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Abstract: Driven by the supply chain, suppliers, manufacturers and warehouses are working more
closely together for improving service quality. However, tremendous cost may incur in the supply
chain if transportation is not planned properly and efficiently, which frustrates enterprises in the
intense market. In this paper, we present a model of vehicle routing problem in complex supply
chain (VRPCSC) and propose an intelligent algorithm called hybrid chaotic discrete bat algorithm
with variable neighborhood search for minimizing the purchase cost of materials, processing cost,
and delivery cost along the path from suppliers, to manufacturers and warehouses in the vehicle
routing problem. Based on the principles of bat algorithm, a discrete chaotic initialization strategy
(DCIS) and a variable neighborhood search (VNS) are adopted to enhance the convergence capacity.
Finally, two sets of experiments are conducted, which show that the proposed algorithm can solve
the VRPCSC effectively.

Keywords: supply chain; transportation systems; artificial intelligence; intelligent algorithm; vehicle
routing; bat algorithm

1. Introduction

With the development of big data, artificial intelligence, and high-performance com-
puting techniques, the supply chain is reaching a new level. Based on these, more and
more complex segments can be considered in the supply chain management to create
lower costs and greater benefits. Nowadays, suppliers, manufacturers, and warehouses
are working more closely together, driven by the supply chain, and they cooperate with
each other to gain a share of the market. The enterprises have to effectively manage the
transportation of supply chain, so as to meet the current stringent market demand at the
lowest cost [1]. How to improve the efficiency of the supply chain has become a hot topic
in supply chain management.

Supply chain cost is mainly composed of material costs, labor cost, transportation
cost, equipment cost, and other variable cost [2]. Among them, transportation cost is an
important part of supply chain cost. Research of Apte U.M indicated that 30% of product
cost is used for vehicle routing [3]. A reasonable vehicle routing in the supply chain plays
an important role in reducing supply chain costs [4]. Therefore, reducing transportation
cost in the supply chain is one of the effective ways to improve the efficiency of the supply
chain [5].

Cross Docking (CD) is one of the effective transportation strategies for supply chain
management, which involves the transportation and store management of products: prod-
ucts are collected and transported to cross docks by inbound vehicles, and after integrating
and sorting the products, the products are loaded and transported to customers by inbound
vehicles [6]. CD can effectively improve the flowability of the products while reducing
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the storage cost and the storage space [7]. Therefore, since CD was first proposed by
Rohrer [8] in 1995, it has attracted significant research attention, and has also been suc-
cessfully applied in the supply chain. Yu et al. [9] designed nine heuristic algorithms with
different strategies to solve CD, whose objective is to minimize total operation time or
to maximize the throughput of cross docks. The actual transportation capacity of cross
docks is limited, which may cause product transportation delays. Therefore, considering
the penalty costs for all the unfulfilled products, Lim et al. [10] propose a over-constrained
vehicle routing problem with a time window, operational time, and capacity constraint
for CD. Some special industries have their own special requirements for transportation
and storage. For example, the food industry has strict cooling requirements and is highly
intolerant of intermediate storages inside the terminal. In addressing this, Boysen [11]
proposes a model for truck scheduling at zero-inventory cross docking terminals for the
food industry. Considering multiple products and different product prices supplied by
different suppliers, Ahmadizar et al. [12] established a model whose objective is to mini-
mize the purchasing, transportation, and holding costs. Reverse logistics is an important
part of modern logistics. Zuluaga et al. [13] analyzed the process of reverse logistics and
proposed a reverse cross docking model. However, in the current research on CD, most re-
searchers only focus on the integrated distribution process without considering the impact
of manufacturers’ processing.

The manufacturing process, as an important factor, is necessary to consider in supply
chain management. Therefore, some supply chain researches considered the production,
inventory, and transportation scheduling in the supply chain, which is called the production
routing problem (PRP). Based on a supply chain with a single product, multiple factories,
and multiple customers, Liu [14] establishes a model for the integrated PRP which considers
the production capacity, inventory capacity, material supply contract, inventory holding
cost, and production cost. Qiu et al. [15] propose a model for a pollution production
routing problem (PPRP) with carbon cap-and-trade whose objective is to reduce emission
levels of carbon dioxide. Based on the PPRP, considering the time window constraint,
aiming to minimize fuel costs and operating costs, Kumar et al. [16] propose a multi-
objective PPRP model with a time window. Considering the impact of carbon emissions
in the transportation process and integrating the production, inventory, transportation,
and distribution, Darvish et al. [17] established a three-echelon supply chain vehicle
scheduling model and adopted accurate algorithms to solve it. However, the above papers
only consider the transportation after the production process, and does not consider the
transportation before the production process, that is, the process of suppliers providing
materials to the factory. In addition, complex products in real life are often manufactured
from multiple materials, and different materials may be provided by different suppliers,
even different suppliers supply different materials with different costs.

Base on above, this paper takes into consideration the fact that complex products are
made from multiple materials on the basis of the three-echelon supply chain, taking into
account factors such as maximum material supply quantity, vehicle capacity, material costs,
processing cost and distribution costs, and proposes a model of the vehicle routing problem
in complex supply chain (VRPCSC) with an aim to minimize the purchasing, production,
and transportation costs. The VRPCSC satisfies the transport constraints, which is an
NP-hard problem. More and more scholars have been applying meta heuristic algorithms
to deal with this kind of problem [18,19]. Based on our previous studies [20,21], the Discrete
Bat Algorithm (DBA) can solve routing problems effectively. Because there are two-part
routings in the VRPCSC (one is between supplier and manufacturers, the other is between
manufacturers and the warehouse), this paper proposes a hybrid discrete bat algorithm
optimized by the local search. In addition, this paper adopts a discrete chaotic initialization
strategy (DCIS) [22] to strengthen the prophase convergence rate and overall convergence
effect of the algorithm.

The contributions of this paper are as follows: (1) Based on a three-echelon supply
chain included suppliers, manufacturers, and warehouses, considering the fact that com-
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plex products with multiple materials are process by-manufacturers, a model of VRPCSC is
proposed; (2) For the complex supply chain model, a hybrid chaotic discrete bat algorithm
with a variable neighborhood search (denoded as HCDBAVNS) is presented to solve it.

The remainder of this paper is organized as follows: Section 2 presents the model of
VRPCSC to describe the vehicle routing among suppliers, manufacturers, and warehouses.
Section 3 proposes the HCDBAVNS algorithm and describes the implementation in detail.
20 test instances are chosen as the study case to demonstrate the proposed algorithm and
its optimization strategies in Section 4. Some conclusions and future work are finally
addressed in Section 5.

2. Problem Model

In this subsection, VRPCSC is described in detail. Based on the description, the
mathematical model of VRPCSC is proposed.

2.1. Problem Description

In VRPCSC, the warehouses purchase materials from suppliers according to their
respective demand for products. The suppliers deliver materials to manufacturers by
vehicle. The manufacturers make materials into products, and then deliver the products to
the warehouses by vehicle. The VRPCSC distribution process is shown in Figure 1, which
consists of four parts, i.e., material procurement, material delivery, material processing, and
product delivery. VRPCSC is based on the perspective of third-party logistics companies.
Third-party logistics companies choose different suppliers and manufacturers to satisfy the
demands of clients(warehouses), with the goal being to minimize the total costs. This study
employs a parametric approach for modeling based on previous studies. The model is
based on the following hypothesis:

Warehouse Warehouse WarehouseWarehouse WarehouseWarehouse

Figure 1. The distribution schematic diagram of VRPCSC.

