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Abstract: Due to the imperfect assembly process, the unqualified assembly of a missing gasket
or lead seal will affect the product’s performance and possibly cause safety accidents. Machine
vision method based on deep learning has been widely used in quality inspection. Semi-supervised
learning (SSL) has been applied in training deep learning models to reduce the burden of data
annotation. The dataset obtained from the production line tends to be class-imbalanced because the
assemblies are qualified in most cases. However, most SSL methods suffer from lower performance
in class-imbalanced datasets. Therefore, we propose a new semi-supervised algorithm that achieves
high classification accuracy on the class-imbalanced assembly dataset with limited labeled data.
Based on the mean teacher algorithm, the proposed algorithm uses certainty to select reliable teacher
predictions for student learning dynamically, and loss functions are modified to improve the model’s
robustness against class imbalance. Results show that when only 10% of the total data are labeled,
and the imbalance rate is 5.3, the proposed method can improve the accuracy from 85.34% to 93.67%
compared to supervised learning. When the amount of annotated data accounts for 20%, the accuracy
can reach 98.83%.

Keywords: intelligent quality inspection; semi-supervised learning; imbalanced data; mean teacher

1. Introduction

Screw fasteners are simple in construction and easy to operate. They are widely used
in the mechanical structure as the crucial part of large equipment, such as aero-engine,
high-speed railways, production machinery, wind turbines, air conditioning systems, and
elevator cranes. The assembly quality should be carefully inspected because it determines
the mechanical properties and safety of products. Screw–gasket–seal is a typical connector
assembly structure. The gasket is used to protect the surface of the connector from screw
abrasion. The seal can pass through several structures to form a closed loop, preventing
the structure from being loose. The images of qualified assembly samples are shown in
Figure 1(a1–a4), with a lead threading through two parallel holes of the hexagon screw
and a gasket placed between the two mating surfaces to increase friction. Unqualified
assemblies (Figure 1(b1–b4)) without gaskets or lead seals have hidden safety hazards,
which may cause inestimable loss of life and property.

Therefore, it is crucial to detect whether such assemblies are qualified effectively. With
the advent of industry 4.0 and the continuous development of machine learning technology,
the manufacturing industry has an increasing demand for automatic and intelligent produc-
tion [1,2]. Both industrial practitioners and academic researchers are exploring intelligent
detection methods to replace manual inspection. Common noncontact inspection methods
include 3D scanning [3–5] and machine vision. The 3D scanning methods can provide
the precision position of the component to assist the industrial robots. Machine vision
detection methods use the camera to capture images from production lines and then design

Appl. Sci. 2021, 11, 10373. https://doi.org/10.3390/app112110373 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app112110373
https://doi.org/10.3390/app112110373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110373
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110373?type=check_update&version=2


Appl. Sci. 2021, 11, 10373 2 of 15

algorithms to complete the extraction and analysis of image information. It can provide
objective, high-speed measurement and good reliability with a simple system and strong
adaptability. Before the rise of deep learning algorithms, there have been many studies
based on low-level visual features. For example, in [6], Hoff transform was applied to the
bolt-loosening detection in the connection of wind turbine tower segments; Liu et al. [2]
used the gradient coded co-occurrence matrix (GCCM) to inspect the missing of bogie
block key on freight cars. Due to its data-driven nature, the fast-developing deep learning
algorithms can extract knowledge from historical data, reducing the dependence on expert
domain knowledge and avoiding artificial design of visual features. They have been widely
used in the detection of key components of high-speed trains [7–10], fault diagnosis [11–13],
high-voltage transmission line detection [14–16], and other industrial applications.
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Figure 1. Assembly sample images: (a1–a4) Qualified assemblies; (b1,b2) Samples without lead seal-
ing; (b3,b4) Samples without lead sealing and gasket. 

