.; Massè, A. Hierarchical fracture classification of proximal femur X-ray

images using a multistage deep learning approach. Eur. J. Radiol. 2020, 133, 109373. [CrossRef]
3. Nonis, F.; Barbiero, P.; Cirrincione, G.; Olivetti, E.C.; Marcolin, F.; Vezzetti, E. Understanding Abstraction in Deep CNN: An

Application on Facial Emotion Recognition. In Progresses in Artificial Intelligence and Neural Systems; Springer: Singapore, 2021; pp.
281–290.

4. Quiroz, I.A.; Alférez, G.H. Image recognition of Legacy blueberries in a Chilean smart farm through deep learning. Comput.
Electron. Agric. 2020, 168, 105044. [CrossRef]

5. Ejiri, M.; Kakumoto, S.; Miyatake, T.; Shimada, S.; Iwamura, K. Automatic recognition of engineering drawings and maps. In
Image Analysis Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 73–126.

6. Scherr, S.; Arendt, F.; Frissen, T.; Oramas, M.J. Detecting intentional self-harm on Instagram: Development, testing, and validation
of an automatic image-recognition algorithm to discover cutting-related posts. Soc. Sci. Comput. Rev. 2020, 38, 673–685. [CrossRef]

7. Wu, C.; Jiang, P.; Ding, C.; Feng, F.; Chen, T. Intelligent fault diagnosis of rotating machinery based on one-dimensional
convolutional neural network. Comput. Ind. 2019, 108, 53–61. [CrossRef]

8. Boyat, A.K.; Joshi, B.K. A review paper: Noise models in digital image processing. arXiv 2015, arXiv:1505.03489. [CrossRef]
9. Gupta, S.; Girshick, R.; Arbeláez, P.; Malik, J. Learning rich features from RGB-D images for object detection and segmentation. In

Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 5–12 September 2014; pp. 345–360.
10. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp.
886–893.

11. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference
on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157.

12. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

13. Froba, B.; Ernst, A. Face detection with the modified census transform. In Proceedings of the Sixth IEEE International Conference
on Automatic Face and Gesture Recognition, Seoul, Korea, 19 May 2004; pp. 91–96.

14. Wang, L. (Ed.) Support Vector Machines: Theory and Applications; Springer: New York, NY, USA, 2015; Volume 177, pp. 1–47.
15. Li, X.; Wang, L.; Sung, E. AdaBoost with SVM-based component classifiers. Eng. Appl. Artif. Intell. 2008, 21, 785–795. [CrossRef]
16. Zhiqiang, W.; Jun, L. A review of object detection based on convolutional neural network. In Proceedings of the 2017 36th Chinese

Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 11104–11109.
17. Szegedy, C.; Toshev, A.; Erhan, D. Deep Neural Networks for Object Detection. In Proceedings of the 26th Neural Information

Processing Systems Conference (NIPS 2013), Stateline, NV, USA, 5–10 December 2013; pp. 2553–2561.
18. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp.
580–587.

19. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,
arXiv:1506.01497. [CrossRef]

http://doi.org/10.1016/j.iatssr.2019.11.008
http://doi.org/10.1016/j.ejrad.2020.109373
http://doi.org/10.1016/j.compag.2019.105044
http://doi.org/10.1177/0894439319836389
http://doi.org/10.1016/j.compind.2018.12.001
http://doi.org/10.5121/sipij.2015.6206
http://doi.org/10.1109/TPAMI.2002.1017623
http://doi.org/10.1016/j.engappai.2007.07.001
http://doi.org/10.1109/TPAMI.2016.2577031

Appl. Sci. 2021, 11, 10054 21 of 21

21. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

22. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.

23. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

24. Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H. M2det: A single-shot object detector based on multi-level feature
pyramid network. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019; Volume 33, pp. 9259–9266.

25. Illingworth, J.; Kittler, J. A survey of the Hough transform. Comput. Vis. Graph. Image Process. 1988, 44, 87–116. [CrossRef]
26. Narote, S.P.; Bhujbal, P.N.; Narote, A.S.; Dhane, D.M. A review of recent advances in lane detection and departure warning

system. Pattern Recognit. 2018, 73, 216–234. [CrossRef]
27. Zhang, T.Y.; Suen, C.Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM 1984, 27, 236–239. [CrossRef]
28. Tang, J.; Li, S.; Liu, P. A Review of Lane Detection Methods based on Deep Learning. Pattern Recognit. 2020, 111, 107623.