(1) Each supplier owns all varieties of materials needed for the products, but the
maximum supply quantity and cost of each material vary from one supplier to another;
(2) One supplier can provide a variety of materials to multiple manufacturers at the
same time, but the total quantity of each material supplied cannot exceed its maximum
supply quantity; (3) A certain material of the products needed by warehouses can only be
provided by one supplier; (4) The supplier can deliver materials to one manufacturer at
a time, the vehicle must return to the original supplier immediately after the delivery. In
other word, there is a one round-trip path between a supplier and a manufacturer, but the
material delivery cost varies from one supplier to another; (5) All materials of the products
needed by one warehouse must be manufactured into products by just one manufacturer,
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but different materials can be supplied from different suppliers and there is no competition
between suppliers; (6) The products needed by warehouses can be processed by only
one manufacturer, and delivered only by the vehicle of that manufacturer; (7) Different
manufacturers have different processing costs, and they also have a different number of
vehicles, vehicle models, and product delivery costs; (8) There is a linear relation between
the total weight of the various materials before processing and the weight of products after
processing; (9) The manufacturer’s vehicle starts from the manufacturer’s place, delivers
the products to warehouses and returns to the original manufacturer’s place after delivery;
(10) The manufacturer’s vehicle can deliver products only once. If it is used for delivery,
the total weight of the products it delivers cannot exceed the maximum loading capacity of
the vehicle.

2.2. Mathematical Model

In order to establish the mathematical model of VRPCSC more accurately, the mathe-
matical notations are defined as follows:

(1) Sets
SS: Set of suppliers.
SM: Set of manufacturers.
SP: Set of warehouses.
SL: Set of material types.
SK: Set of manufacturer vehicles.
(2) Parameters
s: Element in set SS, s ∈ SS.
m: Element in set SM, m ∈ SM.
p: Element in set SP, p ∈ SP.
l: Element in set SL, l ∈ SL.
k: Element in set SK, k ∈ SK.
S: Number of elements in the SS.
M: Number of elements in the SM.
P: Number of elements in the SP.
L: Number of elements in the SL.
K: Number of elements in the SK.
esl : Maximum supply quantity of material l of supplier s.
csl : Cost per unit weight of material l of supplier s.
bs: Delivery cost per unit distance of materials delivered by vehicles of supplier s.
nm: Number of vehicles owned by manufacturer m.
c′m: Processing cost per unit weight of products made from materials by manufacturer m.
b′mk: Delivery cost per unit distance of products delivered by vehicle k of manufacturer m.
umk: Maximum loading capacity of vehicle k of manufacturer m.
dsm: Distance from supplier s to manufacturer m.
d′mp: Distance from manufacturer m to warehouse p.
d′′pp′ : Distance from warehouse p to warehouse p′.
op: Weight of products needed by warehouse p.
o′pl : Weight of material l corresponding to the products needed by warehouse p.
(3) Variables
ymkp: If warehouse p is the first warehouse distributed by vehicle k of manufacturer

m, ymkp = 1; otherwise, ymkp = 0.
y′mkpp′ : If vehicle k of manufacturer m directly delivers products to warehouse p′ after

delivery to warehouse p, y′mkpp′ = 1; otherwise, y′mkpp′ = 0.
y′′mkp: If warehouse p is the last warehouse distributed by vehicle k of manufacturer m,

y′′mkp = 1; otherwise, y′′mkp = 0.
gsmkpl : If the products delivered by vehicle k of manufacturer m to warehouse p are

made from material l of supplier s, gsmkpl = 1; otherwise, gsmkpl = 0.
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g′sm: If supplier s uses the supplier’s vehicle to deliver materials to manufacturer m,
g′sm = 1; otherwise, g′sm = 0.

g′′mkp: If vehicle k of manufacturer m is used to deliver products to warehouse p,
g′′mkp = 1; otherwise, g′′mkp = 0.

2.2.1. Objective Function

According to the above description of VRPCSC, the whole logistics cost mainly consists
of four parts. The first part is the purchase cost of materials (denoted as ZPUR). The second
part is the delivery cost of materials from suppliers to manufacturers (denoted as ZSTM).
The third part is the processing cost for the manufacturers to process materials into products
(denoted as ZPRO). The fourth part is the delivery cost for the manufacturers to deliver the
products to the warehouses (denoted as ZMTS). Then, the calculation methods for each part
and the optimization objective of this paper are described in detail.

The purchase cost of materials can be calculated by the weights and prices of the
materials, and the calculation method is shown in Formula (1):

ZPUR= ∑
s∈SS

∑
m∈SM

∑
k∈SK

∑
p∈SP

∑
l∈SL

gsmkplo′plcsl (1)

On the other hand, since there is a one round-trip path between a supplier and a
manufacturer, then ZSTM can be calculated as follows:

ZSTM= 2× ∑
s∈SS

∑
m∈SM

g′smdsmbs (2)

It can be seen from Formula (2), that the unit delivery cost of the suppliers’ vehicles
and the delivery distances are related to ZSTM. Further, several varieties of materials will be
processed into products by manufacturers. The processing cost is related to the materials’
weights and processing prices, which is shown in Formula (3).

ZPRO= ∑
m∈SM

∑
k∈SK

∑
p∈SP

g′′mkpopc′m (3)

At last, the products can be delivered by the manufacturers’ vehicles. Since multiple
warehouses’ products can be delivered by a vehicle of a manufacturer at the same time,
then ZMTS can be calculated by Formula (4).

ZMTS= ∑
m∈SM

∑
k∈SK

∑
p∈SP

(ymkp + y′′mkp)d
′
mpb′mk + ∑

m∈SM
∑

k∈SK
∑

p∈SP
∑

p′∈SP
y′mkpp′d

′
pp′b

′
mk (4)

From Formula (1) to Formula (4), it can be obtained that the objective function is:

ZTotal= min(ZPUR+ZSTM+ZPRO+ZMTS) (5)

The goal of this paper is to minimize the total cost of these four parts.

2.2.2. Constraints

After ensuring the objective of the VRPCSC, some constraints need to be confirmed in
this model to make the VRPCSC fully satisfied with the problem description in Section 2.1.
First, the relationship between products and materials satisfies linear constraints:

op =
o′p1

σ1
=

o′p2

σ2
= · · · =

o′pL

σL
(6)

where σ1, σ2, · · · , σL are all known real number constants. According to the product de-
mands of the warehouses, the demands for purchased materials can be calculated by
Formula (6). However, in the process of purchasing materials, each material provided



Appl. Sci. 2021, 11, 10101 6 of 23

by the supplier cannot exceed its maximum supply quantity. The constraint is shown in
Formula (7):

∑
m∈SM

∑
p∈SP

gsmkplo′pl ≤ esl , ∀s ∈ SS, ∀k ∈ SK, ∀l ∈ SL (7)

Further, in other to ensure that the supplier delivers the materials to the corresponding
manufacturer at most by one vehicle, suppliers’ vehicles should meet the following con-
straints:

g′sm = min{1, ∑
k∈SK

∑
p∈SP

∑
l∈SL

gsmkpl}, ∀s ∈ SS, ∀m ∈ SM (8)

