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Abstract: The effective decoding of motor imagination EEG signals depends on significant temporal,
spatial, and frequency features. For example, the motor imagination of the single limbs is embodied
in the µ (8–13 Hz) rhythm and β (13–30 Hz) rhythm in frequency features. However, the significant
temporal features are not necessarily manifested in the whole motor imagination process. This
paper proposes a Multi-Time and Frequency band Common Space Pattern (MTF-CSP)-based feature
extraction and EEG decoding method. The MTF-CSP learns effective motor imagination features from
a weak Electroencephalogram (EEG), extracts the most effective time and frequency features, and
identifies the motor imagination patterns. Specifically, multiple sliding window signals are cropped
from the original signals. The multi-frequency band Common Space Pattern (CSP) features extracted
from each sliding window signal are fed into multiple Support Vector Machine (SVM) classifiers with
the same parameters. The Effective Duration (ED) algorithm and the Average Score (AS) algorithm
are proposed to identify the recognition results of multiple time windows. The proposed method
is trained and evaluated on the EEG data of nine subjects in the 2008 BCI-2a competition dataset,
including a train dataset and a test dataset collected in other sessions. As a result, the average
cross-session recognition accuracy of 78.7% was obtained on nine subjects, with a sliding window
length of 1 s, a step length of 0.4 s, and the six windows. Experimental results showed the proposed
MTF-CSP outperforming the compared machine learning and CSP-based methods using the original
signals or other features such as time-frequency picture features in terms of accuracy. Further, it is
shown that the performance of the AS algorithm is significantly better than that of the Max Voting
algorithm adopted in other studies.

Keywords: electroencephalogram decoding; motor imagery; common space pattern; sliding window

1. Introduction

Electroencephalograms (EEG) are a method used to record electrical information from
the cerebral cortex, thus reflecting part of brain activity. The emotion, motor intention,
health status, and other information of the subject can be identified by analyzing EEG
signals [1–3]. Brain–computer interface (BCI) technology refers to the bridge of an informa-
tion transmission channel between the human brain and external devices independent of
the traditional neural center network of the brain, enabling the control of external devices
through the human brain [4–7]. BCI has been increasingly applied in various applications
such as motor rehabilitation, neural intervention, games, and entertainment [8,9]. However,
EEG signals have limitations, such as low spatial resolution, low SNR, and non-stationarity.
In addition, the collected EEG signals are often accompanied by artifact information. Thus,
the acquisition of EEG is challenging, and available public data are limited [10,11].

To identify different EEG signals, machine learning-based methods have been pro-
posed by researchers to identify different EEG signals. Machine learning is generally
divided into two steps: feature extraction and classification. Common machine learning
classification models are Linear Discriminant Analysis (LDA) [12], k-Nearest Neighbor

Appl. Sci. 2021, 11, 10294. https://doi.org/10.3390/app112110294 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app112110294
https://doi.org/10.3390/app112110294
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110294
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110294?type=check_update&version=1


Appl. Sci. 2021, 11, 10294 2 of 16

(KNN) [13], Support Vector Machines (SVM) [14], Kernel Naive Bayes [15], and so on.
Machine learning methods have been used to extract distinctive biomarker features and to
identify healthy people and stroke patients in [16–18]. Reference [19] proposed a Hybrid
Machine Learning (HML) Classifier (including KNN, SVM, RF, NB, LR, CART, LDA, AB,
GB, and ET) to perform bruxism detection. Ref. [20] generalized a fixed classification
method for all subjects by combining the XDAWN spatial filter and the Riemannian Geom-
etry Classifier (RGC) for P300-EEG signal decoding. In [21], the Common Spatial Patterns
(CSP) and Linear Discriminant Analysis (LDA) machine learning algorithms were applied
to EEG signals for feature extraction and classification, respectively.

