
applied
sciences

Article

A Zeroth-Order Adaptive Learning Rate Method to Reduce Cost
of Hyperparameter Tuning for Deep Learning

Yanan Li 1,2 , Xuebin Ren 2,3 , Fangyuan Zhao 2,3 and Shusen Yang 1,2,*

����������
�������

Citation: Li, Y.; Ren, X.; Zhao, F.;

Yang, S. A Zeroth-Order Adaptive

Learning Rate Method to Reduce

Cost of Hyperparameter Tuning for

Deep Learning. Appl. Sci. 2021, 11,

10184. https://doi.org/10.3390/

app112110184

Academic Editors: Andrea Prati,

Carlos A. Iglesias, Luis Javier García

Villalba and Vincent A. Cicirello

Received: 5 October 2021

Accepted: 28 October 2021

Published: 30 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China; gogll2@stu.xjtu.edu.cn
2 National Engineering Laboratory for Big Data Analytics, Xi’an Jiaotong University, Xi’an 710049, China;

xuebinren@mail.xjtu.edu.cn (X.R.); zfy1454236335@stu.xjtu.edu.cn (F.Z.)
3 School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
* Correspondence: shusenyang@mail.xjtu.edu.cn

Abstract: Due to powerful data representation ability, deep learning has dramatically improved the
state-of-the-art in many practical applications. However, the utility highly depends on fine-tuning of
hyper-parameters, including learning rate, batch size, and network initialization. Although many
first-order adaptive methods (e.g., Adam, Adagrad) have been proposed to adjust learning rate based
on gradients, they are susceptible to the initial learning rate and network architecture. Therefore,
the main challenge of using deep learning in practice is how to reduce the cost of tuning hyper-
parameters. To address this, we propose a heuristic zeroth-order learning rate method, Adacomp,
which adaptively adjusts the learning rate based only on values of the loss function. The main idea
is that Adacomp penalizes large learning rates to ensure the convergence and compensates small
learning rates to accelerate the training process. Therefore, Adacomp is robust to the initial learning
rate. Extensive experiments, including comparison to six typically adaptive methods (Momentum,
Adagrad, RMSprop, Adadelta, Adam, and Adamax) on several benchmark datasets for image
classification tasks (MNIST, KMNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100), were conducted.
Experimental results show that Adacomp is not only robust to the initial learning rate but also to the
network architecture, network initialization, and batch size.

Keywords: deep learning; adaptive learning rate; robustness; stochastic gradient descent

1. Introduction

Deep learning has been highly successful across a variety of applications, including
speech recognition, visual object recognition, and object detection [1–3]. In general appli-
cation, deep learning consists of training and inference phases. In the training phase, a
predefined network is trained on a given dataset (known as the training set) to learn the
underlying distribution characteristics. In the inference phase, the well-trained network is
then used for unforeseen data (known as the test set) to implement specific tasks, such as
regression and classification. One fundamental purpose of deep learning is to achieve as
high accuracy as possible in the inference phase after only learning from the training set.
In essence, training a deep learning network is equivalent to minimizing an unconstrained
non-convex but smooth function.

min
w∈Rn

f (w) := Eξ∼DF(w, ξ) (1)

where D is the population distribution, F(w, ξ) is the loss function of sample ξ, and f (w)
is the expectation of F(w, ξ) with respect to ξ. One effective method to solve problem (1)

Appl. Sci. 2021, 11, 10184. https://doi.org/10.3390/app112110184 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6321-2567
https://orcid.org/0000-0002-6498-0250
https://orcid.org/0000-0001-9033-7843
https://orcid.org/0000-0002-4495-6237
https://doi.org/10.3390/app112110184
https://doi.org/10.3390/app112110184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110184
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110184?type=check_update&version=2

Appl. Sci. 2021, 11, 10184 2 of 21

is mini-batch stochastic gradient descent (SGD) [4]. That is, in each iteration t, the model
parameter wt is updated to wt+1, following

wt+1 = wt − γt
1
|Bt| ∑

ξ∈Bt

∇F(wt, ξi), (2)

where γt is the learning rate and Bt is a random mini-batch of size b. Here, based on
three advantages discussed below, we consider using problem Equations (1) and (2) to
analyze deep learning. First, generality. Because most deep learning networks correspond
to non-convex optimization, the derived results for problem (1) can be applied to general
deep learning tasks in practice. Second, effectiveness. Because the data scale used in deep
learning is usually huge, Equation (2) can achieve a better utility-efficiency tradeoff than
SGD or batch GD. Third, simplicity. When using Equation (2), searching for a solution to
problem (1) is reduced to setting a proper learning rate γt.

Therefore, the research question is how to set a proper γt in Equation (2) to ensure the
convergence of problem (1). Without of loss generality, we make the following assumptions.

• Non-convex but smooth f (w). That is, f (w) is non-convex but satisfies f (wt+1)−
f (wt) ≤ 〈∇ f (wt), wt+1 − wt〉+ L

2 ‖wt+1 − wt‖2.

• Unbiased estimate and bounded variance of g(w)
4
= ∇F(w, ξ). That is, Eξ∼D [g(w)] =

∇ f (w), and Eξ∼D [‖g(w)−∇ f (w)‖2] ≤ σ2.

It is well-known that searching for the global minima of Equation (1) is NP-hard [5].
Therefore, one usually aims to search for the first-order stationary point, the gradient of
which satisfies ‖∇ f (w)‖ < ε where ε is a given error bound. For simplicity, denote the
average of gradients on mini-batch Bt as ḡt =

1
|Bt | ∑ξ∈Bt ∇F(wt, ξi). It is well-known that

SGD can converge for proper settings of γt [6–9]. Actually, based on the above assumptions
and through direct calculation, we have

∑
t=1,··· .T

(
γt −

Lγ2
t

2

)
E‖∇ f (wt)‖2 ≤ f (w1)− f ∗ +

Lσ2 ∑T
t=1 γ2

t
2b

,

where f ∗ = minw∈Rn f (w) and L, σ2 are defined in the assumptions. Therefore, for any
given constant γ = min{1/L, O(1/

√
L + T)}, we can deduce that ∑T

t=1 E‖∇ f (wt)‖ is
bounded, which implicates that ‖∇ f (wt)‖→ 0 as t→ ∞. That is, SGD is convergent and
one can output the stationary solution with high probability [6].

Nevertheless, one challenge of applying these theoretical results in practice comprises
the unknown parameters f (w1), L and σ, which are related to network architecture, net-
work initialization, loss function, and data distribution. To avoid computing exact values
that are network- and dataset-dependent, there are two common ways to set the learning
rate in practice. One way is setting an initial level at the beginning and then adjusting
it with a certain schedule [4], such as step, multi-step, exponential decaying, or cosine
annealing [10]. However, setting the learning rate typically involves a tuning procedure
in which the highest possible learning rate is chosen by hand [11,12]. Besides, there are
additional parameters in the schedule that also need to be tuned. To avoid the delicate and
skillful parameter tuning, the other way is using adaptive learning rate methods, such as
Adagrad [13], RMSprop [14], and Adam [15], in which only the initial learning rate needs to
be predefined. However, as shown in our experiments and other studies [16–18], they are
sensitive to the initial learning rate and each of them has its own effective intervals (refer
to Figure 1). Usually, the setting of an initial learning rate is model- and dataset-dependent.
This increases the cost of tuning the learning rate and the difficulty of selecting the proper
adaptive method in practice.

This motivates us to design an adaptive method, which can reduce the cost of tuning
the initial learning rate. Furthermore, the method should achieve a satisfied accuracy no
matter what the network architecture and data are. To achieve this, we propose a zeroth-

Appl. Sci. 2021, 11, 10184 3 of 21

order method, Adacomp, to adaptively tune the learning rate. Unlike existing first-order
adaptive methods, which adjust learning rate by exploiting gradients or additional model
parameters, Adacomp only uses the values of loss function and is derived from minimizing
Equation (1) with respect to γt, which has the original expression

γ← γ/2 +
max{0, f (wt)− f (wt+1)}

θ‖g(wt)‖2 , (3)

where θ is an undetermined parameter and θ‖g(wt)‖2 will be further substituted by other
explicit factors. Refer to Equation (8) for details. Note that Equation (3) only uses the
observable variables ‖g(wt)‖ and f (wt)− f (wt+1) to adjust γ. It can be interpreted that
when f (wk)− f (wk+1) dominates (γ/2)‖g(wt)‖2, we use an aggressive learning rate to
enhance the progress. In contrast, we use an exponential decaying learning rate to ensure
convergence. Therefore, in a highly abstract level, γ is complementary to loss difference
f (tk)− f (wt+1) and we name it Adacomp, which has the following two advantages. Firstly,
Adacomp is insensitive to learning rate, batch size, network architecture, and network
initialization. Secondly, due to only exploiting values of loss function rather than high-
dimensional gradients, Adacomp has high computation efficiency.

In summary, our contributions are as follows.

• We propose a highly computation-efficient adaptive learning rate method, Adacomp,
which only uses loss values rather than exploiting gradients as other adaptive methods.
Additionally, Adacomp is robust to initial learning rate and other hyper-parameters,
such as batch size and network architecture.

• Based on the analysis of Adacomp, we give a new insight into why a diminishing
learning rate is necessary when solving Equation (1) and why a gradient clipping
strategy can outperform a fixed learning rate.

• We conduct extensive experiments to compare the proposed Adacomp with sev-
eral first-order adaptive methods on MNIST, KMNIST, Fashion-MNIST, CIFAR-10,
and CIFAR-100 classification tasks. Additionally, we compare Adacomp with two
evolutionary algorithms on MNIST and CIFAR-10 datasets. Experimental results
validate that Adacomp is not only robust to initial learning rate and batch size, but
also network architecture and initialization, with high computational efficiency.

The remainder is organized as follows. Section 2 introduces related work about
typical first-order adaptive methods. Section 3 presents the main idea and formulation
of Adacomp. In Section 4, we conduct extensive experiments to validate Adacomp, in
terms of robustness to learning rate, network architectures, and other hyperparameters.
We conclude the paper and list future plans in Section 5.