When finished, the products will be delivered by the manufacturers’ vehicles. In the
same way, the weight of the products delivered by the manufacturers’ vehicles cannot ex-
ceed their respective maximum loading capacities. The constraint is shown in Formula (9):

∑
p∈SP

g′′mkpop ≤ umk, ∀m ∈ SM, ∀l ∈ SL (9)

In the process of delivering products to the warehouses, the manufacturers’ vehicles
should also meet the following constraints:

∑
m∈SM

∑
k∈SK

g′′mkp = 1, ∀p ∈ SP (10)

∑
p∈SP

ymkp ≤ 1, ∀m ∈ SM, ∀k ∈ SK (11)

∑
p∈SP

∑
p′∈SP

y′mkpp′ ≤ δ ∑
p∈SP

ymkp, ∀m ∈ SM, ∀k ∈ SK, ∃δ ∈ R+ (12)

∑
p∈SPT

∑
p′∈SPT

mkpp′ ≤ SPT − γ(SPT),∀SPT ∈ SP, SPT 6= ∅, ∀m ∈ SM, ∀k ∈ SK (13)

where Formula (10) ensures that only one manufacturer delivers products to each ware-
house; Formula (11) ensures that each manufacturer’s vehicle can deliver products only
once; Formula (12) ensures that the manufacturer’s vehicle must start from the manufac-
turer’s place to deliver products to the warehouse; Formula (13) ensures the continuous
delivery process of one manufacturer’s vehicle and γ(SPT) denotes the minimum number
of manufacturer’s vehicles needed to serve all the warehouse in set SPT.

In addition, since the materials are related to the products, there are some constraints
between the transportation of materials and corresponding products:

∑
s∈SS

∑
m∈SM

∑
k∈SK

∑
p∈SP

gsmkpl = 1, ∀l ∈ SL (14)

∑
s∈SS

∑
l∈SL

gsmkpl = L× g′′mkp, ∀m ∈ SM, ∀k ∈ SK, ∀p ∈ SP (15)

where Formula (14) ensures that each material corresponding to the products needed by
each warehouse is provided by only one supplier, processed by one manufacturer and
delivered by one manufacturer’s vehicle; Formula (15) indicates the relationship between
material delivery and product delivery.

Above all, the VRPCSC model can be established from Formula (1) to Formula (15).
Then the algorithm of this model will be solved in detail.
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3. The Proposed HCDBAVNS Algorithm

BA is an intelligent evolutionary algorithm proposed by Yang X-S [23] that was
inspired by the micro-bat echolocation principle. The BA simulates the process in nature
where the bat searches for prey by echolocation, adjusts the wavelength of their emitted
pulses and pulse emission rate depending on the proximity of the prey, and finally captures
the prey, which is called a swarm optimization algorithm [24]. The BA mainly consists of
four parts, i.e., bat position, bat velocity, bat frequency, and their corresponding update
operations. Based on the characteristics of VRPCSC and our previous studies [20,21],
this paper has proposed a HCDBAVNS algorithm to solve the model. The optimization
framework of HCDBAVNS is shown in Figure 2.

HCDBAVNS algorthm

Fitness Function

Variable Neighbourhood Search Strategy

Initial bat population Chaos Initialization Strategy

Initial each bat s position and velocity

Update bat position , velocity and frequency

Reach the terminated condition

Update the bat i
position of bats by 2-Opt search, 

0-1 search or 1-1 search

If the new one is 
better than the 

original one

Replace

Yes

No

Output the optimal global position and its cost

Decoding the bat position 

Evaluate and output the costFitness evalation minimal cost

No

Yes Output the new position and its 
cost

The optimal global 
position is updated and 
Rand () < The loudness

of bat i

Rand () > The pulse
emission rate of bat i

Bat variation operation

Yes

Update the position of bat i , and its
loudness and pulse emission rate

Yes

No

No

Fitness Function

No

Figure 2. Optimization Framework of HCDBAVNS.

It can be seen from Figure 2, that there is a series of bat operations in HCDBAVNS,
such as the updated operations of bat position, velocity, frequency, variation, loudness,
and pulse emission rate. Then, HCDBAVNS also includes DCIS and VNS. In addition, the
local search strategies, that is, 0-1 search, 1-1 search, and 2-Opt search are the critical parts
of VNS. In the following sections, each component of the HCDBAVNS will be described
in detail.

3.1. Definition of Parameters and Operations
3.1.1. Bat Position, Velocity and Frequency

The position of the bat is a key bridge between the solution model and the solution
space. VRPCSC is a three-echelon supply chain structure, which consists of two stages of
logistics and transportation scheduling. Then, the position of bat i is defined as follows:

xi = [x1
i , x2

i ] (16)

x1
i = [x1

i1, x1
i2, · · · , x1

iW ] (17)

x2
i = [x2

i1, x2
i2, · · · , x2

iW ′ ] (18)
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where the dimensions of the first and second bat position are respectively W, W ′. The
detailed encoding and decoding methods for bat positions are described in Section 3.2.

On the other hand, BA is related to the bat velocity and frequency in the process of
updating bat position. Similarly, this paper defines the velocity and frequency of bats as
a two-layer structure to prepare for the following update operations of bats. Then, the
velocity of bat i is:

vi = [v1
i , v2

i ] (19)

v1
i = [v1

i1, v1
i2, · · · , v1

iW ] (20)

v2
i = [v2

i1, v2
i2, · · · , v2

iW ′ ] (21)

where, v1
ij (j = 1, 2, · · · , W) is an integer and 1 ≤ v1

ij ≤W; v2
ij (j = 1, 2, · · · , W ′) is an integer

and 1 ≤ v1
ij ≤W ′. Further, the frequency of bat i is:

fi = [ f 1
i , f 2

i ] (22)

where, f 1
i ∈ [0, 1]; f 2

i ∈ [0, 1].

3.1.2. Update Operations of Bat Position, Velocity and Frequency

The update operations of bat position, velocity and frequency mainly include four steps:
Supposing that, the position of bat i is xi = [x1

i , x2
i ], vi = [v1

i , v2
i ], fi = [ f 1

i , f 2
i ],

the optimal global position x∗ = [x1
∗, x2
∗], and the updated bat position, velocity, and

frequency are x′i , v′′′i and f ′i , respectively.
(1) xi − x∗ = v′i = [v′i

1, v′i
2]: For any x1

ij ∈ x1
i , x1
∗j ∈ x1

∗, v′ij
1 ∈ v′i

1 and j = 1, 2, · · · , W,

if x1
ij = x1

∗j
, then v′ij

1 = 0; if x1
ij 6= x1

∗j
, then v′ij

1 = x1
∗j. v′i

2 is obtained from x2
i and x2

∗ in the
same way.

(2) v′i× fi = v′′i = [v′′i
1, v′′i

2]: Let f ′i = [ f ′i
1, f ′i

2], fr is randomly generated and fr ∈ [0, 1],
frequency factor θ1 > 1 and θ2 > 1. For any v′ij

1 ∈ v′i
1, v′′ij

1 ∈ v′′i
1 and j = 1, 2, · · · , W, if

fr < f 1
i , then v′′ij

1 = 0, f ′i
1 = f 1

i ; if fr ≥ f 1
i , then v′′ij

1 = v′ij
1, f ′i

1 = f 1
i + ( fr − f 1

i )/θ1. v′′i
2

and f 2
i are obtained from fr and θ2 in the same way.