Motor imagery (MI) EEG decoding aims to correctly analyze brain signal patterns
(left and right hand, etc.), providing a basis for the implementation of an online BCI. In
the MI experimental paradigm, selecting an effective period from a complete MI trial is a
critical step. In most MI experimental paradigms, a complete 3–5 s-long trial is used as the
smallest unit. However, on the one hand, the subject’s attention and imagination ability is
not necessarily a continued focus in the whole trial process. On the other hand, different
subjects have different reaction times after receiving instructions. Therefore, it is a key
problem to crop the most profitable MI period before decoding the data. Selecting adequate
time windows and taking advantage of their characteristics can maximize the temporal
features of MI-EEG signals. In addition to temporal features, EEG also includes frequency
features and spatial features. The frequency features of MI-EEG are mainly manifested in µ

rhythm (8–13 Hz) and β rhythm (13–30 Hz); that is, when performing unilateral limb MI,
the signal energy in the corresponding frequency band of contralateral brain electrodes
decreases [22–24].

Extracting effective MI features plays a vital role in the further identification of EEG
signals. Many studies have been conducted to find the event-related synchronization (ERD)
characteristics of contralateral brain electrodes on the frequency domain when performing
unilateral limb MI [25–27]. Short-time Fourier transform (STFT) was explored to consider
time and frequency features simultaneously, which converted the original signal into
time-frequency domains [28,29].

The Common Space Pattern (CSP) algorithm has been widely studied due to its
advantages in the extraction of significant MI-EEG features [30,31]. Many studies have used
the CSP algorithm to extract significant EEG features in order to achieve good classification
accuracy. In [32,33], the CSP algorithm was combined with the LDA classifier for MI-EEG
decoding. In [34,35], the performance of five different features based on the CSP + SVM
model was analyzed. Significant EEG signal features extracted by the CSP algorithm were
able to improve the recognition accuracy. Many studies have improved CSP in order to
obtain better EEG characteristics. Several studies have used different frequency bands to
improve CSP, including sub-band CSP (SBCSP) [36,37], Filter Bank CSP (Filter Bank CSP,
FBCSP [25,38], and Discriminative FBCSP (DFBCSP) [39].

The single frequency band and single time window method lose detail features and
thus cannot fully reflect the complete features of MI-EEG. Despite some efforts to fuse
different frequency characteristics, efficient and detailed time features have been ignored.
The influence of the interception of different fixed time windows on the CSP algorithm has
been explored [40]. However, the effective MI starting time and the effective time window
length vary from person to person. Additionally, the generalization of a single fixed-length
window method is challenging. Only a few studies have investigated an effective MI time
window. In [41], an automatic selection of the best time window was proposed. In [42], the
features of three time-windows were extracted based on a multi-band CSP algorithm.

For the simultaneous extraction of the effective time window and frequency features,
this paper proposes a CSP algorithm based on multi-time window and multi-frequency
band (MTF-CSP). Multiple Support Vector Machines (SVM) are employed to classify the
multi-frequency band features extracted from multiple time windows. The ED and AS
algorithm are used to make the final output decision. The proposed MTF-CSP methods
were compared to state-of-the-art methods in terms of different extracted features, CSP-
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based methods, and the final decision algorithms and performed better than previous
methods. The classification accuracy of the two decision outputs obtained from two
decision algorithms is compared, and the influence of different window lengths and
numbers on the classification accuracy is analyzed. The major contributions of the paper
are highlighted as follows:

• The MTF-CSP features extracted by us achieved better classification accuracy in the
classification process by comparing it with the original signal and time-frequency
features.

• The strategy for intercepting multiple sliding window EEG data for analysis demon-
strated better performance than direct full-window EEG data analysis.

• We compared our MTF-CSP method with traditional CSP-based models, and the
results demonstrated that the multi-band and multi-time strategy could obviously
improve the recognition performance of the CSP-based models.

• For the final decision algorithm, we compared our model with the Max Voting method
used in some studies [43], and the cross-session classification accuracy obtained using
our proposed AS algorithm was significantly higher than that obtained by using Max
Voting algorithm.