The high generalization performance of deep learning relies on a large amount of 
labeled data. However, massive manpower and repeated labor will be needed to collect 
and annotate tens of thousands of data, and the sample number of the unqualified class is 
often low, resulting in the class imbalance of the training set. These factors will signifi-
cantly affect the neural network model. Few-shot learning, generative methods, and semi-
supervised learning have been presented to alleviate these problems. Few-shot learning 
is one method that fully utilizes a small number of labeled data [17]. It is suitable for tasks 
where a variety of prior knowledge is available, including supervised data from other 
domains and modalities. Wang et al. [11] used a classification algorithm based on the sim-
ilarity of sample pairs in intelligent bearing fault diagnosis, which included feature learn-
ing and metric learning modules. The feature learning module used twin neural networks 
to extract features from the sample pair separately, and the metric learning module was 
used to predict the similarity of the sample pair. The classification was conducted accord-
ing to the similarity between the test sample and the labeled sample. To avoid artificially 
designing similarity measure function, [18] introduced the meta-learning method into the 
metric learning module in machine fault diagnosis to learn distance function adaptively. 

Some studies attempt to generate data artificially. A common generating method is 
to use the generative adversarial network (GAN). Two models are trained simultaneously: 
one generative model G capturing the data distribution, and a discriminant model D esti-
mating the probability that samples come from real data rather than G [19]. One study 
[20] used a generator to generate faulty mode data in compressor fault detection by min-
imizing the cluster center distance between the real and the generated data. In [21], the 

Figure 1. Assembly sample images: (a1–a4) Qualified assemblies; (b1,b2) Samples without lead
sealing; (b3,b4) Samples without lead sealing and gasket.

The high generalization performance of deep learning relies on a large amount of
labeled data. However, massive manpower and repeated labor will be needed to collect and
annotate tens of thousands of data, and the sample number of the unqualified class is often
low, resulting in the class imbalance of the training set. These factors will significantly affect
the neural network model. Few-shot learning, generative methods, and semi-supervised
learning have been presented to alleviate these problems. Few-shot learning is one method
that fully utilizes a small number of labeled data [17]. It is suitable for tasks where a
variety of prior knowledge is available, including supervised data from other domains
and modalities. Wang et al. [11] used a classification algorithm based on the similarity
of sample pairs in intelligent bearing fault diagnosis, which included feature learning
and metric learning modules. The feature learning module used twin neural networks to
extract features from the sample pair separately, and the metric learning module was used
to predict the similarity of the sample pair. The classification was conducted according
to the similarity between the test sample and the labeled sample. To avoid artificially
designing similarity measure function, [18] introduced the meta-learning method into the
metric learning module in machine fault diagnosis to learn distance function adaptively.

Some studies attempt to generate data artificially. A common generating method
is to use the generative adversarial network (GAN). Two models are trained simultane-
ously: one generative model G capturing the data distribution, and a discriminant model
D estimating the probability that samples come from real data rather than G [19]. One
study [20] used a generator to generate faulty mode data in compressor fault detection by
minimizing the cluster center distance between the real and the generated data. In [21],
the generative model was also applied to intelligent fault diagnosis of rotating machin-
ery, where feature differences obtained by a feature extractor were minimized to obtain
high-quality generated data. Compared with the classification network, the generative
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model requires an additional design of the generator structure. Moreover, it needs careful
adjustment of the hyper-parameters and more time in optimizing the network structure to
prevent divergence.

When unlabeled samples are available in large quantities, semi-supervised learning
(SSL) is a promising approach. There are two main kinds of semi-supervised learning
methods: unsupervised preprocessing and perturbation-based method. Unsupervised
preprocessing methods usually extract features from unlabeled data. For example, in
detecting freight car plate bolts, [22] used unlabeled data to pre-train the stacked auto-
encoder and then assigned its weights to the classification network. Zhang et al. [12]
combined the training stages of auto-encoder and classifier and used two identical encoder
networks to process labeled and unlabeled data for bearing fault diagnosis simultaneously.
This integrated training method can achieve higher classifier accuracy.