2. Related Work

There are many modifications to the gradient descent method, and the most powerful
is Newton’s method [19]. However, the requirements of a Hessian matrix and its inverse
are prohibitive to compute in practice for large-scale models. Therefore, many first-order
iterative methods have been proposed to either exploit gradients or to approximate the
inverse of the Hessian matrix.

2.1. Learning Rate Annealing

One simple extension of SGD is the mini-batch SGD, which can reduce the variance
by increasing the batch size. However, the proper learning rate is hard to set beforehand. A
learning rate that is too small will slow down the convergence, while if it is too large it will
cause large oscillation or even divergence. The ordinary method is adjusting the learning
rate in the training process, such as by using the simulated annealing algorithm [20,21],
or decreasing the learning rate when the loss value is less than a given threshold [22,23].
However, the iteration number and threshold must be predefined. Therefore, the method
is not adjustable to different datasets.

Appl. Sci. 2021, 11, 10184 4 of 21

2.2. Per-Dimension First-Order Adaptive Methods

In mini-batch SGD, a single global learning rate is set for all dimensions of the param-
eters, which may not be optimal when training data are sparse and different coordinates
vary significantly. A per-dimension learning rate that can compensate for these differences
is often advantageous.

Momentum [24,25] is one method of speeding up training per dimension. The main
idea is to accelerate progress along dimensions in which gradients are in the same direction
and to slow progress elsewhere. This is done by keeping track of past parameters with
an exponential decay, vt = ρvt−1 + γḡt, wt+1 = wt − vt, where ρ is an undetermined
parameter to control the decay of previous updated parameters. This gives an intuitive
improvement over SGD when the cost surface is a long narrow valley.

Adagrad [13,26] adjusts the learning rate according to the accumulated gradients and
has shown significant improvement on large-scale tasks in a distributed environment [27].
This method only uses information of gradients with the following update rule: wt+1 =
wt − γ√

∑t
τ=1 ḡ2

τ

· ḡt.

Here the denominator computes the L2 norm of all previous gradients per-dimension.
Since the learning rate for each dimension inversely grows with the gradient magnitudes,
the large gradients have a small learning rate and vice versa. This has the nice property,
as in second-order methods, that the progress along each dimension evens out over time.
However, Adagrad is sensitive to initial model parameters. When some dimensions of
gradient are too large, or as gradients accumulate, the learning rate will quickly tend to
zero before achieving a good result.

Subsequently, several adaptive methods are proposed to overcome the drawback.
RMSprop [14,28] is a modification of Adagrad, using the root-mean-square (RMS) to

replace the denominator in Adagrad, with the following update rule:

E[ḡ2]t = ρE[ḡ2]t−1 + (1− ρ)ḡ2
t , wt+1 = wt −

γ√
E[ḡ2]t + ε

ḡt.

This can mitigate the fast decay of learning rate in Adagrad and damp oscillation. The
parameter ρ is used to control the decaying speed and ε is a positive small constant to keep
the denominator meaningful.

Adadelta [29,30] is another improvement of Adagrad from two aspects. On one hand,
Adadelta replaces the denominator in Adagrad by the average of exponential decay of
history gradients over a window with some fixed size. On the other hand, Adadelta
uses the Hessian approximation to correct units of updates. Adadelta uses the following
update rule:

E[ḡ2]t = ρE[ḡ2]t−1 + (1− ρ)ḡ2
t , E[∆w2]t = ρE[∆w2]t−1 + (1− ρ)∆w2

t ,

wt+1 = wt −
√
E[∆w2]t√
E[ḡ2]t + ε

· ḡt.

The advantage is no requirement of manually setting the global learning rate. At the
beginning and middle phases, Adadelta achieves a good accelerating effect. However, at
the late phase, it may oscillate at local minima.

Adam [15,31] can be viewed as a combination of Momentum and RMSprop, with
additional bias correction. Adam uses the following update rule:

mt = ρ1mt−1 + (1− ρ1)ḡt, vt = ρ2vt−1 + (1− ρ2)ḡ2
t ,

mt ←
mt

1− ρt
1

, vt ←
vt

1− ρt
2

, wt+1 = wt − γ
mt√
vt + ε

.

Here mt, vt are factors of momentum and root-mean-square, and mt
1−ρt

1
, vt

1−ρt
2

are corre-

sponding bias corrections.

Appl. Sci. 2021, 11, 10184 5 of 21

Adamax [15] is an extension of Adam by generalizing the L2 norm to the Lp norm and
letting p→ +∞, with the update rule:

mt = β1mt−1 + (1− β1)ḡt, vt = max{β2 · vt−1, ‖ḡt‖∞}, wt+1 = wt −
γt

(1− βt
1)
· mt

vt

Note that the difference between Adamax and Adam is the expression of vt and there
is no bias correction in vt.

However, all these adaptive methods rely on gradients or additional model parameters,
which make them sensitive to the initial learning rate and network architectures.

2.3. Hyperparameter Optimization

This aims to find the optimal learning rate values and includes experimental perfor-
mance analysis [18,32] and Bayesian optimization [33,34] based on mathematical theory.
Specifically, [35] combines hyperband and Bayesian optimizations, additionally utilizing
the history information of previous explored hyperparameter configurations to improve
model utility. Besides, reinforcement learning (RL) and heuristic algorithms are also exten-
sively applied to tune hyperparameters of deep learning. With respect to RL, the focus is
how to alleviate the dependence on expert knowledge [16,36,37] or additionally improve
the computational efficiency [38,39]. For example, [16] uses RL to learn and adjust the
learning rate on each training step and [36] proposes an asynchronous RL algorithm to
search the optimal convolutional neural network (CNN) architecture. Ref. [39] reuses
the previously successful configuration for reshaping the advantage function and [38]
adaptively adjusts the horizon of the model to improve the computational efficiency of
RL. With respect to heuristic algorithms, Ref. [40] sets an adaptive learning rate for each
layer of neural networks by simulating the cross-media propagation mechanism of light
in the natural environment. Ref. [41] proposes to use a variable length genetic algorithm
to tune the hyperparameters of a CNN. Ref. [42] proposes a multi-level particle swarm
optimization algorithm for a CNN, where an initial swarm at level-1 optimizes architec-
ture and multiple swarms at level-2 optimize hyperparameters. Ref. [43] combines six
optimization methods to improve the performance of forecasting short-term wind speed,
where local search techniques are used to optimize the hyperparameters of a bidirectional
long short-term memory network. However, these methods suffer unavoidably from more
time-consuming space searching.

2.4. Zeroth-Order Adaptive Methods

Like our method, Refs. [23,44] propose two methods that adjust the learning rate based
on the training loss. In [23], the learning rate at epoch s is set as γs = γ0Πs−1

t=1rnt , where rnt

is the scale factor. However, the selection of rnt is through multi-point searching (controlled
by beam size), which may be a computation overhead. For example, when the beam size
is 4, it has to train the network with 12 different learning rates and to select the optimal
one after the current epoch. In [44], the learning rate update is γt+1 = (1 + µ)γt with
µ = M · (1− eE(t+1)−E(t)), where M is the tracking coefficient and E(·) is the reconstruction
error of the WAE (wavelet auto-encoder). Note that the update rule is model restricted and
cannot be applied to general cases. For example, when E(t + 1)− E(t) > 0, γt+1 may be
less than zero and has no meaning. However, the computation overhead of [23] and no
meaning of [44] will not occur in Adacomp.

3. Adacomp Method

In the section, we describe our proposed Adacomp through two main steps. First, we
deduce the optimal learning rate in each iteration based on theoretical analysis. Then, we
design the expression of Adacomp to satisfy several restrictions between learning rate and
difference of loss function. For convenience, we summarize the above mentioned and the
following used variables in Table 1.

Appl. Sci. 2021, 11, 10184 6 of 21

Table 1. List of variables and explanations.

Variables Explanations

T, t Number of total iterations and index of the current iteration.
F(w, ξ),∇F(w, ξ) Empirical loss function and gradient at model parameter w and sample ξ.

f (w),∇ f (w)
Expected function and gradient of F(w, ξ) and ∇F(w, ξ) with respect to
ξ ∼ D.

L, σ2 Smooth constant of f (w) and variance of ∇F(w, ξ) with respect to ξ.
gt, ḡt Abbreviations for ∇F(wt, ξ) and 1

b ∑ξ∈Bt
∇F(wt, ξ), respectively.

Bt, b Mini-batch sampled at t-th iteration with size of b.
γt, β Learning rate at t-th iteration, parameter of Adacomp used to adjust γt.
∆t Difference in f (w) at two consecutive iterations, i.e., f (wt−1)− f (wt).

3.1. Idea 1: Search Optimal Learning Rate

For problem (1) in which gradients are Lipschitz continuous, i.e., f (wt+1)− f (wt) ≤
〈∇ f (wt), wt+1 − wt〉+ L

2 ‖wt+1 − wt‖2, by substituting Equation (2), we have

f (wt+1)− f (wt) ≤ −γt〈∇ f (wt), ḡt〉+
Lγ2

t
2
‖ḡt‖2. (4)

To make progress at each iteration t, let the r.h.s. of Equation (4) be less than zero,
and we have γt ≤ 2〈∇ f (wt), ḡt〉/L‖ḡt‖2. To greedy search the optimal learning rate, we
minimize Equation (4) to obtain

γt = 〈∇ f (wt), ḡt〉/(L‖ḡt‖2). (5)

This presents an explicit relation between the learning rate and inner product of
expected gradient∇ f (wt) and observed gradients ḡt . When 〈∇ f (wt), ḡt〉 ≥ 0, Equation (5)
is meaningful (γt ≥ 0) and using this γt can make the largest progress at the current
iteration. Elsewhere, we set γt = 0 when 〈∇ f (wt), ḡt〉 ≤ 0. This means that when ḡt is far
away from the correct direction ∇ f (wt), we will drop the incorrect direction and do not
update the model parameters at the current iteration.