(3) vi + v′′i = v′′′i = [v′′′i
1, v′′′i

2]: For any v1
ij ∈ v1

i , v′′′ij
1 ∈ v′′i

1, v′′ij
1 ∈ v′′i

1, v′′′ij
1 ∈ v′′′i

1 and

j = 1, 2, · · · , W, if rand() < 0.5, then v′′′ij
1 = v1

ij; if rand() ≥ 0.5, then v′′′ij
1 = v′′ij

1. v′′′i
2 is

obtained from v2
i and v′′i

2 in the same way.
(4) xi + v′′′i = x′i = [x′i

1, x′i
2]: Let x′i

1 = x1
i , when v′′′ij

1 6= 0, the component of x′i
1 at

position xij
1 is exchanged with its component at position v′′′ij

1 (j = 1, 2, · · · , W). x′i
2 is

obtained from xi
2 and x′′′i

2 in the same way. A instance is shown in Figure 3.
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1
ix：
1
*x：

1 1 1
*- =i ix x v：

1
if ：

r =f 0.4：

1 1 1=i i iv f v  ：

1
iv：

()rand ：

1 1 1
i i iv v v  = ：

1
ix：

1
iv：

1
ix：

1
ix：

1
ix：

1 1 1+ =i i ix v x 

Figure 3. An instance for the update operations of bat position, velocity, and frequency.

In Figure 3, assuming that x1
i = {1, 2, 3, 4} and x1

∗ = {1, 4, 3, 2}, then x1
i − x1

∗ =

v′i
1 = {0, 4, 3, 2}. Second, assuming that f 1

i = {0.2, 0.3, 0.6, 0.2} and fr = 0.4, then v′i
1 ×

f 1
i = v′′i

1 = {0, 4, 0, 2}. Third, assuming that v1
i = {1, 3, 3, 4} and the random values is

{0.6, 0.2, 0.6, 0.7}, then vi
1 + v′′i

1 = v′′′i
1 = {0, 3, 0, 2}. Based on the x1

i and v′′′i
1, xi + v′′′i =

x′i = {1, 4, 2, 3}.

3.1.3. Bat Variation Operation

Supposing that, the position of bat i is xi = [x1
i , x2

i ]. Let j and w be randomly generated
unequal integers (1 ≤ j ≤ W, 1 ≤ w ≤ W), and exchange the j-th component and w-th
component of x1

i . x2
i is obtained in the same way.

3.1.4. Update Operations of the Bat Loudness and Pulse Emission Rate

Supposing R0
i ∈ [0, 1] and At

i ∈ [0, 1] are the initial pulse emission rate and loudness
of bat i at iteration t. Then, at iteration t + 1, its loudness At+1

i = αAt
i , and pulse emission

rate Rt+1
i = R0

i × [1− exp(−γt)], where the loudness factor 0 < α < 1 and pulse emission
rate factor γ > 0.

3.2. Encoding and Decoding Schemes

The encoding and decoding schemes are important steps to solve the optimization
problem, which affects the quality of the final solution. Finally, they are described in detail.

3.2.1. Encoding Scheme

(1) Encoding of materials needed for products: The products are made from a variety
of materials, but the materials of the products needed by the same warehouse can be
provided by different suppliers. Therefore, a unique mark must be given to the material
corresponding to the products needed by each warehouse. Since the number of warehouses
is P and the number of material types needed for products L, the material l corresponding
to the products needed by warehouse p is coded as p× l. The material codes corresponding
to all products will form a sequence [1, 2, · · · , P× L];

(2) Encoding of the first-part bat position: Let the dimension of x1
i be W = P× L +

S− 1, which is a permutation of the sequence of integers [1, 2, · · · , W];
(3) Encoding of the second-part bat position: Let the dimension of x2

i be W ′ = P +
M
∑

m=1
nm − 1, which is a permutation of the sequence of integers [1, 2, · · · , W ′].



Appl. Sci. 2021, 11, 10101 10 of 23

3.2.2. Decoding Scheme

The first-part bat position x1
i is used to determine the supplier of a certain material of

the products needed by the warehouse.
(1) x1

ij = 1, 2, · · · , P× L (1 ≤ j ≤W) represents the serial number of a certain material
for the warehouse, so as to ensure that a certain material of the products needed by each
warehouse is provided by only one supplier;

(2) x1
ij > P (1 ≤ j ≤ W) splits x1

i into S segments. From left to right, the segment
s represents the set of materials provided by supplier s corresponding to the products
needed by the warehouse, and s = 1, 2, · · · , S.

The second-part bat position x2
i is used to determine the manufacturer, making the

products needed by the warehouse and the manufacturer’s vehicle delivering the products.
(1) x2

ij ≤ P (1 ≤ j ≤W ′) represents the serial number of the warehouse, so as to ensure
that the products needed by each warehouse are made by only one manufacturer and
delivered by the manufacturer’s vehicle;

(2) x2
ij > P (1 ≤ j ≤ W ′) splits x2

i into
M
∑

m=1
nm segments. From left to right, the

segment
[

m−1
∑

i=1
ni,

m
∑

i=1
ni

]
represents the vehicle belonging to the manufacturer m, and m =

1, 2, · · · , M. The nm segments belonging to the manufacturer m represent the delivery path
of vehicle k of the manufacturer m from left to right, and k = 1, 2, · · · , nm.

Since x1
i determines the supplier of a certain material of the products needed by the

warehouse, and x2
i determines the manufacturer delivering the products needed by the

warehouse, it is easy to determine the manufacturer processing a certain material provided
by each supplier.

First, the materials corresponding to the products needed by each warehouse are
encoded, as shown in Figure 4. After confirming the serial number of each material
corresponding to the products needed by the warehouse, the bat position can be encoded,
as shown in Figure 5.

In the first-part bat position, position components 12 and 11 act as supplier delimiters,
dividing the first-part position into three segments, i.e., supplier 1 is responsible for
providing materials 1, 3, 5, 10; supplier 2 is responsible for providing materials 2, 4, 6, 7;
and supplier 3 is responsible for providing materials 8, 9.

Second-
part

encoding

First-
part

encoding Demand
Demand

Product

Material 1

Material 2

Product

Material 1

Material 2

Product

Material 1

Material 2

Product

Material 1

Material 2

Product

Material 1

Material 2

1

2

3

4

5

6

7

8

9

10

Warehouse 1

Warehouse 2

Warehouse 4

Warehouse 5

Warehouse 3

1

2

4

5

3

Figure 4. An instance for encoding the materials of products.
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1 2 7 3 4 6 5

Vehicle 1 of
Manufacturer 1

Vehicle 1 of
Manufacturer 1

Vehicle 2 of
Manufacturer 2

1 3 5 10 12 2 4 6

Supplier 1 Supplier 3Supplier 2

First part:

Second part:

7 11 8 9

8

Supplier separators

Separators for the vehcles of maufacturers

Figure 5. An instance for encoding the bat position.