2. Materials and Methods
2.1. Data and Preprocessing

The experimental data were obtained from the BCI-IV-2a dataset in 2008 [44], which
recorded four types of MI signals (including left hand, right hand, foot, and tongue MI
tasks) from nine subjects (these subjects did not have any particular medical conditions
according to the description of the data publisher). Figure 1 shows a MI experiment
paradigm, where subjects wearing EEG caps sit in front of a computer screen. Before the
start of the experiment, the computer screen shows a black cross symbol, and at the same
time, the computer issues a prompt to remind the participant to pay attention. A second
later, the screen gives the participant specific instructions that remind the participants to
prepare themselves. At the third second, the subjects begin to perform the specified MI
task. After 3 s, the subject is asked to rest for 1.5 s to prepare for the next task.
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Figure 1. Schematic diagram of an MI experiment paradigm.

Each participant underwent two experimental sessions, and the two sessions were
performed on different days. An EEG recording session was divided into 6 runs, and
48 trials were performed in each run. Therefore, each subject performed 288 training trials
and 288 testing trials. That is, 288 training (including validation data) and 288 testing
MI-EEG signals were captured from each subject. We used all of the subjects’ EEG data
from the two sessions for our research. Due to the limited amount of EEG data, all of the
data collected from the first session were used for training and validation, and the data
collected from the second session were used for cross-session testing.
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For the MI-EEG trials for the left and right hands were 3 s long and were selected
according to the labels and MI experiment paradigm for the following binary MI-EEG
decoding work. All of these trials are first fit to 8–30 Hz, from which n sliding windows
with a step length of s are cropped. Each window is then fir into two larger frequency
bands, that is, 8–13 Hz (µ) and 13–30 Hz (β), which are again fit to two (8–10 Hz named
µ-1, 10–13 Hz named µ-2) and three (13–18 Hz named β-1, 18–23 Hz named β-2, 23–30 Hz
named β-3) smaller frequency bands.

2.2. MI-EEG Recognition Based on MTF-CSP

The proposed method consists of four parts: cropping sliding windows, MTF-CSP for
feature extraction, multi-window SVM for classification, and acquiring the final decision
for all of the windows; the logic flow diagram for the whole algorithm is shown in Figure 2.
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2.2.1. CSP Algorithm

A CSP algorithm is a spatial filtering algorithm that is suitable for processing multi-
channel (multi-dimensional) signals such as EEG signals because CSP can synchronously
exploit the spatial correlation of multiple signal channels to capture the spatial charac-
teristics of the multi-dimensional signals. It aims to find an optimal set of spatial filters,
enabling the two kinds of samples to acquire a spatial characteristic component and maxi-
mum variance after projection [33,45]. The process of achieving this optimal spatial filter is
described by Formulas (1)–(4) as follows:
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For the binary MI-EEG classification task, the training set data can be divided into
two types of datasets: X1 and X2. The mixed covariance matrix (R) is obtained for the two
types of data as follows:

R = R1 + R2 = mean(
x1xT

1
trace(x1xT

1 )
) + mean(

x2xT
2

trace(x2xT
2 )

) (1)

where x1 and x2 represent the samples in the two types of datasets, X1 and X2, respectively.
R1 and R2 represent the average covariance matrix of the two types of data, respectively.
The mean indicates the average of the two covariance matrices, and trace indicates the
trace of the matrix.

The albino matrix is obtained according to the mixed covariance matrix:

P =
1√
λr

UT
r (2)

where λr and UT
r are the eigenvalue and eigenvector matrix of the mixed covariance matrix

(R), respectively. By using the albino matrix and the mixed covariance matrix, the common
eigenvector matrix S1 and S1 can be expressed as:

S1 = PR1PT, S2 = PR2PT (3)

The projection matrix is determined by the albino matrix (P) and the common eigen-
vector matrix (S1 or S2). The projection matrix (W) is expressed as:

W = UT
s P (4)

where UT
s refers to the eigenvector matrix obtained by the decomposition of S1 or S2 (S1 is

equal to S2).
The final CSP filter WCSP consists of m maximum values and m minimum values

selected from the projection matrix (W). Finally, a feature vector with a length of 2 m is
extracted. That is, the CSP feature vector of the single-frequency band and single-time
window signal is XCSP = [x1, · · · , x2m].