By substituting Equation (5) into Equation (4) and through simple calculation, we
obtain Theorem 1, which indicates that ‖∇ f (wt)‖ → 0 as t→ ∞, i.e., the convergence of
nonconvex problem (1).

Theorem 1. If the learning rate γt is set as Equation (5), then

T

∑
t=1
‖∇ f (wt)‖2 ≤ 2Lσ2(f (w1)− f ∗)/b (6)

where f ∗ = infw∈Rn f (w).

Proof. By substituting Equation (5) into Equation (4), we have

f (wt+1)− f (wt) ≤ −
〈∇ f (wt), ḡt〉2

2L‖ḡt‖2 .

Taking expectation with respect to ξ on the current condition wt, we have

E[f (wt+1)− f (wt)]
(a)
≤ −〈∇ f (wt),Eḡt〉2

2LE‖ḡt‖2

(b)
≤ − ‖∇ f (wt)‖4

2L(‖∇ f (wt)‖2 + σ2/b)

(c)
≤ −‖∇ f (wt)‖2

2Lσ2/b
,

where we use Jensen’s inequality E〈∇ f (wt), ḡt〉2 ≥ 〈∇ f (wt),Eḡt〉2 in (a) and assumption

of bounded variance E‖ḡt‖2 ≤ ‖∇ f (wt)‖2 + σ2

b in (b), and the fact ‖∇ f (wt)‖2

‖∇ f (wt)‖2+σ2 ≥ 1
σ2 in

Appl. Sci. 2021, 11, 10184 7 of 21

(c). Taking summation on both sides of the above inequality from t = 1 to T − 1 and using
the fact that f (w1)− f (wT) ≤ f (w1)− f ∗ derive the proved result.

Some remarks about Theorem 1 are in order.
First, Theorem 1 achieves the optimal convergence rate of smooth nonconvex opti-

mization when using the SGD algorithm. In particular, under a deterministic setting (i.e.,
σ = 0), Nesterov [45] shows that after running the method for at most T = O(1/ε) steps,
one can achieve mint=1,··· ,T ‖∇ f (wt)‖ ≤ ε, where ε is the given error bound. Under a
stochastic setting (i.e., σ > 0), the result reduces to O(1/ε2). Ghadimi [6] derives the result
O(1/ε + 1/ε2) of randomly outputting a solution wR satisfying E‖∇ f (wR)‖2 ≤ ε with
high probability, where R ∈ [T]. The optimal rate is improved to O(ε−7/4 log(1/ε)) by
using accelerated mirror descent [7]. Here, we obtain that using Equation (6) achieves the
optimal convergence rate, i.e., O(ε−2), for stochastic optimization when using SGD.

Second, a diminishing learning rate is necessary to ensure convergence, i.e., gradient
‖∇ f (wt)‖will tend to zero as t→ ∞. In this case, we have 〈∇ f (wt), ḡt〉 → 0. Additionally,
because E‖ḡt‖2 = ‖∇ f (wt)‖2 + σ2 → σ2,we deduce that γt = 〈∇ f (wt), ḡt〉/(L‖ḡt‖2)→ 0
holds almost surely.

Third, gradient clipping is a useful skill to ensure convergence. As proved in [46],
using a clipped gradient can converge faster than a fixed learning rate. Here we show
an explicit explanation. Based on Equation (5), γt = min{ 〈∇ f (wt),ḡt〉

L‖ḡt‖ /‖ḡt‖, γt}. Therefore,

using Equation (5) is equivalent to using threshold c = 〈∇ f (wt),ḡt〉
Lγt‖ḡt‖ to clip the gradient,

which in turn means that clipping the gradient is equivalent to using a varying learning
rate to update model parameters. Therefore, for any fixed learning rate γt ≡ γ, we can
adjust it based on Equation (5) to make faster progress. That is, proper gradient clipping
can outperform any fixed learning rate update.

3.2. Idea 2: Approximate Unknown Terms

To set learning rate according to Equation (5), two terms, expected gradient ∇ f (wt)
and smooth constant L, are unknown in practice. Note that in the training process, we
only get access to information of stochastic gradient ḡt, model parameters wt, and loss
value f (wt). Most first-order adaptive learning methods exploit stochastic gradient and
model parameters, which are usually high-dimensional vectors. Instead, we will use the
stochastic gradient ḡt and loss value to reformulate Equation (5). In particular, based on
Equation (4), we have

γt =
〈∇ f (wt), γt ḡt〉

Lγt‖ḡt‖2 ≤
Lγ2

t
2 ‖ḡt‖2 + f (wt)− f (wt+1)

Lγt‖ḡt‖2 . (7)

In the above inequality, parameters square norm of gradients ‖ḡt‖2 and learning rate
γt are known, and loss value of expected f (wt) at the current iteration can be approximated
by empirical value F(wt, ξ); however, smooth constant L and the loss value f (wt+1) of
the next iteration are unknown. Derived from the basic analysis [6], it is known that
when Lγt ≤ 1, SGD can converge to the stationary point. Therefore, we introduce a new
parameter θ := Lγt ∈ (0, 1] and use f (wt−1) − f (wt) to approximate f (wt) − f (wt+1)
based on the assumption that f (w) is smooth. Then, for any given learning rate γ subject

to θ
4
= Lγ ∈ (0, 1], we adjust the learning rate based on the following formula:

γ←
θγ
2 ‖ḡt‖2 + max{ f (wt−1)− f (wt), 0}

θ‖ḡt‖2 , θ ∈ (0, 1]. (8)

Equation (8) has straightforward interpretations. First, when ‖ḡt‖2 dominates
f (wt−1) − f (wt) in the numerator, we will use an exponential decaying learning rate
strategy to prevent divergence. This includes the case that f (wt−1)− f (wt) tends to zero,
i.e., the model converges to a stationary point. In such case, γt will decay to zero to

Appl. Sci. 2021, 11, 10184 8 of 21

stabilize the process. As shown in [46], in such case, any fixed large learning larger than
a threshold will diverge the training. Second, when f (wt−1) − f (wt) is relatively large,
which means that the current model point is located at the rapid descent surface of f (w),
we can use a relatively large learning rate to accelerate the descent speed. This usually
happens at the initial phase of the training procedure. Third, the parameter θ ∈ (0, 1] can
control the tradeoff between ‖ḡt‖2 and f (wt−1)− f (wt). Note that these two terms have
different magnitudes, and ‖ḡt‖2 is generally much larger than f (wt−1)− f (wt). In such
case, Equation (8) with θ = 1 reduces to a totally exponential decaying strategy, which
may slow down the convergence. To address it, one can set an adaptive θ according to
f (wt−1)− f (wt).

Although Equation (8) is meaningful, the remaining challenge is how to set the proper
θ according to the observed gradients ‖ḡt‖2 and difference in loss function f (wt−1)− f (wt).
To address this, we deal with θ‖ḡt‖2 as a whole and reformulate the term max{ f (wt−1)− f (wt),0}

θ‖ḡt‖2

as a pure function of f (wt−1)− f (wt). Here, we propose an effective adaptive schedule Ada-
comp that only uses the information of loss values and satisfies the following requirements.

• When f (wt−1)− f (wt) < 0, we should decrease γ to restrict the progress along the wrong direction.
• When f (wt−1)− f (wt) > 0, we should increase γ to make aggressive progress.
• When γ is too small, we should increase γ to prevent Adacomp from becoming trapped in a

local minimum.
• When γ is too large, we should decrease γ to stabilize the training process.

These requirements motivate us to design Adacomp based on the arctan function,
which is flexible to small values but robust and bounded to large values. The main principle
is as follows:

Decompose γ into three parts, q1, q21, and q22. q1 is used to compensate the learning
rate to accelerate training when the loss function decreases. However, the compensation should be
inverse to learning rate and bounded. q21 and q22 are used to penalize the learning rate to stabilize
training when the loss function increases, but with a bounded amplitude when the learning rate is
too large or small.

Based the above principle, we reformulate Equation (8) as:

γ← γ

2
+ γI∆t>ε q1 + γI∆t<−ε(q21 +q22), (9)

where I is the indicator function of ∆t
4
= f (wt−1)− f (wt) and ε is a small positive con-

stant. Many functions satisfy the above discipline. To reduce the difficulty of designing
q1,q21,q22, we define the following expressions, where only one parameter β needs to be
tuned. Furthermore, as experimental results show (refer to Figure A1), Adacomp is not so
sensitive to β.

q1 =
1
2
+

arctan(∆t + 1/γ)

5π
,q21 =

1
4
− arctan(γ)

βπ
, q22 =

1
4
− arctan(−∆t + 1/γ)

5.5π
,

where 1/2 < β ≤ 5 is a parameter used to control the adjustment amplitude of the
learning rate.

We first explain the meaning of ε and then q1,q21, and q22.
The meaning of ε. We replace the hard threshold ∆t < 0,> 0 with soft threshold

∆t < −ε,> ε on two aspect considerations. First, this can alleviate the impacts of ∆t’s
randomness on learning rate. Second, when ∆t ∈ [−ε, ε] for small positive values such as
ε = 10−5, we halve γ. Actually, in such a case the training has converged and halving γ
can make training more stable.

Now, we explain how to set expressions of q1,q21, and q22.

• Expression of q1. Note that q1 works only if ∆t > 0. In this case, we should increase
γ to speed up training. However, the increment should be bounded and inverse

Appl. Sci. 2021, 11, 10184 9 of 21

to current γ to avoid divergence. Based on these considerations, we define q1 as
q1 = 1

2 + arctan(∆t+1/γ)
5π , where 1/2 is used to keep γ unchanged and arctan(·)/(5π)

is used to ensure that the increment amplitude is at most γ/10.
• Expressions of q21 and q22. Note that q21,q22 work only if ∆t < 0, where the

twice 1/4 is used to keep γ unchanged and the remaining terms are used to control
the decrement amplitude. In this case, we should decrease γ to prevent too much
movement along the incorrect direction. However, the decrement should be bounded
to satisfy the two following properties.