In the second-part position, position components 6, 7, and 8 act as the manufacturer’s
vehicle delimiters, dividing the second-part bat position into four segments, i.e., vehicle
1 of manufacturer 1 is responsible for delivering the products of warehouses 1 and 2;
vehicle 2 of manufacturer 1 is an empty vehicle (i.e., this vehicle is not used); vehicle 1
of manufacturer 2 is responsible for delivering the products of warehouses 3 and 4; and
vehicle 2 of manufacturer 2 is responsible for delivering the products of warehouse 5.

After determining the first-part and second-part bat positions, supplier 1 should
deliver materials 1 and 3 to manufacturer 1, and materials 5 and 10 to manufacturer 2;
supplier 2 should deliver materials 2 and 4 to manufacturer 1, and materials 6 and 7 to
manufacturer 2; supplier 3 should deliver materials 8 and 9 to manufacturer 2. The delivery
path after decoding is shown in Figure 6.

Supplier 1 Supplier 2 Supplier 3

Manufacturer 1 Manufacturer 2

Warehouse 1

Material 1 Material 2

1 2

Warehouse 2

Material 1 Material 2

3 4

Warehouse 3

Material 1 Material 2

5 6

Warehouse 4

Material 1 Material 2

7 8

Warehouse 5

Material 1 Material 2

9 10

1+3 5+10
6+7

1+2

3+
4 5

2+4
8+

9

Figure 6. Instance for decoding the bat position.

3.3. Discrete Chaos Initialization Strategy

The chaos optimization algorithm is an optimization algorithm characterized by
randomness, ergodicity, and regularity. Scholars often adopt it to generate a set of initial-
ized random sequences with ergodicity and pseudo-randomness, so as to strengthen the
prophase convergence rate and overall convergence effect of intelligent algorithms [25]. Ac-
cording to our previous works [26], DCIS is used to generate the pseudo-random sequence
in this paper, which is based on Logistic mapping (shown in Formula (23)).

zi+1 = µzi(1− zi) (23)

where, 0 ≤ zi ≤ 1, zi 6= 0.25, 0.5, 0.75, i = 0, 1, 2, · · · , µ = 4.
Further, we adopt the all-permutation structure theory [27] to establish the corre-

sponding relation between the serial number and the path. Finally, the initial population of
bats can be preferentially generated by Formula (23) using the characteristics of chaos.
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3.4. Fitness Function

The delivery path among suppliers, manufacturers, and warehouses can be obtained
through encoding and decoding the bat position. However, it cannot be proved that the
derived delivery path is a feasible solution, because the path may violate the constraint
conditions of Formulas (13) and (14). Therefore, this paper deals with the constraints of
Formulas (13) and (14) using a punishment mechanism to punish the infeasible solution.
Further, it is found that there is no quantitative relationship among Formulas (5), (13),
and (14). If the sum of the three formulas is directly used for fitness comparison, it is not
conducive to controlling the optimization direction of the algorithm. Second, it is found
that the optimal path must first satisfy Formulas (13) and (14) and then converge to the
optimal direction of Formula (5). Therefore, on the basis of the punishment mechanism,
a vector mechanism has been added to the fitness function in this paper. After using
the punishment and vector mechanisms, the fitness function of bat i can be derived from
Formula (5):

Gi={Gi1, Gi2, Gi3} (24)

Gi1 = ∑
s∈SS

∑
l∈SL

max

{
0, ∑

m∈SM
∑

k∈SK
∑

p∈SP
gsmkplo′pl−esl

}
(25)

Gi2 = ∑
m∈SM

∑
k∈SK

max

{
0, ∑

p∈SP
g′′mkpop − umk

}
(26)

Gi3= ∑
s∈SS

∑
m∈SM

∑
k∈SK

∑
p∈SP

∑
l∈SL

gsmkplo′plcsl+2× ∑
s∈SS

∑
m∈SM

g′smdsmbs+

∑
m∈SM

∑
k∈SK

∑
p∈SP

g′′mkpopc′m+ ∑
m∈SM

∑
k∈SK

∑
p∈SP

(ymkp + y′′mkp)d
′
mpb′mk+

∑
m∈SM

∑
k∈SK

∑
p∈SP

∑
p′∈SP

y′mkpp′d
′
pp′b

′
mk

(27)

where Gi1 and Gi2 are the punishments for violating the constraint of Formulas (13) and (14)
respectively, and Gi3 is the original target.

As can be seen from Formula (24), the fitness function Gi1 is a three-dimensional value,
and the commonly-used comparison method of one-dimensional numerical values is not
suitable for fitness comparison in this paper. Hence, this paper has proposed a comparison
method based on vector mechanism.

Supposing that the fitness of delivery path 1 is G1 = {G11, G12, G13}, the fitness of
delivery path 2 is G2 = {G21, G22, G23}, and the optimal fitness is Gbest, the flow chart is
shown in Figure 7.
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1 2j jG G

1 2j jG G

1bestG G

2bestG G

1bestG G

bestG

Figure 7. Flowchart of the fitness comparison based on vectorial mechanism.

3.5. Variable Neighborhood Search Strategy

The local search is a supplement to intelligent algorithms, and it can enhance the
search capability of the algorithm [28]. Therefore, this paper introduces 2-Opt search,
0-1 search and 1-1 search, and proposes a VNS strategy [29]. In order to avoid excessive
disturbance to the search direction, it is stipulated in this strategy that when one part of
the bat position changes in the process of local optimization, the other part of bat position
remains unchanged. The specific steps of VNS are as follows:

Step 1: 2-Opt search. 2-Opt search is carried out on the delivery path of a manufac-
turer’s vehicle, until the vehicle’s delivery path cannot be further improved.

Step 2: 0-1 search. For the first-part bat position, a material point of one supplier is
inserted into that of another supplier to form a new bat position. If the new bat position is
better, then the new bat position is accepted, and 0-1 search for this part of bat position is
repeated until no longer updated after L times. For the second-part bat position, a ware-
house point of one manufacturer’s vehicle is inserted into that of another manufacturer’s
vehicle, and 2-Opt search is performed on the two vehicles, respectively, to form a new bat
position. If the new bat position is better, then the new bat position is accepted, and 0-1
search for this part of bat position is repeated until no longer updated after L times.

Step 3: 1-1 search. It is similar to the 0-1 search. The difference lies in that 0-1 search is
the insertion of points, while 1-1 search is the exchange of two points.

The VNS in this paper just exchanges the order of the components of bat position
according to certain rules. The obtained bat position still conforms to the encoding defini-
tion of the bat position in Section 3.1, and a complete VRPCSC path can be obtained by
decoding. The pseudocode of HCDBAVNS is shown as Algorithm 1.
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Algorithm 1 HCDBAVNS

Input:
Parameter value;

Output:
The global best position x∗ of bat and its fitness G∗

1: Chaos Initialization Strategy is used to generate the bat population;
2: Calculate the fitness Gi of bat i by the fitness function, then the optimal global position

of bats x∗ and G∗ are initialized, i = 1, 2, · · · , Q.
3: T = 0;
4: while T < Nmax (the maximal number of iterations) do
5: for i = 1 to Q do
6: Update operations of bat position, velocity, and frequency are used to generate

xnew
i , vnew

i and f new
i , respectively. Then, vi = vnew

i , fi = f new
i .

7: if Ri < rand() then
8: Bat variation operation is used to generate xnew

i .
9: end if

10: Variable neighborhood search strategy is used to find the best bat position xpbest
i in

the neighborhood of xnew
i .