2.2.2. Multi-Time Window and Multi-Frequency Band CSP Strategy for Feature Extraction

This paper proposes a multi-time and multi-frequency CSP (MTF-CSP) to extract
features for MI information. In the MTF-CSP, n time windows of length w are intercepted
from the original signal of 3 s, and the interception step length is one s second. For a single
time window signal, the sub-band time-amplitude signals of seven frequency bands (µ, µ-1,
µ-2, β, β-1, β-2, β-3) are separated by inputting the original data into different band-pass
filters. These seven frequency bands include the µ rhythm frequency band (8–13 Hz) and
the β rhythm frequency band (13–30 Hz), with significant MI frequency features as well as
the refined frequency bands (µ-1, µ-2, β, β-1, β-2, β-3) to simultaneously capture the global
and local frequency features of the signal. The CSP algorithm was then used to extract the
features of each frequency band for a single-time window signal in order to obtain a set of
eigenvalues with the length of 2 m, which is a feature vector that maximizes the difference
between the two classes of signals by mapping the signal to another space. The eigenvalues
of the seven frequency bands are connected end to end to form a set of vectors that can be
used as the features of a single MI-EEG signals in a single-time window. Thus, the features
of the seven frequency bands filtered from a single window can finally combined into a
vector with a length of 2 m × 7, as shown in Figure 3. The statistical results of the EEG
features extracted from the seven frequency bands are also visualized in Figure 4 after
dimension reduction takes place.
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2.2.3. SVM Classifier for Multi-Window EEG Classification

SVM is a supervised machine learning algorithm that can be used for classification or
regression tasks. Before this, a linear classifier was used to find a hyperplane that could
distinguish the two types of data. However, in many cases, there are countless similar
hyperplanes. The purpose of SVM is to find the optimal hyperplane to distinguish the
two types of samples. It is formulated to find an optimal hyperplane to distinguish the
two categories and tries to maximize the margin between those categories [46,47]. The
optimization objective is to find the hyperplane that is the farthest away from the support
vector, which is the sample that is closest to the hyperplane that is decisive. The objective
function is defined as follows:

argmax
w,b

{
1
‖w‖min

i

[
yi ·
(

wT ·Φ(xi) + b
)]}

(5)

where w and b are the decision surface parameters to be optimized for; xi and yi represent
the ith sample and its label, respectively, and Φ is the kernel function, which maps the
features of the samples to the higher dimensional space so as to transform the linearly
indivisible problem in the lower dimensional space into a linearly separable problem in
the higher dimensional space. In Formula (5), the subformula after min aims to find the
vectors with the minimum distance from the hyperplane, namely the support vector, and
the subformula after max aims to find the hyperplane with the maximum distance from
the support vector. The Radial Basis Function (RBF) is used as the kernel function in this
paper to map the EEG features to a higher dimension. The RBF function is represented by
Formulas (6):

Φγ(x) = exp
(
−γ‖x− 1‖2

)
(6)

where x represents the data that need to be mapped into higher dimensions, l represents the
features of all of the samples, γ is an adjustable parameter that represents the complexity
of the transformation, exp computes exponential functions based on natural numbers, and
‖x− l‖2 represents the similarity between the data. The reasons why one may use the RBF
function is to map low-dimensional features into higher-dimensional space by calculating
the similarity values between a sample feature and all of other sample features as a new
higher-dimensional vector.