– When γ is small, the decrement of q21 +q22 should be less than the increment
in q1 given the same |∆t| unless γ is forced to zero, which potentially leads
to training stopping too early. Therefore, we define arctan(·)

5.5π in q21 to satisfy
arctan(·)

5.5π < arctan(·)
5π . Note that q21 + q22 ≈ 1

2 −
arctan(−δt+1/γ)

5.5π when γ is small,
which satisfies the requirement.

– When γ is large, the decrement of q21 +q22 should be larger than the increment
in q1 given the same |∆t|. That is, we can fast decrease the large learning rate
when the function loss is negative. Therefore, we set β ∈ (1/2, 5] in q21 to satisfy
that arctan(γ)

βπ + arctan(−∆t+1/γ)
5.5π (in the case ∆t < 0) is greater than arctan(∆t+1/γ)

5π

(in the case ∆t > 0).

Furthermore, the inferior bound 1/2 of β is used to ensure γ
2 + γI∆t<−ε(q21 +q22) > 0

when ∆t < −ε, i.e., the meaningfulness of γ.

Remark. In q1,q22, the denominator 5π, 5.5π can be generalized as α1, α2, with
α1 < α2, while keeping the difference between q1 and q22 is not significant. Meanwhile,
1/2 < β ≤ 5 is replaced by 1/2 < β ≤ α1. Note that any settings satisfying the above
requirements can be used to substitute Equation (9). Here, 5π and 5.5π are just one
satisfied setting and one can adjust the parameter β to control the tradeoff between q1 and
q21 +q22.

In summary, Equation (9) penalizes the large learning rate and compensates the
too small learning rate, and presents an overall decreasing trend. These satisfy all the
requirements. Note that this adjusting strategy is complementary to ∆t and γ; we named it
Adacomp. Although Adacomp is robust to hyperparameters, it may fluctuate at a local
minimum. The reason for this is that Adacomp will increase the learning rate when the
loss function decreases near the local minima, and the increment potentially makes model
parameters skip the local minima. Then, Adacomp in turn will penalize learning rate to
decrease loss function. Thus, the alternately adaptive adjustment possibly makes model
parameters fluctuate at a local minimum. To achieve both robustness and high-utility, one
can view Adacomp as a pre-processing step to reduce the cost of tuning hyperparameters,
and combine Adacomp with other methods to improve the final model utility. Algorithm 1
shows the pseudocode, which consists of two phases. Phase one uses Adacomp to fast-train
the model by avoiding and carefully tuning the initial learning rate. Phase two uses other
methods (e.g., SGD) to improve the model utility. More details are as follows. At the
beginning (Input), one should define four parameters, including number of total iterations
T with phase threshold T1, initial learning rate γ0, and one specific value β of Adacomp
used to control the tradeoff between increment and decrement.

In phase 1 (Lines 2–8), two variables , lossl , lossc, are used to track the loss difference
∆t in Equation (9), where lossl = 1

b ∑ξ∈Bt−1
F(wt−1, ξ) is loss of last time and lossc =

1
b ∑ξ∈Bt F(wt, ξ) is loss of current time (Lines 3–5). Then ∆t is used to update learning
rate based on Equation (9) (Line 6). The updated learning rate γt is used to update the
model parameters wt to wt+1 based on wt+1 = wt − γt ḡt (Line 7) until t reaches to T1. In
phase 2, we set the average of the learning rate used in phase one, γavg, as the new current
initial learning rate (Line 9). Then, one can adopt a decaying scheduler, such as StepLR
in mini-batch gradient descent update to stabilize the training process (Lines 11–13). The
final model parameter is output when the stopping criterion is satisfied (Line 15).

Appl. Sci. 2021, 11, 10184 10 of 21

Algorithm 1 Two-phase Training Algorithm.
Input: Initial γ0, balance rate β, iteration number T, and phase threshold T1
Output: wT

1 Initialize loss variables lossl = 0, lossc = 0
// Phase one: Adacomp

2 for t = 1 : T1 do
3 Compute gradient ḡt and loss value losst;
4 Compute ∆t via:
5 lossl ← lossc, lossc ← losst, ∆t = lossl − lossc;
6 Use ∆t to update γt based on Equation (9);
7 Update wt+1 = wt − γt ḡt;
8 end
// Phase two: SGD with StepLR scheduler

9 Compute average of {γt} and denote as γavg;
10 for t=T1:T do
11 Compute gradient ḡt;
12 Update wt+1 = wt − γavg ḡt;
13 Decay γavg with a given scheduler;
14 end
15 return wT .

4. Experiments

In this section, we describe extensive experiments to validate the performance of
Adacomp on five classification datasets, in comparison with other first-order iterative
methods, including SGD, Momentum, Adagrad, RMSprop, Adadelta, Adam, and Adamax.
Experimental results show that Adacomp is more robust to hyper-parameters and net-
work architectures. Code and experiments are publicly available at https://github.com/
IoTDATALab/Adacomp, (accessed on 26 October 2021).

4.1. Experimental Setup

We evaluated the eight first-order methods on five benchmark classification tasks,
MNIST [47], KMNIST [48], Fashion-MNIST [49], CIFAR-10, and CIFAR-100 [50], which
are used for 10 classification tasks, except CIFAR-100, which is used for 100 classifica-
tion tasks. Moreover, MNIST, KMNIST, and Fashion-MNIST include 60,000 training
samples and 10,000 test samples, while CIFAR-10 and CIFAR-100 include 50,000 train-
ing samples and 10, 000 test samples. For MNIST, the network architecture used was
borrowed from examples in Pytorch (https://github.com/pytorch/examples, (accessed
on 15 May 2021)). In particular, it consists of two convolutionary layers (32, 64 chan-
nels with kernel size 3 and relu activation), followed by one max pooling layer with
size 2 and two fully connected layers (the first layer with relu activation), ending with
the log_so f tmax function. For CIFAR-10, we used 6 out of 18 network architectures
(https://github.com/kuangliu/pytorch-cifar, (accessed on 15 May 2021)): LeNet, VGG19,
ResNet18, MobileNet, SENet18, and SimpleDLA. For CIFAR-100, we used ResNet [51] and
the code is available at https://github.com/junyuseu/pytorch-cifar-models.git, (accessed
on 15 May 2021). All experiments were deployed on a local workstation with a 10-core
Geforce GPU and 128 GB memory, and cuda version 11.0. Note that Adacomp can be
implemented by directly replacing Equation (8) in Pytorch’s SGD optimizer.

We set epochs as 10, 20, 100, and 150 for MNIST, KMNIST and Fashion-MNIST,
CIFAR-10, and CIFAR-100, respectively. We set T1/T = 0.6 in Algorithm 1.

4.2. Results on MNIST Dataset

We conducted Adacomp (set β = 0.6 in Equation (9)) on MNIST dataset to validate
its robustness from aspects of learning rate, batch size, and initial model parameters.

https://github.com/IoTDATALab/Adacomp
https://github.com/IoTDATALab/Adacomp
https://github.com/pytorch/examples
https://github.com/kuangliu/pytorch-cifar
https://github.com/junyuseu/pytorch-cifar-models.git

Appl. Sci. 2021, 11, 10184 11 of 21

Predominately, Adacomp works well for a wider range of learning rates than all other
compared methods.

4.2.1. Robustness to Initial Learning Rate

We set learning rate (LR) from 10−5 to 15, and used fine granularity in the interval
[0.01, 1] but loose granularity outside it. Figure 1 shows the results of test accuracy after
10 epochs when LR lies in [0.01, 1]. It is observed that only Adadelta and Adacomp work
when LR is greater than one. Additionally, we illustrate results when LR lies in [1, 15] and
the effective intervals of all methods are shown in Figure 2. The training batch size was
fixed as 64 and the initial seed was set as 1 in all cases.

SGD

Momen.

Adagrad

RMSprop

Adadelta
Adam

Adamax
Ours

1 10
-5

5 10
-5

1 10
-4

5 10
-4

1 10
-3

5 10
-3

1 10
-2

2 10
-2

3 10
-2

4 10
-2

5 10
-2

6 10
-2

7 10
-2

8 10
-2

9 10
-2

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Test accuracy

82.45
88.55
93.25
95.28
97.86
98.38
98.73
98.93
99.04
98.97
99.03
99.01
99.05
99.06
99.06
99.14
98.82
98.96
97.76
98.51
98.08
97.35

88.46
93.32
95.52
97.81
98.42
99.06
98.99

99
98.97
98.18
98.55
98.5

98.06
98.33
98.03
97.61
95.45

80.77
91.73
93.74
97.78
98.51
98.95
98.81
98.91
98.92
98.81
98.68
98.65
98.65
98.72
98.44
98.6

96.59
90.28

97.87
98.86
98.87
99.1

98.93
98.4

98.22

68.65
79.73
91.36
92.91
97.32
98.2

98.57
98.75
98.8
98.9

98.96
98.94
98.96
98.93
98.95
99.03
99.07
99.07
99.1

99.15
99.03
99.16
99.09
99.1

97.9
98.8

98.86
98.32
98.93
97.86
97.4

96.84
94.39

95.37
98.22
98.53

99
98.93
99.14
98.67
98.32
98.59
98.49

98.82
98.87
98.81
98.75
98.91
98.7

98.84
98.83
98.75
98.84
98.92
98.81
98.89
98.78
98.75
98.99
98.69
98.76
98.65
98.78
98.88
98.7

98.81
98.69
98.79

49.42 30.74

40

50

60

70

80

90

NaN

Figure 1. Test accuracy with respect to learning rate after 10 epochs. NaN denotes test accuracy that
is less than 15%. Dataset is MNIST.

Two conclusions are observed from Figures 1 and 2.
First, Adacomp is much more robust than the other seven iterative methods. From

Figure 1, Adacomp achieves test accuracy greater than 98% for all settings of learning rates.
In contrast, RMSprop, Adam, and Adamax are sensitive to learning rate and only work
well for very small learning rates. The other remaining methods, except Adadelta, have an
intermediate robustness between Adamax and Adacomp. However, when the learning
rate is greater than one, only Adadelta and Adacomp still work. Furthermore, from the
top of Figure 2, it is observed that Adadelta works well until learning rate increases up
to 9 while Adacomp still works even when learning rate is up to 15. The bottom of
Figure 2 (logarithmic scale of horizontal axis) illustrates that each method has its own
effective interval. From the top RMSprop to the penultimate Adadelta, the effective interval
gradually slides from left to right. However, Adacomp (ours) has a much wider interval,
which means one can successfully train the model almost without tuning learning rate.
The reason for strong robustness is that Adacomp adjusts learning rate to a high value in
the first few epochs before shrinking to a small value, no matter what the initial setting.