11: if Gpbest
i < Gi and Ai > rand() then

12: (1) xi = xpbest
i , and updating Ai through updated operations of loudness and

pulse emission rate.
13: end if
14: if Gpbest

i < G∗ then

15: (2) x∗ = xpbest
i and G∗ = Gpbest

i .
16: end if
17: end for
18: N = N + 1.
19: end while

4. Experiments
4.1. Experimental Instances

Since the VRPCSC model has no benchmark instances, this paper randomly generates
20 test instances to evaluate the algorithm according to the size of instances in Table 1 and
the parameter values of instances in Table 2. These instances are divided into four groups,
each group has five instances, and each instance is marked as P01, P02, ..., P20, respectively.

Table 1. The scale of Instances.

Group S M nm P L Relationship between
Materials and Products

G1 3 2 3 10 2 op =
o′ p1

1 =
o′ p2

1 [t]
G2 4 3 3 20 2 op =

o′ p1
1 =

o′ p2
1

G3 3 2 3 10 3 op =
o′ p1

2 =
o′ p2

2 =
o′ p3

1
G4 4 3 3 20 3 op =

o′ p1
2 =

o′ p2
2 =

o′ p3
1 [b]
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Table 2. The ranges of some parameters of instances.

Parameter Range

X and Y coordinates Rand (0, 500) [t]
es Rand (20, 70)
cs Rand (1000, 1500)
bs Rand (10, 15)

umk Rand (0, 3)*10
c′m Rand (1500, 1800)
b′mk Rand (3, 5)
op Rand (1, 10) [b]

4.2. Experimental Environment

The simulation environment of the experiment uses a Windows 7 operating system, i7
processor, and 4G memory. The programming language is C++. All the algorithms are im-
plemented and executed in this experimental environment. Each instance is independently
solved by the corresponding algorithm 10 times to obtain experimental results.

4.3. Key Experimental Parameters

The values of key experimental parameters have a great influence on the solving
capability of intelligent algorithms. Thus, in order to enable the algorithm to solve the
VRPCSC more effectively, four VRPCSC instances are solved using HCDBAVNS with
different values of θ1, θ2, γ and α (other parameters: Q = 30, L = 100, MIT ≤ 3000). The
results are shown in Tables 3–5, where the unit of time is second.

Table 3. The result of instances by HCDBAVNS with different θ1 and θ2.

Instance

θ1 = 0.5×W , θ2 = 0.5×W ′, θ1 = W , θ2 = 2×W ′, θ1 = 2×W , θ2 = W ′,
α = 0.999, γ = 0.001 α = 0.999, γ = 0.001 α = 0.999, γ = 0.001

Best
Solution

Average
Solution Time Best

Solution
Average
Solution Time Best

Solution
Average
Solution Time

P01 245,399 245,399.0 4.7 245,399 245,399.0 4.3 245,399 245,399.0 4.8

P06 454,497 454,891.2 43.5 450,664 453,527.2 45.9 452,069 453,797.8 44.6

P11 379,602 379,602.0 17.4 379,602 379,602.0 14.1 379,602 379,602.0 18.6

P16 939,685 941,535.4 56.7 938,095 940,699.0 59.2 938,336 941,260.2 59.6

1. In Table 3, α and γ have the same value. When θ1 = W and θ2 = W ′, the
HCDBAVNS has the most balanced performance in optimization capability and time con-
sumption.

Table 4. The result of instances by HCDBAVNS with different α.

Instance

θ1 = W , θ2 = W ′, θ1 = W , θ2 = W ′, θ1 = W , θ2 = W ′,
α = 0.9, γ = 0.001 α = 0.99, γ = 0.001 α = 0.999, γ = 0.001

Best
Solution

Average
Solution Time Best

Solution
Average
Solution Time Best

Solution
Average
Solution Time

P01 245,399 245,399.0 5.1 245,399 245,399.0 4.7 245,399 245,399.0 4.3 [t]
P06 452,935 454,656.6 47.7 451,918 453,691.6 46.1 450,664 453,527.2 45.9
P11 379,602 379,602.0 18.3 379,602 379,602.0 16.3 379,602 379,602.0 14.1
P16 941,560 943,788.6 62.3 939,532 940,811.0 60.5 938,095 940,699.0 59.2 [b]

2. In Table 4, θ1, θ2 and γ have the same value. As the value of α increases, HCDBAVNS
has increasingly better optimization capability but slightly decreased time consumption.
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Table 5. The result of instances by HCDBAVNS with different γ.

Instance

θ1 = W , θ2 = W ′, θ1 = W , θ2 = W ′, θ1 = W , θ2 = W ′,
α = 0.999, γ = 0.001 α = 0.999, γ = 0.01 α = 0.999, γ = 0.5

Best
Solution

Average
Solution Time Best

Solution
Average
Solution Time Best

Solution
Average
Solution Time

P01 245,399 245,399.0 4.3 245,399 245,399.0 4.7 245,399 245,399.0 4.6 [t]
P06 450,664 453,527.2 45.9 452,229 453,827.0 43.7 453,026 454,184.4 41.6
P11 379,602 379,602.0 14.1 379,602 379,602.0 17.1 379,602 379,602.0 17.3
P16 938,095 940,699.0 59.2 939,359 941,121.6 53.2 942,008 942,730.2 55.7 [b]

3. In Table 5, θ1, θ2 and α have the same value. As the value of γ decreases, HCD-
BAVNS has the generally the same time consumption but increasingly stronger optimiza-
tion capability.

It can be seen that among the seven combinations of values that HCDBAVNS has the
best performance when θ1 = W, θ2 = W ′, α = 0.999 and γ = 0.001. Therefore, Q = 30,
L = 100, MIT ≤ 3000, θ1 = W, θ2 = W ′, α = 0.999 and γ = 0.001 will be set in the
following experiments.

4.4. Experimental Results and Analysis

In this part, 2 experiments are performed to prove the effectiveness and the optimiza-
tion ability of the algorithm, respectively.

4.4.1. Experiment 1

In order to analyse the solving effect of HCDBAVNS in detail, this paper selects the
experimental results of the instance P01 for specific analysis. The information of instance
P01 is shown in Tables 6–8.

Table 6. Supplier information of P01.

Supplier X Coordinate Y Coordinate bs cs1 es1 cs2 es2

SUP1 99 236 10 1027 38 1200 26 [t]
SUP2 342 29 14 1072 21 1079 30
SUP3 78 242 14 1067 24 1051 36 [b]

Table 7. Manufacturer information of P01.

Manufacturer
Tab X Coordinate Y Coordinate b′mk c′m nm

Vehicle Information

Vehicle Tab umk

MAN1 304 266 3 1623 3

VEH1 20 [t]
VEH2 30
VEH3 30 [b]

MAN2 22 412 5 1512 3

VEH4 30 [t]
VEH5 20
VEH6 20 [b]
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Table 8. Warehouse information of P01.

Warehouse
X Coordinate Y Coordinate op

Material 1 Material 2

Tab Tab Demand Tab Demand

STO1 306 299 10 MAT1 10 MAT2 10 [t]
STO2 387 84 6 MAT3 6 MAT4 6
STO3 411 488 1 MAT5 1 MAT6 1
STO4 352 210 10 MAT7 10 MAT8 10
STO5 197 252 2 MAT9 2 MAT10 2
STO6 91 378 8 MAT11 8 MAT12 8
STO7 306 65 1 MAT13 1 MAT14 1
STO8 43 19 9 MAT15 9 MAT16 9
STO9 175 415 10 MAT17 10 MAT18 10
STO10 426 103 4 MAT19 4 MAT20 4 [b]

Then, the best solution of P01 solved by the HCDBAVNS is shown in Tables 9–11 and
Figure 8 which reflect the following characteristics.
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Figure 8. The schematic diagram of optimal solutions of P01 by HCDBAVNS.