The left- and right-hand MI features extracted by the MTF-CSP algorithm were clas-
sified by SVM. The multi-frequency band CSP features extracted from n time-window
signals were fed into n SVM classifiers with the same parameters, obtaining n recognition
values.

2.2.4. Final Decision over Multiple Time Windows

Two algorithms, ED and AS, are used to make the final recognition decision on the
n recognition results obtained from multi-frequency CSP feature extraction and SVM
classification in n time windows. They are described in the following.

1 Effective duration algorithm (ED)

The ED algorithm aims to determine the longest sequence with the successive same
value in a list of digits as the effective duration of the sequence; this continuous value is
determined as the final decision value. The decision output value has two characteristics:
continuous and most frequent occurrences. That is, the final decision value should not only
be sequential values in time order, and the number of consecutive occurrences is the highest
compared to other values. The successive occurrences of multiple same identification
results indicate the continuous and effective concentration of the subjects in the MI tasks.
As shown in Figure 5, in the CSP-based feature extraction process, n groups of feature
vectors (2 m× 7) are obtained that correspond to n time windows. These feature vectors are
fed into n SVM classifiers with the same parameters, providing n recognition scores. The n
results are arranged in order of time. The period with the largest number of same successive
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decisions is regarded as containing more MI feature information (effective time period)
in a single MI trial, and the same successive predicted value in this period is regarded
as the final decision value. For example, in n time windows, if most of the consecutive
identification results are for right-hand MI, then the model determines that this trial is a
MI task for the right hand.
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2 Average score algorithm (AS)

In order to weigh the recognition results of each window fairly in terms of details, the
AS algorithm, by which the scores of each time window obtained by SVM are added and
averaged, is proposed. The core of the AS algorithm takes the SVM scores rather than the
binary classification results of each time window as the reference value to make the final
decision because these scores can specifically measure the category nature of the samples
in detail. After calculating the average SVM scores of n time windows, the threshold is
selected according to their precision and recall variation curves. The final decision is 1
(right hand MI) for scores higher than the threshold; otherwise, the final decision is 0 (left
hand MI). SVM prediction score should be denoted in the jth window be scorej and h
should be the selected threshold value. Then, the final decision value P is:

P = 1, mean
(
scorej

)
> h, (j = 1, 2, . . . n)

P = 0, mean
(
scorej

)
≤ h, (j = 1, 2, . . . n)

(7)

The decision process of the AS algorithm is depicted in Figure 6.
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Since the recall rate and precision vary according to the threshold [48,49], an appropri-
ate threshold should be determined to judge the final score. The true positive (TP) denotes
the number of positive samples that have been determined correctly, and the true negative
(TN) denotes the number of negative samples that have been determined correctly. The
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false positive (FP) and the false negative (FN) denote the numbers of positive samples and
negative samples determined falsely, respectively. The recall r and precision p are defined
as follows:

r = TP
TP + FN ,

p = TP
TP + FP

(8)

Figure 7 shows the recall rate and precision curves of nine subjects according to a
varied threshold. As shown in Figure 7, the recall rate and precision change with opposite
trends. In order to weigh the recall rate and precision, the threshold value at the intersection
point of the two curves is taken as the optimal threshold value for classification.
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3. Results

The model was trained on the training dataset, tested on the test dataset collected from
another session, and validated using the 4-fold cross-validation method. The validation
accuracy is demonstrated in Tables 1 and 2.

Table 1. The validation accuracy for ED algorithm.