Appl. Sci. 2021, 11, 10184 12 of 21

0 5 10 15

Learning rate

0

20

40

60

80

100

T
e
s
t
a
c
c
u
ra

c
y
 (

%
) Adadelta

Ours

- 12 - 10 - 8 - 6 - 4 - 2 0 2 4

Learning rate (log)

Ours

Adadelta

SGD

Momen.

Adagrad

Adamax

Adam

RMSprop

Figure 2. Comparison of test accuracy between Adadelta and Adacomp (top figure) and effective
intervals (accuracy ≥ 95%) of eight iterative methods (bottom figure). Dataset is MNIST.

Second, the adaptive strategy may not always outperform SGD, which uses the fixed
learning rate. As shown in Figure 1, adaptive methods, Momentum, Adagrad, RMSprop,
Adam, and Adamax, are more sensitive to learning rate than SGD. This means that when
using adaptive strategies, proper setting of the initial learning rate is necessary. However,
we also observe that adaptive methods, Adadelta and Adacomp, are much more robust to
initial learning rate than SGD.

4.2.2. Robustness to Other Hyperparameters

We conducted more experiments to compare the robustness of the eight iterative
methods to batch sizes and initial model parameters. Figure 3a shows the impacts when
batch sizes were set as 16, 32, 64, and 128, and Figure 3b shows the impacts when we
repeated the experiment four individual times in which the network was initialized using
the same random seed (1, 10, 30, 50, respectively) for different optimizers. For fairness, we
set learning rate to 0.01. Under the level, all eight methods have a roughly equivalent
accuracy (refer to Figure 1). It is observed from Figure 3a that the robustness to batch size,
from strong to weak, is in the order Momentum ≈ Adagrad ≈ Adamax ≈ Adacomp �
Adadelta � SGD � RMSprop � Adam (note that Adam was divergent when the batch
size was set to 16). It is observed from Figure 3b that the robustness to initialized seeds is in
the order Adagrad ≈ Momentum ≈ Adacomp ≈ Adamax � Adadelta � SGD � Adam �
RMSprop (note that RMSprop was divergent when the seed was set to 30, 50). In summary,
for a certain setting of learning rate, Momentum, Adagrad, Adamax, and Adacomp have
the most robustness to batch sizes and initialized seeds, while RMSprop and Adam have
the weakest robustness.

Appl. Sci. 2021, 11, 10184 13 of 21

0 5 10
94

96

98

100
SGD

0 5 10

Momentum

0 5 10

Adagrad

0 5 10

RMSprop

0 5 10
94

96

98

100
Adadelta

0 5 10

Adam

0 5 10

Adamax

0 5 10

Ours

16 32 64 128

(a)

0 5 10
94

96

98

100
SGD

0 5 10

Momentum

0 5 10

Adagrad

0 5 10

RMSprop

0 5 10
94

96

98

100
Adadelta

1 10 30 50

0 5 10

Adam

0 5 10

Adamax

0 5 10

Ours

(b)

Figure 3. Robustness with respect to different batch sizes (16, 32, 64, 128 in left plot), and different
initial seeds (1, 10, 30, 50 in right plot). Horizontal axis denotes the number of epochs. Dataset is
MNIST. (a) Comparison with respect to batch size. Learning rate is fixed as 0.01 and initial seed is
fixed as 1. (b) Comparison with respect to network initialization. Learning rate is fixed as 0.01 and
batch size is fixed as 64.

4.2.3. Convergence Speed and Efficiency

To compare the convergence speed, we further recorded the number of epochs when
prediction accuracy firstly grows up than 98% (Column 3 in Table 2). The convergence
speed is defined as the ratio of Epochs to #≥98%. Taking SGD as an example, it had 13 out
of 25 times where the final prediction was greater than 98% (refer to Figure 1). Meanwhile,
among the 13 successful cases, SGD took a total of 19 epochs to achieve 98%. Then,
the convergence speed was 19/13 = 1.46. It is observed from Table 2 that Adacomp
has the fastest convergence speed 0.92, which means Adacomp can achieve at least an
accuracy of 98% using no more than one epoch on average. Subsequently, Momentum has
a convergence speed of 1.09 and Adamax has the slowest speed of 3.5.

To compare the efficiency, we performed each of the methods ten times and recorded
the average training and total time in the last column of Table 2. It is also observed that
Adacomp achieves the lowest time consumption (excluding SGD), while Momentum and
RMSprop have a relatively large time consumption. Although the improvement is slight, it
can be deduced that Adacomp performs fewer computations than other first-order adaptive
methods to adjust learning rate.

Table 2. Number of epochs when each of the methods first grow greater than 98%. Speed is calculated
as epochs divided by #≥98%. Dataset is MNSIT.

Method #≥98% Epochs Speed Training/Total Time (s)

SGD 13 19 1.46 68.13/78.22

Momentum 11 12 1.09 69.11/79.36

Adagrad 12 22 1.83 68.55/78.68

RMSprop 6 16 2.67 69.18/79.34

Adadelta 19 43 2.26 68.56/78.68

Adam 4 7 1.75 68.40/78.49

Adamax 9 28 3.5 68.55/78.67

Ours 25 23 0.92 68.25/78.26

4.3. Results on CIFAR-10 Dataset

In this section, we conducted more experiments to further compare the robustness
of eight iterative methods on CIFAR-10. Each of them was performed on three settings

Appl. Sci. 2021, 11, 10184 14 of 21

of learning rate (i.e., 0.5, 0.05, and 0.005) and six network architectures (namely, LeNet,
VGG, ResNet, MobileNet, SEnet, SimpleDLA). In this setting, we chose β = 5 in Adacomp.
Figure 4 shows the comparison of test accuracy on six network architectures when LR is
0.5, 0.05, 0.005. Figure 5a,b show improvements in test accuracy when LR is degraded from
0.5 to 0.05, and 0.05 to 0.005, respectively. We conclude the robustness of eight methods
with respect to different network architectures.

LeNet

VGG19

ResNet18

Mobile
Net

SENet18

Sim
pleDLA

0

20

40

60

80

100

L
R

=
0
.5

SGD

Momen.

Adagrad

RMSprop

Adadelta

Adam

Adamax

Ours

(a)

LeNet

VGG19

ResNet18

Mobile
Net

SENet18

Sim
pleDLA

0

20

40

60

80

100

L
R

=
0
.0

5

SGD

Momen.

Adagrad

RMSprop

Adadelta

Adam

Adamax

Ours

(b)

LeNet

VGG19

ResNet18

Mobile
Net

SENet18

Sim
pleDLA

0

20

40

60

80

100

L
R

=
0

.0
0
5

SGD

Momen.

Adagrad

RMSprop

Adadelta

Adam

Adamax

Ours

(c)

Figure 4. Accuracy comparison among six methods across six network architectures when learning rate was set to 0.5, 0.05,
and 0.005. Dataset is CIFAR-10. (a) LR is 0.5; (b) LR is 0.05; (c) LR is 0.005.

Firstly, we separately conclude the model utility for each setting of learning rate.
(1) From Figure 4a, it is observed that Adacomp has a similar performance to the best
Adadelta. However, Momentum, RMSprop, Adam, and Adamax, are failures for almost
all architectures when LR is 0.5. That is, these adaptive methods are not compatible with
a large initial learning rate, which is also observed on MNIST (Figure 1). Among them,
Adagrad is much more sensitive to the network architecture than Adadelta, Adacomp, and
SGD. Surprisingly, SGD achieves a comparable result to Adadelta and Adacomp, except for
the LeNet architecture. (2) From Figure 4b, it is observed that all methods, except RMSprop
and Adam, have similar performances on each of the network architectures. Furthermore,
except on the MobileNet architecture, Adacomp achieves the highest accuracy, followed
by Adadelta and SGD (both have small degradation on SENet and SimpleDLA). Besides,
it is observed that RMSprop and Adam are more sensitive to the network architectures
than others. (3) From Figure 4c, it is observed that no method diverged when LR was
set to 0.005. Specifically, adaptive methods, Momentum, RMSprop, Adam, Adamax, and
Adacomp (ours) perform similarly on each of the six architectures, except that Adacomp
has the advantage for SimpleLDA and disadvantage for MobileNet. Subsequently, Adagrad
achieves a similar performance except on the MobileNet architecture. However, Adadelta
and SGD have a total degradation compared to other methods. This shows that the small
setting of the initial learning rate is correct for almost adaptive methods.

Secondly, we combined Figures 4 and 5a,b to conclude the robustness of each of the
methods to network architectures and learning rates. (1) It is observed from Figure 4c
that when the learning rate is small, all methods have a similar robustness to network
architectures. Specifically, they perform poorer on LeNet and MobileNet than others. The
reason is that these two architectures are relatively simple and more sensitive to inputs.
However, it is observed from Figure 4a that when the learning rate is large, except Adadelta,
Adacomp, and SGD, all other methods are sensitive to network architectures. (2) It is
observed from Figure 5a,b that Momentum, Adagrad, RMSprop, Adam, and Adamax are
more sensitive to learning rate than others. The reason is that when the learning rate is
large, the acceleration in Momentum is too large to diverge, and also the accumulation
of gradients in Adagrad, RMSprop, Adam, and Adamax is too large. In contrast, SGD,
Adadelta, and Adacomp are relatively insensitive to learning rate, but SGD and Adadelta
appear to have an overall degradation when the learning rate is small.

Appl. Sci. 2021, 11, 10184 15 of 21

LeNet

VGG19

ResNet18

Mobile
Net

SENet18

Sim
pleDLA

0

50

100

150

200

250

300

A
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

 (
L

R
 0

.5
 0

.0
5

)

SGD

Momen.