Table 9. Warehouses served by suppliers in the optimal solution of P01 by HCDBAVNS.

Item Set Information Supply Quantity
of Material 1

Supply Quantity
of Material 2 Material Cost

The Material of Warehouses Served by Suppliers

SUP1: MAT3,
MAT11, MAT13,
MAT7, MAT 5,

MAT16, MAT18,
MAT17, MAT4,

MAT9

38 25 69,026

SUP3: MAT6,
MAT19, MAT2,
MAT1, MAT8,

MAT12, MAT15,
MAT10, MAT20,

MAT14

23 36 62,377

Total cost 131,403
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Table 10. The transportation from manufacturers to warehouses in the optimal solution of P01 by HCDBAVNS.

Item Route
Information Used Capacity Processing Cost Route Distance Transportation

Cost

The transportation
from manufacturers
to warehouses

VEH4: MAN2− >
STO8− >
STO7− >
STO2− >

STO10− >
STO4− > MAN2

30 45,360 1301 6505

VEH5: MAN2− >
STO5− >
STO1− >

STO3− > MAN2

13 19,656 967 4835

VEH6: MAN2− >
STO9− >

STO6− > MAN2
18 27,216 320 1600

Total cost 92,232 12,940

Table 11. The transportation from suppliers to manufacturers in the optimal solution of P01 by HCDBAVNS.

Item Route Information Route Distance Transportation Cost

The transportation from
suppliers to manufacturers

SUP1− > MAN2 384 3840

SUP3− > MAN2 356 4984

Total cost 8824

1. The materials (i.e., MAT1, MAT2, ..., MAT10) corresponding to the products needed
by all warehouses are supplied by SUP1 and SUP3 without any omission. For the SUP1,
the supply quantity of material 1 is 38, and the supply quantity of material 2 is 25, both
of which have not exceeded their maximum supply quantities (38 and 26). Similarly, for
the SUP3, the supply quantity of material 1 is 23, and the supply quantity of material 2 is
36, both of which have not exceeded their maximum supply quantities (24 and 36) either.
It is worth noting that SUP2 is not selected in this best solution because the materials of
SUP1 and SUP3 are cheaper than SUP2 and the material supply quantities of SUP1 and
SUP3 have met the demand of all warehouses. In addition, SUP2 is further away from the
MAN2 and MAN1 than SUP1 and SUP3.

2. All the products are made by MAN2 and delivered by three vehicles of MAN2. The
actual loads of VEH4 are 30, 13, and 18, respectively, all of which have not exceeded their
maximum loading capacities (30, 20, and 20). MAN1 is not selected for processing and
delivery. Because the unit processing cost of MAN2 is cheaper than that of MAN1, and the
position of MAN2 is closer to the SUP1 and SUP3 than MAN2.

This best solution satisfies the material supply constraint and maximum loading
capacity constraint of VRPCSC, that is, it satisfies Formulas (9) and (10), so it is a feasible
solution. Thus, HCDBAVNS can effectively solve VRPCSC.

4.4.2. Experiment 2

In order to assess the effectiveness HCDBAVNS, this experiment makes a comparison
among HCDBAVNS without DCIS (denoted as HDBAVNS), VNS, Particle Swarm Opti-
mization [30] with VNS (denoted as PSOVNS) and HCDBAVNS. This experiment selects
20 instances which have no known optimal solutions. The paper makes some assumptions
to get a lower bound for each instance.
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Assuming that the purchase cost of materials can be calculated by the lowest price of
materials of all suppliers in the Formula (1), and the lowest purchase cost of materials can
be calculated as follows:

Z′PUR= ∑
p∈SP

∑
l∈SL

o′pl min
s
{csl} (28)

Secondly, in Formula (2), assuming that maximum supply quantities of all suppliers
are set to the maximal value of esl , and the unit delivery costs and distances are a set value
between suppliers and manufacturers, then the lowest delivery cost of suppliers’ vehicles
are shown as follows:

Z′STM = 2×
(⌈

∑
p∈SP

∑
l∈SL

o′pl/ max(esl)

⌉)
×min

s,m
{dsm} ×min

s
{bs} (29)

Thirdly, assuming the processing cost of materials can be calculated by the lowest
processing price of all manufacturers in the Formula (3), and the lowest processing cost
can be calculated by Formula (30).

Z′PRO = ∑
p∈SP

op ×min{c′m} (30)

Lastly, assuming that maximum loading capacities of all manufacturers’ vehicles
are set to the maximal value of umk, and the unit delivery costs and distances are set the
lowest value between manufacturers and warehouses, then the lowest delivery cost of
manufacturers’ vehicles are shown as follows:

Z′MTS = 2×
(⌈

∑
p∈SP

op/ max
m,k

(umk)

⌉)
×min{d′mp} ×min{b′mk}

+

(
P−

⌈
∑

p∈SP
op/ max

m,k
(umk)

⌉)
)×min{d′pp′} ×min{b′mk}

(31)

From Formula (1) to Formula (5), a lower bound S_L for each instance is obtained,
denoded as Formula (32).

S_L=Z′PUR+Z′STM+Z′PRO+Z′MTS (32)

Then, the optimization rate OP is calculated as Formula (33) which asses the quality
of the solutions of the algorithm. The experiment results are shown in Tables 12 and 13 and
Figure 9.

OP =
Best solution−S_L

S_L
× 100% (33)

It can be seen from Tables 12 and 13 that: when time consumption of all the algorithms
are close, all the best solutions, average solutions, and worst solutions of 20 instances
solved by HCDBAVNS are not worse than those solved by VNS and PSOVNS. On the
other hand, there are seven and nine instances of HCDBAVNS obviously better than
HDBAVNS in both the best solutions and average solutions, accounting for 35% and 45%
of the total instances, respectively. Then, although DCIS made the optimization capacity
of HCDBAVNS not increase significantly (all the examples were less than 1%), it made
HCDBAVNS more steady.
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Table 12. Result of HCDBAVNS and HDBAVNS.