6 Windows 11 Windows

1 s 1.5 s 2 s 2.5 s 1 s 1.5 s 2 s 2.5 s

Sub1 0.986 0.920 0.928 0.906 0.978 0.934 0.913 0.906
Sub2 0.956 0.971 0.926 0.875 0.993 0.963 0.897 0.882
Sub3 0.957 0.942 0.934 0.934 0.964 0.942 0.927 0.927
Sub4 0.953 0.977 0.953 0.961 0.969 0.946 0.961 0.961
Sub5 0.961 0.938 0.923 0.891 0.984 0.930 0.930 0.876
Sub6 0.982 0.946 0.929 0.876 0.974 0.964 0.929 0.867
Sub7 0.985 0.977 0.977 0.955 0.977 0.985 0.977 0.948
Sub8 0.985 0.955 0.947 0.939 0.985 0.939 0.917 0.939
Sub9 0.966 0.914 0.922 0.871 0.957 0.905 0.922 0.845

avg 0.970 0.949 0.938 0.912 0.976 0.945 0.930 0.906
std 0.013 0.022 0.017 0.034 0.011 0.022 0.023 0.038
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Table 2. The validation accuracy for AS algorithm.

6 Windows 11 Windows

1 s 1.5 s 2 s 2.5 s 1 s 1.5 s 2 s 2.5 s

Sub1 0.971 0.956 0.913 0.913 0.971 0.942 0.927 0.913
Sub2 0.971 0.971 0.956 0.912 0.971 0.971 0.941 0.853
Sub3 0.971 0.941 0.942 0.912 0.971 0.956 0.898 0.898
Sub4 0.969 0.954 0.938 0.953 0.969 0.954 0.953 0.923
Sub5 0.953 0.938 0.954 0.938 0.953 0.922 0.938 0.892
Sub6 0.970 0.947 0.912 0.876 0.970 0.965 0.894 0.876
Sub7 0.970 0.970 0.955 0.970 0.970 0.955 0.955 0.955
Sub8 0.970 0.955 0.970 0.924 0.970 0.955 0.955 0.924
Sub9 0.966 0.948 0.931 0.897 0.948 0.914 0.897 0.897

avg 0.968 0.953 0.941 0.922 0.966 0.948 0.929 0.903
std 0.005 0.010 0.019 0.027 0.008 0.018 0.024 0.028

The number of windows (n), step length (s) of the sliding windows, and the length of
the window (w) are the parameters for the proposed MTF-CSP algorithm. The influence
of these parameters on the feature extraction performance is investigated in this section,
as shown in Table 3. The proposed methods with different window lengths (1 s, 1.5 s, 2 s,
2.5 s) and different numbers of windows (6, 11 windows) are compared, and two decision
recognition algorithms (ED, AS) are used as the decision algorithm to make a comparison.

Table 3. The parameter configuration of the experiment.

Parameters Value

n 6/11
w 1 s/1.5 s/2 s/2.5 s
m 2

Figures 8 and 9 show the average classification accuracy and AUC values (expressed
as a bar) and their standard deviation (expressed as a black line segment attached in the
middle of the bar) for nine subjects using our proposed method in cases where window
numbers, window length and decision algorithms are difference. The standard deviation is
used to measure the stability of the model across different subjects. Figures 8 and 9 show
the results for six and eleven windows, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 16 
 

Table 2. The validation accuracy for AS algorithm. 

 
6 Windows 11 Windows 

1 s 1.5 s 2 s 2.5 s 1 s 1.5 s 2 s 2.5 s 

Sub1 0.971 0.956 0.913 0.913 0.971 0.942 0.927 0.913 

Sub2 0.971 0.971 0.956 0.912 0.971 0.971 0.941 0.853 

Sub3 0.971 0.941 0.942 0.912 0.971 0.956 0.898 0.898 

Sub4 0.969 0.954 0.938 0.953 0.969 0.954 0.953 0.923 

Sub5 0.953 0.938 0.954 0.938 0.953 0.922 0.938 0.892 

Sub6 0.970  0.947 0.912 0.876 0.970  0.965 0.894 0.876 

Sub7 0.970  0.970  0.955 0.970  0.970  0.955 0.955 0.955 

Sub8 0.970  0.955 0.970  0.924 0.970  0.955 0.955 0.924 

Sub9 0.966 0.948 0.931 0.897 0.948 0.914 0.897 0.897 

avg 0.968 0.953 0.941 0.922 0.966 0.948 0.929 0.903 

std 0.005 0.010 0.019 0.027 0.008 0.018 0.024 0.028 

The number of windows (n), step length (s) of the sliding windows, and the length 

of the window (w) are the parameters for the proposed MTF-CSP algorithm. The influence 

of these parameters on the feature extraction performance is investigated in this section, 

as shown in Table 3. The proposed methods with different window lengths (1 s, 1.5 s, 2 s, 

2.5 s) and different numbers of windows (6, 11 windows) are compared, and two decision 

recognition algorithms (ED, AS) are used as the decision algorithm to make a comparison. 