Adagrad

RMSprop

Adadelta

Adam

Adamax

Ours

(a)

LeNet

VGG19

ResNet18

Mobile
Net

SENet18

Sim
pleDLA

-50

0

50

100

150

200

A
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

 (
L

R
 0

.0
5

 0
.0

0
5

)

SGD

Momen.

Adagrad

RMSprop

Adadelta

Adam

Adamax

Ours

(b)

Figure 5. Accuracy difference of eight methods when learning rate is changed. Dataset is CIFAR-100.
(a) Learning rate is changed from 0.5 to 0.05. (b) Learning rate is changed from 0.05 to 0.005.

In summary, we conclude that the proposed Adacomp is robust both to learning rates
and network architectures.

4.4. Results for other Datasets

We conducted more experiments to further validate the robustness of Adacomp to
datasets. In particular, we employed the network architecture that was used for MNIST
in Section 4.2 but to datasets KMNIST and Fashion-MNIST. Furthermore, we employed a
new network architecture (refer to https://github.com/junyuseu/pytorch-cifar-models.git,
(accessed on 20 August 2021)) to fulfill the CIFAR-100 classification task. In each case, the
learning rate was set as 0.001, 0.01, 0.1, 1 and we recorded the average time of CIFAR-100
after repeating 10 times. The final prediction accuracy after 150 epochs and the average time
on CIFAR-100 are shown in Table 3. Moreover, the average and stand variance of prediction
accuracy when the learning rate was 0.001, 0.01, 0.1, 1 are demonstrated in Figure 6. Three
conclusions are observed as follows.

Table 3. Prediction accuracy of all methods on three datasets, KMNIST, Fashion-MNIST, and CIFAR-100, is listed, where
learning rate was set as 0.001, 0.01, 0.1, 1. The average time of each method is also recorded, where Tr. and To. are
abbreviations for training and total time, respectively.

Dataset KMNIST Fashion-MNIST CIFAR-100

lr 0.001 0.01 0.1 1 0.001 0.01 0.1 1 0.001 0.01 0.1 1 Tr./To. Time (s)

SGD 87.43 92.74 95.07 82.36 83.31 88.60 92.26 10.00 17.91 50.82 57.69 60.59 1004.3/1145.5
Momen. 93.20 94.96 83.54 10.00 91.11 92.24 86.14 10.00 51.63 60.57 61.63 59.07 1052.4/1196.1
Adagrad 92.02 94.34 10.00 10.00 89.36 91.92 90.58 10.00 25.47 52.77 58.23 53.04 1017.0/1158.0
RMSprop 93.78 10.00 10.00 10.00 91.79 10.00 10.00 10.00 59.70 58.63 29.17 1.00 1042.0/1185.9
Adadelta 79.65 91.99 94.58 95.40 83.15 88.31 92.45 92.46 11.48 35.77 54.79 60.02 1025.2/1166.5
Adam 95.35 92.10 10.00 10.00 92.06 88.62 10.00 10.00 61.09 61.04 25.08 1.00 1030.5/1170.9
Adamax 95.09 94.70 10.00 10.00 92.52 91.10 86.82 10.00 57.51 61.41 58.37 1.00 1033.6/1176.0
Ours 93.96 91.90 93.51 93.11 89.94 90.88 90.24 89.25 63.96 62.14 63.50 63.50 1010.1/1148.9

First, each method has its effective learning rate setting. For example, as Table 3 shows,
Adam and Adamax are more effective when the learning rate value is relatively small
(e.g., 0.001). However, SGD and Adadelta are more effective when the learning rate value
is relatively large (e.g., 0.1). However, when learning rate equals 1, all methods except
Adadelta and Adacomp fail on at least one of the three datasets. Second, as Figure 6 shows,
Adacomp is more robust than all other methods on three datasets. In Figure 6, points
with large horizontal value mean a high average prediction accuracy and with a small

https://github.com/junyuseu/pytorch-cifar-models.git

Appl. Sci. 2021, 11, 10184 16 of 21

vertical value mean a low variance. Then, it is obvious to observe that Adacomp is more
robust to datasets than other methods. Third, Adacomp is computationally efficient. This is
directly observed from the last column of Table 3, where the training time and total time
are presented. This is because Adacomp only adjusts learning rate according to training
loss, while other adaptive methods exploit gradients or additional model parameters.

20 40 60 80 100

Mean value

0

10

20

30

40

50

S
ta

n
d

a
rd

 v
a

ri
a

n
c
e

Mean versus std. on KMNIST dataset

SGD

Momen.

Adagrad

RMSprop

Adadelta

Adam

Adamax

Ours

(a)

20 40 60 80 100

Mean value

0

10

20

30

40

50

S
ta

n
d

a
rd

 v
a

ri
a

n
c
e

Mean versus std. on FashionMNIST dataset

SGD

Momen.

Adagrad

RMSprop

Adadelta

Adam

Adamax

Ours

(b)

35 40 45 50 55 60 65

Mean value

0

5

10

15

20

25

30

S
ta

n
d

a
rd

 v
a

ri
a

n
c
e

Mean versus std. on CIFAR100 dataset

SGD

Momen.

Adagrad

RMSprop

Adadelta

Adam

Adamax

Ours

(c)

Figure 6. Stability comparison of eight methods on three datasets, KMNIST, Fashion-MNIST, and CIFAR100. Horizontal
axis denotes the average prediction value of each method when learning rate was set as 0.001, 0.01, 0.1, 1, and vertical axis
denotes the corresponding standard variance. (a) Comparison on KMNIST Dataset; (b) Comparison on Fashion-MNIST
dataset; (c) Comparison on CIFAR-100 dataset.

5. Conclusions and Future Work

We proposed a method, Adacomp, to adaptively adjust learning rate by only exploiting
the values of the loss function. Therefore, Adacomp has higher computational efficiency
than other gradient-based adaptive methods, such as Adam and RMSprop. From a high
abstract level, Adacomp penalizes large learning rates to ensure the convergence and
compensates small learning rates to accelerate the training process. Therefore, Adacomp
can help escape from local minima with a certain probability. Extensive experimental
results show that Adacomp is robust to network architecture, network initialization, batch
size, and learning rate. The experimental results show that Adacomp is inferior to Adadelta
and others in the maximum validation accuracy over learning rate. Thus the presented
algorithm cannot be an alternative to the state-of-the-art. However, the adaptive methods
use different learning rates for different parameters and Adacomp determines only the
global learning rate.

In future work, we will validate Adacomp using more tasks (besides convolutional
neural networks) and extend Adacomp to a per-dimension first-order algorithm to improve
the accuracy of SGD. Additionally, we will apply Adacomp to the distributed environ-
ments. Note that Adacomp only uses values of loss functions. Therefore, it is suitable for
distributed environments where communication overhead is a bottleneck. Furthermore,
we will study how to set the parameters of Adacomp in an end-to-end mode. This may be
achieved by introducing feedback and control modules.

Author Contributions: Conceptualization, Y.L. and X.R.; methodology, Y.L.; software, F.Z.; val-
idation, Y.L. and S.Y.; formal analysis, Y.L. and F.Z.; writing—original draft preparation, Y.L.;
writing—review and editing, X.R. and S.Y. The authors contributed equally to this work. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Appl. Sci. 2021, 11, 10184 17 of 21

Acknowledgments: This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2020-YFA0713900; in part by the National Natural Science
Foundation of China under Grant 61772410, Grant 61802298, Grant U1811461, and Grant 11690011; in
part by the China Postdoctoral Science Foundation under Grant 2020T130513 and Grant 2017M623177;
and in part by the Fundamental Research Funds for the Central Universities under Grant xjj2018237.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Extended Experiments

More experiments were conducted in the section to validate Adacomp from three aspects.

• Setting different values of β in Adacomp to show its impacts. As shown in Equation (9),
β is a parameter used for tuning the tradeoff between q1 and q21,q22. In Section 4,
β was set as a constant 0.6 for all experiments, without presenting the impacts of β.
Here, experimental results on MNIST show that Adacomp is not so sensitive to β.

• Using more metrics to provide an overall validation. In Section 4, we used predic-
tion accuracy to compare algorithms for classification tasks. The single metric may
not provide the overall validation. Here, we provided complementary experiments
with three more metrics, precision, recall, and F1-score. Experimental results on
MNIST, Fashion-MNIST, and CIFAR-10 show that Adacomp performs stably under
the additional metrics.

• Comparing with evolutionary algorithms to enrich experiments. In Section 4, we
compared Adacomp with six first-order adaptive algorithms, lacking comparison
with some state-of-the-art approaches. For completeness, we compared Adacomp
with two typical evolutionary methods, the genetic algorithm and particle swarm
optimization algorithm. Experimental results show that Adacomp can significantly
save time cost at the sacrifice of little accuracy degradation.

Experimental details and results are as follows.

Appendix A.1. Impacts of β on Adacomp

As in the discussion about Equation (9), the range of β is (0.5, 5]. To present a com-
prehensive investigation, we selected β from [0.6, 1] with step size 0.1 and from [1, 5] with
step size 0.5. Furthermore, learning rate was set as 0.01, 0.1, 1, and other settings were the
same as in Figure 2. Detailed results are shown in Figure A1, from which two conclusions
are obtained. For simplicity, lr is an abbreviation for learning rate and c in the parentheses
denotes clipping gradient with bound 10.

First, Adacomp is more sensitive to β when the learning rate is small. When lr = 1,
Adacomp fails at two settings β = 4, 5, and the number of failing settings decreases with lr.
When lr = 0.01, the effective β almost lies in the range [0.6, 1]. This shows that Adacomp
is insensitive to learning rate when β ≤ 1. Second, clipping gradient can significantly
improve the robustness of Adacomp. Based on the training process, we found that the
divergence happened at the early few iterations where the gradient norm tended to infinity.
To overcome this, we clipped gradients with bound 10 (larger or less has no impact). Results
when lr = 0.01(c), 0.1(c), 1(c) show that Adacomp is robust to both β and learning rate
when additionally clipping the gradient.