Instance MIT S_L
VNS PSOVNS

Best
Solution

Average
Solution

Worst
solution OP(%) Time Best

Solution
Average
Solution

Worst
Solution OP(%) Time

G1

P01 200 227,607 245,399 245,399.0 245,399 7.82 4.3 245,399 245,399.0 245,399 7.82 4.5

P02 200 211,615 238,905 238,905.0 238,905 12.90 4.5 238,905 238,905.0 238,905 12.90 4.3

P03 200 259,559 286,191 286,191.0 286,191 10.26 4.3 286,191 286,191.0 286,191 10.26 4.2

P04 200 213,048 240,149 240,149.0 240,149 12.72 4.2 240,149 240,149.0 240,149 12.72 4.1

P05 200 241,592 269,959 269,959.0 269,959 11.74 3.9 269,959 269,959.0 269,959 11.74 3.8

G2

P06 2000 401,972 450,664 453,527.2 455,186 12.11 45.9 452,185 454,078.6 455,367 12.49 46.5

P07 2000 482,338 562,425 564,518.4 566,501 16.60 23.3 563,563 564,828.2 566,140 16.84 23.5

P08 2000 353,804 411,177 411,947.6 412,274 16.22 47.9 411,177 411,963.0 412,859 16.22 47.6

P09 2000 462,224 539,301 540,791.6 541,875 16.68 18.8 539,351 541,266.4 542,524 16.69 19.2

P10 2000 357,230 401,208 403,241.8 404,232 12.31 41.8 403,287 403,459.4 403,829 12.89 41.3

G3

P11 1000 342,420 379,602 379,602.0 379,602 10.86 14.1 379,602 379,602.0 379,602 10.86 14.9

P12 1000 423,011 468,178 469,600.8 470,907 10.68 15.3 468,906 470,519.6 470,971 10.85 15.6

P13 1000 341,952 371,543 371,543.0 371,543 8.65 19.5 371,543 371,543.0 371,543 8.65 19.1

P14 1000 370,158 406,929 406,929.0 406,929 9.93 21.5 406,929 406,929.0 406,929 9.93 21.2

P15 1000 532,112 588,222 588,222.0 588,222 10.54 15.6 588,222 588,222.0 588,222 10.54 15.7

G4

P16 3000 807,715 938,095 940,699.0 942,193 16.14 59.2 940,460 941,739.4 942,517 16.43 59.5

P17 3000 958,872 1,132,475 1,136,530.4 11,373,88 18.10 50.1 1,133,556 1,139,009.8 1,143,398 18.22 50.6

P18 3000 826,146 893,681 894,655.0 896,728 8.17 61.2 893,700 895,485.4 898,046 8.18 61.5

P19 3000 625,755 675,812 677,138.0 678,534 8.00 82.7 676,342 677,294.8 678,405 8.08 82.3

P20 3000 642,355 696,039 696,477.6 696,969 8.36 85.9 696,039 696,684.2 697,473 8.36 86.3
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Figure 9. OP of HCDBAVNS, HDBAVNS, VNS and APSOVNS.
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Table 13. Result of VNS and APSOVNS.

Instance MIT S_L
VNS PSOVNS

Best
Solution

Average
Solution

Worst
solution OP(%) Time Best

Solution
Average
Solution

Worst
Solution OP(%) Time

G1

P01 200 227,607 245,399 247,606.8 250,222 7.82 4.9 245,399 245,850.2 246,527 7.82 4.5

P02 200 211,615 239,446 241,699.0 243,061 13.15 4.1 238,905 239,255.2 239,807 12.90 4.4

P03 200 259,559 286,882 287,921.6 289,545 10.53 4.6 286,291 286,291.0 286,291 10.30 4.3

P04 200 213,048 245,069 248,848.2 250,150 15.03 3.9 240,149 242,305.0 245,069 12.72 4.3

P05 200 241,592 269,959 270,079.4 270,329 11.74 4.1 269,959 269,959.0 269,959 11.74 3.8

G2

P06 2000 401,972 461,985 465,777.2 473,112 14.93 46.1 454,971 456,304.6 457,961 13.18 46.5

P07 2000 482,338 573,135 577,617.6 581,841 18.82 23.6 569,162 569,866.8 570,764 18.00 24.1

P08 2000 353,804 419,927 422,849.0 425,984 18.69 29.5 413,760 413,848.0 413,931 16.95 49.9

P09 2000 462,224 562,461 563,011.0 564,653 21.69 20.5 546,047 550,210.4 552,288 18.13 20.3

P10 2000 357,230 408,072 414,620.6 419,073 14.23 39.5 407,489 407,716.2 407,829 14.07 40.9

G3

P11 1000 342,420 379,602 379,903.6 380,142 10.86 15.6 379,602 379,602.0 379,602 10.86 14.8

P12 1000 423,011 471,805 474,410.4 475,715 11.53 15.8 469,544 464,248.7 471,044 11.00 15.4

P13 1000 341,952 371,543 371,655.4 371,907 8.65 19.2 371,543 371,543.0 371,543 8.65 19.3

P14 1000 370,158 406,929 406,936.2 406,947 9.93 20.6 406,929 406,929.0 406,929 9.93 21.2

P15 1000 532,112 588,222 588,222.0 588,222 10.54 15.8 588,222 588,222.0 588,222 10.54 15.8

G4

P16 3000 807,715 948,560 954,319.4 957,402 17.44 54.7 948,136 948,838.6 949,841 17.38 56.3

P17 3000 958,872 1,149,885 1,154,544.0 1,156,343 19.92 49.5 1,148,604 1,150,104.4 1,152,467 19.79 61.5

P18 3000 826,146 902,756 904,639.6 907,400 9.27 63.2 899,041 899,651.4 900,260 8.82 62.2

P19 3000 625,755 690,032 692,122.6 694,282 10.27 86.4 684,229 685,327.8 686,814 9.34 88.4

P20 3000 642,355 706,239 707,694.0 709,278 9.95 90.4 702,318 704,458.8 705,547 9.33 92.4

In Figure 9, it can be sees that HCDBAVNS has a higher possibility of finding a better
solution than VNS. Especially, the OP of HCDBAVNS, which is 4% less than that of VNS
in P09. In addition, HDBAVNS is also better than PSOVNS. It proves that BA has better
global optimization ability than PSO.

Further, the paired two-sample mean analysis method in the t-Test is used to test
whether the three algorithms are significantly different. Supposing that the significance
level is 0.05 and mean deviation is 0, The experimental results are shown in Table 14. In the
t-Test, p > 0.05 indicates no significant difference; 0.01 < p < 0.05 indicates a significant
difference; p < 0.01 indicates an extreme significant difference.

Table 14. Student’s t-test.

Tab t-Test
p Value

Best Solution Average Solution

W1 HCDBAVNS vs. HDBAVNS 0.01149 0.01514 [t]
W2 HCDBAVNS vs. VNS 0.00034 0.00005
W3 HDBAVNS vs. VNS 0.0005 0.00005
W4 HDBAVNS vs. PSOVNS 0.00148 0.00610 [b]

In Table 14, it can be seen from W1 test that the p values of the best solution and
average solution are 0.01149 and 0.01514 (both less than 0.05). In other words, both the best
solution and average solution of HCDBAVNS show significant differences to HDBAVNS.

In addition, compared with VNS, HDBAVNS, and HCDBAVNS have shown extreme
significant differences. Furthermore, HDBAVNS shows a significant difference to PSOVNS.
This also proves that HCDBAVNS finally exhibits strong optimization capability and stability.
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5. Conclusions

Based on the vehicle routing problem in the three-echelon supply chain, this paper
proposes a VRPCSC model and constructs HCDBAVNS to solve it. Two sets of experiments
were conducted, which showed the effectiveness of the proposed algorithm in solving
the VRPCSC. In the future, more complex factors will be considered to establish a more
comprehensive supply chain model, such as the manufacturer’s maximum processing
volume and the manufacturer’s processing time. Accordingly, we can use Taguchi or RSM
to tune the parameters and compare the influence of different methods of parameter values.
In addtion, we can apply the algorithm to solve actual examples and compare the actual
scheme, so as to judge the quality of the solutions obtained by the algorithm.
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