Table 3. The parameter configuration of the experiment. 

Parameters Value 

n 6/11 

w 1 s/1.5 s/2 s/2.5 s 

m 2 

Figures 8 and 9 show the average classification accuracy and AUC values (expressed 

as a bar) and their standard deviation (expressed as a black line segment attached in the 

middle of the bar) for nine subjects using our proposed method in cases where window 

numbers, window length and decision algorithms are difference. The standard deviation 

is used to measure the stability of the model across different subjects. Figures 8 and 9 show 

the results for six and eleven windows, respectively. 

 

Figure 8. The comparison of the average classification accuracy and AUC value distribution using 

the ED and AS algorithms for the features extracted from six cropped windows (n = 6), each of which 

is 1 s/1.5 s/2 s/2.5 s in length. 
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the ED and AS algorithms for the features extracted from six cropped windows (n = 6), each of which
is 1 s/1.5 s/2 s/2.5 s in length.
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Figure 9. The comparison of the average classification accuracy and AUC value distribution using
the ED and AS algorithms for the features extracted from 11 cropped windows (n = 11), each of which
is 1 s/1.5 s/2 s/2.5 s in length.

For the ED algorithm, the performance of the features with a longer time window
was better than it was with a shorter time window. In contrast, for the AS algorithm, the
performance of the features with a shorter time window was better than it was with a
longer time window. Generally, the average accuracy of the AS algorithm is higher than
that of the ED algorithm, providing the optimal average accuracy of 0.787 in the case of the
six 1 s-windows.

The threshold influences the performance of the AS algorithm. Figure 10 shows
the ROC curves of the MTF-CSP feature extraction and AS algorithm-based ensemble
SVM classifier with 6 1 s-windows. The x-coordinate represents the FP ratio, and the
y-coordinate represents the TP ratio. The closer the ROC curve is to the upper left, the
better the recognition performance is. The area under the curve is defined as the AUC
value, and the closer the value is to 1, the better the performance is. As we can see from
the ROC curves that most of the subjects demonstrated good performance in addition to
the sub2, sub4, and sub6, which may be due to the promiscuous feature distribution in
different categories, as referred to in Figure 4.
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AS algorithm (The blue curve represents the ROC curve, and the black dotted line is the reference
auxiliary line).
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4. Discussion

In order to validate the superiority of the proposed MTF-CSP feature extraction, the
baseline methods were compared. Figure 11 compares the proposed MTF-CSP method
with the traditional CSP-based models (CSP + SVM, CSP + LDA) in terms of classification
accuracy. As shown in Figure 11, the accuracy of the MTF-CSP model based on an AS
algorithm and an ED algorithm is both higher than the compared models. Additionally, the
proposed MTF-CSP model provides stable results with relatively lower standard deviations.
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Figure 11. Comparison of classification accuracies of the proposed MTF-CSP based models with the
traditional CSP-based models.

Several studies have attempted to create synthetic EEG time–frequency maps to reflect
the time–frequency MI-EEG characteristics. As shown in Table 4, typical time–frequency
maps and original signals without feature extraction are used as input features to be fed
into the typical LDA and SVM models to compare them with our proposed MTF-CSP
method. Additionally, the performance of the full-window multi-frequency characteristics
was compared to show the effectiveness of the multi-time window strategy. As seen in
Table 4, it is obvious that the model using the MTF-CSP features had better performance
than the models using the original signal and time–frequency features as inputs.