Appendix A.2. Comparison Using More Metrics

To present an overall validation, we adopted three additional metrics, precision, recall
(also sensitivity), and F1-score (weighted average of precision and recall) in the section.
The datasets used include MNIST, Fashion-MNIST, and CIFAR-10. The learning rate was
set as 0.01, 0.1, 1. For MNIST and Fashion-MNIST, the network architecture and parameter
settings were same as the corresponding experiments in Section 4. For CIFAR-10, the
network architecture was LeNet. Detailed results are shown in Table A2, where precision,
recall, and F1-score are average on all classes. Two conclusions are observed.

Appl. Sci. 2021, 11, 10184 18 of 21

LR=0.01

LR=0.01(c)

LR=0.1

LR=0.1(c)
LR=1

LR=1(c)

Learning rate (LR) with or without clipping gradients

0.6

0.7

0.8

0.9

1

1.5

2

2.5

3

3.5

4

4.5

5

Sensitivity of in Adacomp

11.34

11.35

98.88

98.67

98.96

98.76

98.18

98.87

98.71

98.72

98.53

98.74

98.62

98.74

98.87

98.75

98.86

98.75

98.75

98.16

98.72

98.87

98.83

98.78

98.97

98.7

98.93

98.37

98.9

99.08

98.87

98.91

98.78

98.85

98.88

98.8

98.81

98.85

98.61

98.84

98.74

98.36

98.53

98.53

98.77

98.08

98.71

98.34

98.65

98.49

98.5

96.69

98.26

98.57

98.76

98.81

98.7

98.64

98.4

98.82

98.49

98.5

98.33

98.26

98.83

98.57

98.71

20

30

40

50

60

70

80

90

NaN

Figure A1. Impacts of β of Adacomp on prediction accuracy. The dataset used was MNIST and the
network architecture was as the same as in Section 4.2. Here LR is an abbreviation for learning rate
and c in the parentheses denotes gradients are clipped.

First, each algorithm has a similar precision, recall, and F1-score when accuracy is high.
For example, when accuracy is greater than 90% on MNIST (or 80% on Fashion-MNIST, 60%
on CIFAR-10), the performance under different metrics almost remains unchanged. This is
mainly because these datasets have even class distribution. Second, although Adacomp
does not always achieve the highest accuracy or F1-score, it is the most robust to learning
rate. For a large learning rate (lr = 1), only Adadelta and Adacomp (ours) work well.
Within the two algorithms, Adacomp is more robust than Adadelta. Note that on CIFAR-10,
Adadelta achieves 0.45, 0.61, 0.65 F1-score when lr = 0.01, 0.1, 1, respectively. Meanwhile,
Adacomp achieves 0.65, 0.67, 0.65 F1-score. This can be also observed on Fashion-MNIST.

Appendix A.3. Comparison with Evolutionary Algorithms

We compared Adacomp with two evolutionary algorithms, the genetic algorithm (GA)
and particle swarm optimization algorithm (PSO), on MNIST, Fashion-MNIST, and CIFAR-
10 datasets. The code for GA was modified based on https://github.com/jishnup11/
-Fast-CNN-Fast-Optimisation-of-CNN-Architecture-Using-Genetic-Algorithm, (accessed
on 24 October 2021) and the code for PSA was based on https://github.com/vinthony/
pso-cnn, (accessed on 24 October 2021). Specific parameter settings were as follows and
detailed results are shown in Table A1, where results for Adacomp are the highest values
corresponding to Table A2.

• For the GA, we set 10 generations with 20 populations in each generation. Mutation,
random selection, and retain probability were set as 0.2, 0.1, 0.4, respectively.

• For PSO, swarm size and number of iterations were both set as 100, inertia weight and
acceleration coefficients were both set as 0.5.

Two conclusions are obtained from Table A1. First, GA and PSO outperform Adacomp
on MNIST and Fashion-MNIST. This is because GA and PSO explore too many parameter
settings compared to Adacomp. However, this does not hold for CIFAR-10. Therefore, GA
and PSO have a high probability of finding the better solutions by exploring a larger space.

https://github.com/jishnup11/-Fast-CNN-Fast-Optimisation-of-CNN-Architecture-Using-Genetic-Algorithm
https://github.com/jishnup11/-Fast-CNN-Fast-Optimisation-of-CNN-Architecture-Using-Genetic-Algorithm
https://github.com/vinthony/pso-cnn
https://github.com/vinthony/pso-cnn

Appl. Sci. 2021, 11, 10184 19 of 21

Second, Adacomp is more efficient than GA and PSO. For example, Adacomp performed
similarly to GA and PSO; however, the consumed time was only about 1/10 compared
to them.

Based on Table A2, it may be possible to combine GA or PSO with Adacomp to
simultaneously improve the efficiency and utility.

Table A1. Comparison results of Adacomp and two evolutionary algorithms are presented, where GA and PSO are
abbreviations for the genetic algorithm and particle swarm optimization algorithm, respectively.

Dataset MNIST Fashion-MNIST CIFAR-10
Metrics Acc. Prec. Reca. F1-sc. Acc. Prec. Reca. F1-sc. Acc. Prec. Reca. F1-sc.
Maximum 99.16 99.19 99.16 99.17 92.22 92.56 91.96 92.25 61.45 62.45 61.34 61.89GA [52] Time 32 m/110 m 58 m/71 m 5.8 h/5.8 h

Maximum 99.11 99.16 99.09 99.12 91.99 92.48 91.72 92.09 65.41 65.96 65.39 65.67PSO [53] Time 23 m/66 m 16 m/34 m 3.0 h/6.5 h

Maximum 98.45 98.45 98.44 98.44 89.10 89.05 89.10 89.05 67.45 67.09 67.45 67.26Ours Time 2.57 m–2.6 m 2.7 m–2.75 m 0.63 h–0.64 h

Table A2. Comparison results of Adacomp between other adaptive methods with more evaluation metrics are presented,
where learning rate was set as LR = 0.01, 0.1, 1. Acc., Pre., Reca., and F1-sc. are abbreviations for accuracy, precision, recall,
and F1-score, respectively.

Dataset MNIST Fashion-MNIST CIFAR-10
LR Metrics Acc. Pre. Reca. F1-sc. Acc. Pre. Reca. F1-sc. Acc. Pre. Reca. F1-sc.

SGD 97.71 97.13 97.10 97.11 88.30 88.24 88.30 88.25 60.11 59.72 60.12 59.72
Moment. 98.78 98.77 98.78 98.77 91.60 91.61 91.60 91.62 67.16 67.00 67.16 67.01
Adagrad 98.90 98.90 98.89 98.89 91.95 91.93 91.95 91.93 62.71 62.54 62.71 62.44
RMSprop 11.24 2.16 10.00 3.55 87.78 87.80 87.78 87.76 47.91 47.52 47.91 47.57
Adadelta 96.40 96.38 96.36 96.37 86.55 86.44 86.55 86.47 47.00 46.34 47.00 45.89
Adam 97.85 97.85 97.83 97.84 88.00 88.03 88.00 88.01 10.00 9.99 10.00 9.93
Adamax 98.64 98.63 98.63 98.63 90.11 90.10 90.11 90.10 66.38 66.19 66.38 66.23

0.01

Ours 98.08 98.08 98.07 98.07 88.89 88.85 88.89 88.85 65.36 64.88 65.36 65.11
SGD 98.86 98.86 98.85 98.86 91.33 91.29 91.33 91.30 65.82 65.60 65.81 65.64
Moment. 97.83 97.82 97.81 97.81 87.88 88.03 87.88 87.93 44.71 44.12 44.71 44.25
Adagrad 96.97 96.95 96.95 96.95 88.68 88.62 88.68 88.63 53.02 52.58 53.02 52.62
RMSprop 10.78 5.11 9.99 6.76 11.36 17.58 11.36 13.80 10.00 10.00 10.00 9.62
Adadelta 98.80 98.79 98.79 98.79 91.15 91.12 91.15 91.12 62.07 61.89 62.07 61.85
Adam 10.81 21.63 10.00 13.67 10.00 7.99 10.00 8.88 10.00 10.00 10.00 9.63
Adamax 10.65 4.13 9.99 5.84 84.36 84.35 84.36 84.34 10.00 9.99 10.00 9.64

0.1

Ours 97.92 97.91 97.91 97.91 88.90 88.86 88.90 88.86 67.45 67.09 67.45 67.26
SGD 9.80 0.98 10.00 1.78 10.00 1.00 10.00 1.81 10.00 10.00 10.00 10.00
Moment. 9.80 0.98 10.00 1.78 10.00 10.00 10.00 10.00 10.00 9.99 9.99 9.77
Adagrad 10.97 3.13 9.99 4.76 62.34 70.20 62.34 64.65 10.00 10.00 10.00 9.34
RMSprop 10.01 6.06 9.99 7.54 10.10 10.00 10.10 9.63 10.00 9.99 9.99 9.71
Adadelta 99.02 99.01 99.01 99.01 91.91 91.91 91.91 91.91 65.26 65.22 65.26 65.19
Adam 10.15 40.75 10.00 16.05 10.00 9.99 10.00 9.73 10.00 9.99 9.99 9.74
Adamax 10.57 4.15 10.00 5.86 9.99 8.99 9.99 9.46 10.00 9.99 10.00 9.78

1

Ours 98.45 98.45 98.44 98.44 89.10 89.05 89.10 89.05 65.67 65.56 65.67 65.61

References
1. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014;
pp. 1701–1708.