[CrossRef]
29. Ko, Y.; Jun, J.; Ko, D.; Jeon, M. Key points estimation and point instance segmentation approach for lane detection. arXiv 2020,

arXiv:2002.06604.
30. Qu, Z.; Jin, H.; Zhou, Y.; Yang, Z.; Zhang, W. Focus on Local: Detecting Lane Marker from Bottom Up via Key Point. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 21–24 June 2021; pp.
14122–14130.

31. Liu, L.; Chen, X.; Zhu, S.; Tan, P. CondLaneNet: A Top-to-down Lane Detection Framework Based on Conditional Convolution.
arXiv 2021, arXiv:2105.05003.

32. Tornbre, K. Technical drawing recognition and understanding: From pixels to semantics. In Proceedings of the Workshop on
Machine Vision and Application, Tokyo, Japan, 7–9 December 1992; pp. 393–401.

33. Fahn, C.S.; Wang, J.F.; Lee, J.Y. A topology-based component extractor for understanding electronic circuit diagrams. Comput. Vis.
Graph. Image Process. 1988, 44, 119–138. [CrossRef]

34. Lee, S.W.; Kim, J.H.; Groen, F.C. Translation-, rotation-and scale-invariant recognition of hand-drawn symbols in schematic
diagrams. Int. J. Pattern Recognit. Artif. Intell. 1990, 4, 1–25. [CrossRef]

35. Kang, S.O.; Lee, E.B.; Baek, H.K. A Digitization and Conversion Tool for Imaged Drawings to Intelligent Piping and Instrumenta-
tion Diagrams (P&ID). Energies 2019, 12, 2593.

36. Fu, L.; Kara, L.B. From engineering diagrams to engineering models: Visual recognition and applications. Comput. Aided Des.
2011, 43, 278–292. [CrossRef]

37. Rahul, R.; Paliwal, S.; Sharma, M.; Vig, L. Automatic Information Extraction from Piping and Instrumentation Diagrams. arXiv
2019, arXiv:1901.11383.

38. Yu, E.S.; Cha, J.M.; Lee, T.; Kim, J.; Mun, D. Features recognition from piping and instrumentation diagrams in image format
using a deep learning network. Energies 2019, 12, 4425. [CrossRef]

39. Yun, D.Y.; Seo, S.K.; Zahid, U.; Lee, C.J. Deep Neural Network for Automatic Image Recognition of Engineering Diagrams. Appl.
Sci. 2020, 10, 4005. [CrossRef]

40. Kim, H.; Lee, W.; Kim, M.; Moon, Y.; Lee, T.; Cho, M.; Mun, D. Deep learning-based recognition of symbols and texts at an
industrially applicable level from high-density piping and instrumentation diagram images. Expert Syst. Appl. 2021, 183, 115337.
[CrossRef]

41. Zlocha, M.; Dou, Q.; Glocker, B. Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels. In
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen,
China, 13–17 October 2019; pp. 402–410.

http://doi.org/10.1016/S0734-189X(88)80033-1
http://doi.org/10.1016/j.patcog.2017.08.014
http://doi.org/10.1145/357994.358023
http://doi.org/10.1016/j.patcog.2020.107623
http://doi.org/10.1016/S0734-189X(88)80001-X
http://doi.org/10.1142/S0218001490000022
http://doi.org/10.1016/j.cad.2010.12.011
http://doi.org/10.3390/en12234425
http://doi.org/10.3390/app10114005
http://doi.org/10.1016/j.eswa.2021.115337

	Introduction
	Related Work
	Method of Recognizing Line Objects
	Line Objects to Be Recognized in P&ID
	Method of Recognizing Line Objects

	Training Dataset Construction for Line Recognition
	Preparation of Initial Training Dataset
	Augmentation of the Training Dataset
	Change of Bounding Box Size for the Dotted Line
	Data Augmentation

	Element Technologies for Line Recognition
	Removal of P&ID Title and Outer Border
	Detection of Continuous Lines in a Diagram
	Detecting Line Signs and Flow Arrows in a Diagram and Determining Line Types
	Deep Neural Network for Line Sign Recognition in a Diagram
	Changing of Line Types and Merging of Lines of the Same Types

	Storing Line Recognition Results

	Implementation and Experiment
	Experimental Setup
	Experimental Results

	Conclusions
	References