The consistency regularization method based on perturbation is used to find the
smooth manifold where the dataset lies by leveraging the unlabeled data [23]. It is assumed
that similar samples have similar labels in the dense data space. Consistency regularization
methods usually add perturbation to input data, network structure, and training mode
and constrain the probability distribution of the model’s output to remain unchanged.
They do not depend on any intermediate steps or pre-trained supervised learners and
generally extend the existing supervised loss function to contain the unlabeled data. In the
Π model [24], each sample of the labeled and unlabeled dataset is propagated twice in every
epoch, and perturbations are introduced by random noise of the input data and network
dropout. To reduce the computing burden, the temporal ensembling method [25] replaces
one forward propagation with the exponential moving average (EMA) of earlier predictions.
The mean teacher (MT) method [26] directly applies the EMA to the regular network
parameters to obtain another Teacher model. Compared with Temporal Ensembling, it
can get more accurate predictions. There are few studies on semi-supervised learning
methods for detecting unqualified assemblies or other products. The academic studies
of consistency regularization methods almost assume that the distribution of instances
in each class is balanced [19]. However, they have difficulty ensuring ideal performance
on imbalanced data, especially in minority classes. Sometimes they are even worse than
supervised learning methods [27].

To address the issues above, this article introduces a semi-supervised learning al-
gorithm to detect unqualified assembly samples. It can achieve an accuracy of 93.67%
when the labeled fraction of the training dataset is 10% and the imbalance rate is 5.3. This
algorithm improves the mean teacher algorithm and makes up for the deficiency of the
semi-supervised learning method in the class-imbalanced scenarios. Firstly, the certainty
values of teacher predictions are measured, and the teacher predictions with high certainty
are selected for the consistency constraint. Then, label-distribution-aware margin loss
(LDAM Loss) [28] is applied to the labeled data training of the student model to enhance
the robustness against class imbalance under supervised learning, and compression consis-
tency loss (CCL) is adopted to prevent decision boundaries from skewing into the minority
class regions.

This paper is organized as follows: Section 2 introduces the proposed semi-supervised
learning algorithm in detail. In Section 3, the assembly dataset and comparative experi-
ments between the proposed method and other existing methods are described, and the
results are discussed. Finally, Section 4 presents the main conclusions.

2. Class-Imbalanced Semi-Supervised Learning

Assume that the training set D contains N samples, Nl of which are labeled. Let
Dl = {(xi, yi) : yi ∈ (1, . . . , C)}Nl

i=1 represents the labeled training set, where the training
sample is denoted as xi, yi is the corresponding one-hot label, and C is the number of classes.
Du is the unlabeled training set. The mini-batch size is B at each iteration, consisting of bl
labeled samples and bu = B− bl unlabeled samples. In this section, the proposed model
structure and the training strategy are introduced in detail.
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2.1. Model Framework for Assembly Quality Detection

The method adopted in this paper is based on the mean teacher algorithm, which
includes a teacher model and a student model with the same network structure. The
overall algorithm is shown in Figure 2. The models use the DenseNet121 [29] structure,
famous for achieving high performance while reducing the scale of parameters. As shown
in Figure 2, the DenseNet121 includes four dense blocks, each followed by a transition
layer. The transition layer consists of one 1 × 1 convolutional layer and one 2 × 2 pooling
layer. The dense block is composed of multiple dense layers, and the output of each dense
layer is connected to other layers in a feedforward manner to prevent the disappearance of
features. The dense block and dense layer are illustrated in Figure 3, and each dense layer
is a sequence of BN-ReLU-1 × 1 Conv-BN-ReLU-3 × 3 Conv.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 15 
 

2. Class-Imbalanced Semi-Supervised Learning 
Assume that the training set D contains N samples, lN  of which are labeled. Let 

1{( , ) : (1, , )} lN
l i i i iD x y y C == ∈   represents the labeled training set, where the training sam-

ple is denoted as ix , iy  is the corresponding one-hot label, and C is the number of classes. 

uD  is the unlabeled training set. The mini-batch size is B at each iteration, consisting of 

lb  labeled samples and u lb B b= −  unlabeled samples. In this section, the proposed 
model structure and the training strategy are introduced in detail. 