2. Pierson, H.A.; Gashler, M.S. Deep learning in robotics: A review of recent research. Adv. Robot. 2017, 31, 821–835. [CrossRef]

http://doi.org/10.1080/01691864.2017.1365009

Appl. Sci. 2021, 11, 10184 20 of 21

3. Jin, S.; Zeng, X.; Xia, F.; Huang, W.; Liu, X. Application of deep learning methods in biological networks. Brief. Bioinform. 2021,
22, 1902–1917. [CrossRef] [PubMed]

4. Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
5. Nesterov, Y. Squared functional systems and optimization problems. In High Performance Optimization; Springer:

Berlin/Heidelberg, Germany, 2000; pp. 405–440.
6. Ghadimi, S.; Lan, G. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 2013,

23, 2341–2368. [CrossRef]
7. Carmon, Y.; Duchi, J.C.; Hinder, O.; Sidford, A. Accelerated methods for nonconvex optimization. SIAM J. Optim. 2018,

28, 1751–1772. [CrossRef]
8. Lan, G. First-Order and Stochastic Optimization Methods for Machine Learning; Springer: Berlin/Heidelberg, Germany, 2020.
9. Lan, G. An optimal method for stochastic composite optimization. Math. Program. 2012, 133, 365–397. [CrossRef]
10. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2017, arXiv:1608.03983.
11. Xia, M.; Li, T.; Xu, L.; Liu, L.; De Silva, C.W. Fault diagnosis for rotating machinery using multiple sensors and convolutional

neural networks. IEEE/Asme Trans. Mechatron. 2017, 23, 101–110. [CrossRef]
12. Wang, W.F.; Qiu, X.H.; Chen, C.S.; Lin, B.; Zhang, H.M. Application research on long short-term memory network in fault

diagnosis. In Proceedings of the 2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu, China,
15–18 July 2018; Volume 2, pp. 360–365.

13. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res.
2011, 12, 2121–2159.

14. Hinton, G.; Srivastava, N.; Swersky, K. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent.
Cited 2012, 14, 2.

15. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
16. Wen, L.; Gao, L.; Li, X.; Zeng, B. Convolutional neural network with automatic learning rate scheduler for fault classification.

IEEE Trans. Instrum. Meas. 2021, 70, 1–12.
17. Wen, L.; Li, X.; Gao, L. A New Reinforcement Learning based Learning Rate Scheduler for Convolutional Neural Network in

Fault Classification. IEEE Trans. Ind. Electron. 2020, 68, 12890–12900. [CrossRef]
18. Han, J.H.; Choi, D.J.; Hong, S.K.; Kim, H.S. Motor fault diagnosis using CNN based deep learning algorithm considering motor

rotating speed. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA),
Tokyo, Japan, 12–15 April 2019; pp. 440–445.

19. Fischer, A. A special Newton-type optimization method. Optimization 1992, 24, 269–284. [CrossRef]
20. Li, Y.; Wei, C.; Ma, T. Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks.

arXiv 2019, arXiv:1907.04595.
21. Nakkiran, P. Learning rate annealing can provably help generalization, even for convex problems. arXiv 2020, arXiv:2005.07360.
22. Pouyanfar, S.; Chen, S.C. T-LRA: Trend-based learning rate annealing for deep neural networks. In Proceedings of the 2017 IEEE

Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA, 19–21 April 2017; pp. 50–57.
23. Takase, T.; Oyama, S.; Kurihara, M. Effective neural network training with adaptive learning rate based on training loss. Neural

Netw. 2018, 101, 68–78. [CrossRef] [PubMed]
24. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings

of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1139–1147.
25. Tang, S.; Shen, C.; Wang, D.; Li, S.; Huang, W.; Zhu, Z. Adaptive deep feature learning network with Nesterov momentum and

its application to rotating machinery fault diagnosis. Neurocomputing 2018, 305, 1–14. [CrossRef]
26. Ward, R.; Wu, X.; Bottou, L. AdaGrad stepsizes: Sharp convergence over nonconvex landscapes. In Proceedings of the 36th

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6677–6686.
27. Hadgu, A.T.; Nigam, A.; Diaz-Aviles, E. Large-scale learning with AdaGrad on Spark. In Proceedings of the 2015 IEEE International

Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 2828–2830.
28. Liu, H.; Zhou, J.; Zheng, Y.; Jiang, W.; Zhang, Y. Fault diagnosis of rolling bearings with recurrent neural network-based

autoencoders. ISA Trans. 2018, 77, 167–178. [CrossRef]
29. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
30. Yazan, E.; Talu, M.F. Comparison of the stochastic gradient descent based optimization techniques. In Proceedings of the 2017

International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017; pp. 1–5.
31. Pan, H.; He, X.; Tang, S.; Meng, F. An improved bearing fault diagnosis method using one-dimensional CNN and LSTM. J. Mech.

Eng. 2018, 64, 443–452.
32. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
33. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian optimization of machine learning algorithms. arXiv 2012, arXiv:1206.2944.
34. Shankar, K.; Zhang, Y.; Liu, Y.; Wu, L.; Chen, C.H. Hyperparameter tuning deep learning for diabetic retinopathy fundus image

classification. IEEE Access 2020, 8, 118164–118173. [CrossRef]
35. Wang, J.; Xu, J.; Wang, X. Combination of Hyperband and Bayesian Optimization for Hyperparameter Optimization in Deep

Learning. arXiv 2018, arXiv:1801.01596.

http://dx.doi.org/10.1093/bib/bbaa043
http://www.ncbi.nlm.nih.gov/pubmed/32363401
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1137/120880811
http://dx.doi.org/10.1137/17M1114296
http://dx.doi.org/10.1007/s10107-010-0434-y
http://dx.doi.org/10.1109/TMECH.2017.2728371
http://dx.doi.org/10.1109/TIE.2020.3044808
http://dx.doi.org/10.1080/02331939208843795
http://dx.doi.org/10.1016/j.neunet.2018.01.016
http://www.ncbi.nlm.nih.gov/pubmed/29494873
http://dx.doi.org/10.1016/j.neucom.2018.04.048
http://dx.doi.org/10.1016/j.isatra.2018.04.005
http://dx.doi.org/10.1109/ACCESS.2020.3005152

Appl. Sci. 2021, 11, 10184 21 of 21

36. Neary, P. Automatic hyperparameter tuning in deep convolutional neural networks using asynchronous reinforcement learning.
In Proceedings of the 2018 IEEE International Conference on Cognitive Computing (ICCC), San Francisco, CA, USA, 2–7 July
2018; pp. 73–77.

37. Rijsdijk, J.; Wu, L.; Perin, G.; Picek, S. Reinforcement Learning for Hyperparameter Tuning in Deep Learning-based Side-channel
Analysis. IACR Cryptol. Eprint Arch. 2021, 2021, 71.

38. Wu, J.; Chen, S.; Liu, X. Efficient hyperparameter optimization through model-based reinforcement learning. Neurocomputing
2020, 409, 381–393. [CrossRef]

39. Chen, S.; Wu, J.; Liu, X. EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization. Eng.
Appl. Artif. Intell. 2021, 104, 104315. [CrossRef]

40. Zheng, Q.; Tian, X.; Jiang, N.; Yang, M. Layer-wise learning based stochastic gradient descent method for the optimization of
deep convolutional neural network. J. Intell. Fuzzy Syst. 2019, 37, 5641–5654. [CrossRef]

41. Xiao, X.; Yan, M.; Basodi, S.; Ji, C.; Pan, Y. Efficient hyperparameter optimization in deep learning using a variable length genetic
algorithm. arXiv 2020, arXiv:2006.12703.

42. Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of
Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863. [CrossRef]

43. Neshat, M.; Nezhad, M.M.; Abbasnejad, E.; Mirjalili, S.; Tjernberg, L.B.; Garcia, D.A.; Alexander, B.; Wagner, M. A deep
learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm.
Energy Convers. Manag. 2021, 236, 114002. [CrossRef]

44. Haidong, S.; Hongkai, J.; Ke, Z.; Dongdong, W.; Xingqiu, L. A novel tracking deep wavelet auto-encoder method for intelligent
fault diagnosis of electric locomotive bearings. Mech. Syst. Signal Process. 2018, 110, 193–209. [CrossRef]

45. Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course; Springer Science & Business Media: Berlin, Germany,
2003; Volume 87.

46. Zhang, J.; He, T.; Sra, S.; Jadbabaie, A. Why Gradient Clipping Accelerates Training: A Theoretical Justification for Adaptivity.
arXiv 2020, arXiv:1905.11881.

47. LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://Yann.Lecun.Com/Exdb/Mnist/
(accessed on 15 May 2021).

48. Clanuwat, T.; Bober-Irizar, M.; Kitamoto, A.; Lamb, A.; Yamamoto, K.; Ha, D. Deep Learning for Classical Japanese Literature.
arXiv 2018, arXiv:1812.01718.

49. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

50. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 1 October 2021).

51. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

52. Bakhshi, A.; Noman, N.; Chen, Z.; Zamani, M.; Chalup, S. Fast automatic optimisation of CNN architectures for image
classification using genetic algorithm. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington,
New Zealand, 10–13 June 2019; pp. 1283–1290.

53. Lorenzo, P.R.; Nalepa, J.; Kawulok, M.; Ramos, L.S.; Pastor, J.R. Particle swarm optimization for hyper-parameter selection in
deep neural networks. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July
2017; pp. 481–488.

http://dx.doi.org/10.1016/j.neucom.2020.06.064
http://dx.doi.org/10.1016/j.engappai.2021.104315
http://dx.doi.org/10.3233/JIFS-190861
http://dx.doi.org/10.1016/j.swevo.2021.100863
http://dx.doi.org/10.1016/j.enconman.2021.114002
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://Yann. Lecun. Com/Exdb/Mnist/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

	Introduction
	Related Work
	Learning Rate Annealing
	Per-Dimension First-Order Adaptive Methods
	Hyperparameter Optimization
	Zeroth-Order Adaptive Methods

	Adacomp Method
	Idea 1: Search Optimal Learning Rate
	Idea 2: Approximate Unknown Terms

	Experiments
	Experimental Setup
	Results on MNIST Dataset
	Robustness to Initial Learning Rate
	Robustness to Other Hyperparameters
	Convergence Speed and Efficiency

	Results on CIFAR-10 Dataset
	Results for other Datasets

	Conclusions and Future Work
	Extended Experiments
	Impacts of on Adacomp
	Comparison Using More Metrics
	Comparison with Evolutionary Algorithms

	References