Table 4. Comparison of classification accuracy of original timing signals, time–frequency features, and MTF-CSP features.

Features
Type

Original Sequence
Signal

STFT
Time-Frequency

Full-Window
Multi-Band

CSP Features

Proposed MTF-CSP
Features Based on 11

2.5 s-Windows

Proposed MTF-CSP
Features Based on 6

1 s-Windows

Classifier LDA SVM LDA SVM SVM ED + SVM AS + SVM ED + SVM AS + SVM

sub1 0.461 0.511 0.461 0.468 0.908 0.837 0.879 0.837 0.922
sub2 0.542 0.521 0.493 0.542 0.549 0.563 0.577 0.549 0.599
sub3 0.460 0.482 0.686 0.788 0.964 0.942 0.971 0.920 0.971
sub4 0.483 0.578 0.621 0.509 0.526 0.664 0.716 0.638 0.647
sub5 0.563 0.674 0.504 0.533 0.696 0.659 0.696 0.719 0.748
sub6 0.556 0.583 0.546 0.565 0.611 0.593 0.565 0.630 0.657
sub7 0.736 0.836 0.521 0.514 0.779 0.821 0.814 0.650 0.814
sub8 0.500 0.567 0.545 0.537 0.925 0.940 0.925 0.925 0.925
sub9 0.523 0.562 0.731 0.831 0.800 0.785 0.815 0.808 0.800

Avg 0.536 0.590 0.568 0.587 0.751 0.756 0.773 0.742 0.787
Std 0.079 0.101 0.087 0.122 0.155 0.134 0.137 0.128 0.127

In addition to the comparison across models, we compared the average classification
accuracy of the AS decision algorithm with the existing Max Voting decision algorithm,
as demonstrated in Figures 12 and 13. The Max Voting algorithm works by finding the
most frequent values in the sequence [44]. It can be clearly seen that the cross-session
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classification accuracy obtained by the AS decision algorithm is higher than that obtained
by the Max Voting algorithm in all cases.
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Although this study extracted EEG motor imagery features from different angles by
proposing the MTF-CSP and obtained a better recognition cross-session motor imagery
EEG ability than the existing methods. It has not been integrated an end-to-end system
and is inconvenient for practical applications. We will try to study the current model in
some end-to-end models and will apply these data to our MI-EEG decoding work.

5. Conclusions

This paper proposes an MTF-CSP model to extract multi-frequency bands and multi-
time windows features. The extracted features were fed into the ensembled SVM classifier
as an input. ED and AS algorithms were additionally proposed to obtain a final decision.
The experimental results verify that a multi-frequency feature extraction strategy can refine
the band information, and the multi-time windows feature extraction strategy were able to
refine the temporal characteristics of the MI-EEG and caught the effective characteristics
throughout the entire MI trial, significantly improving the decoding accuracy. Additionally,
the strategy of the AS and ED algorithm-based ensembled SVM captured the most beneficial
temporal characteristics from different angles and acquired the optimal decision result.
The proposed MTF-CSP method achieves higher classification accuracy than traditional
CSP + SVM and CSP + LDA models according to the present experiment. The AS and ED
algorithms we propose here were inspired by the existing Max Voting algorithm and were
developed based on it, adding more detailed consideration to the factors that influence the
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final decision outcome from different aspects. The ED algorithm is an improved algorithm
based on the max_voting algorithm by additionally considering the continuity of the same
identification results rather than only focusing on the number of identical identification
results. The AS algorithm was improved based on the max_voting algorithm through
the more refined score values to determine the final decision rather than using crude
binary classification values alone to make the final decision. According to the experiment
conducted here, the proposed AS decision algorithm that was developed based on the
existing Max Voting algorithm is obviously superior. Further, we determined that the AS
algorithm provided a significantly better performance during the experiments than the ED
algorithm did when making the final decision.
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