2.1. Model Framework for Assembly Quality Detection 
The method adopted in this paper is based on the mean teacher algorithm, which 

includes a teacher model and a student model with the same network structure. The over-
all algorithm is shown in Figure 2. The models use the DenseNet121 [29] structure, famous 
for achieving high performance while reducing the scale of parameters. As shown in Fig-
ure 2, the DenseNet121 includes four dense blocks, each followed by a transition layer. 
The transition layer consists of one 1 × 1 convolutional layer and one 2 × 2 pooling layer. 
The dense block is composed of multiple dense layers, and the output of each dense layer 
is connected to other layers in a feedforward manner to prevent the disappearance of fea-
tures. The dense block and dense layer are illustrated in Figure 3, and each dense layer is 
a sequence of BN-ReLU-1 × 1 Conv-BN-ReLU-3 × 3 Conv. 

 
Figure 2. Class-imbalanced semi-supervised learning framework. Figure 2. Class-imbalanced semi-supervised learning framework.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 15 
 

 
Figure 3. Dense block composed of five Dense layers. 

Inspired by knowledge distillation, the mean teacher (MT) method [26] uses the 
teacher-student structure. The weights of the teacher are the exponential moving average 
of the weights of the student. The mean teacher algorithm introduces perturbations in the 
model weights and input data and encouraging the predictions to remain the same. De-
fining sθ  as the weights of the student model, then the corresponding weight tθ  of the 
teacher model is 

(1 )t t sθ μθ μ θ← + − , (1) 

0
1min(1 , )
iter

μ μ= − , (2) 

where μ  is the smoothing coefficient hyper-parameter, iter is the global iteration step 
and 0μ  is the maximum value of μ . At the early training period, μ  is small, therefore 
the teacher is rapidly updated by the new student weights. In the later training period, 
when μ  reaches 0μ , the teacher will have a longer memory since the improvement of 
the student is slow down. As the perturbations to the input, random noise enhancement 
( , )η η′  is applied to the original sample ix  before input to the models, so the predictions 
of the student and the teacher are ˆ ( , , )s s

i iy f x θ η=  and ˆ ( , , )t t
i iy f x θ η= ′ . The usual mean 

teacher approach uses the mean square error (MSE) as the consistency regularization loss 
(CRL) to minimize the Euclidean distance between the teacher prediction and the student 
prediction 

2
ˆ ˆ ˆ ˆ( , )s t s t

CRL i i i iL y y y y= − , (3) 

Not all teacher predictions are reliable, and consistent constraints on the unreliable 
predictions will damage model performance. To make the student model dynamically se-
lect reliable predictions from the teacher, this paper adopts the certainty driven mecha-
nism, which is explained in detail in Section 2.2. At each iteration, m samples with reliable 
teacher predictions are chosen from the mini-batch to form the subset M, and the con-
sistent constraint is computed on M. Then, the cost function is the sum of the consistency 
regularization loss of each sample 

ˆ ˆ( , )
i

s t
consistency CRL i ix M
J L y y

∈
= , (4) 

To improve the robustness of MT to class imbalance, LDAM loss is applied to lb  la-
beled samples in the mini-batch to enhance the accuracy of the student model in the su-
pervised training. Moreover, the compression consistency loss (CCL) is introduced to 
weaken the decision boundary smoothing effect of samples predicted to be the majority 
class. Details of the class-imbalanced loss functions are descripted in Section 2.3. Finally, 
the semi-supervised cost function of the mini-batch is 

Figure 3. Dense block composed of five Dense layers.



Appl. Sci. 2021, 11, 10373 5 of 15

Inspired by knowledge distillation, the mean teacher (MT) method [26] uses the
teacher-student structure. The weights of the teacher are the exponential moving average
of the weights of the student. The mean teacher algorithm introduces perturbations in
the model weights and input data and encouraging the predictions to remain the same.
Defining θ s as the weights of the student model, then the corresponding weight θ t of the
teacher model is

θ t ← µθ t + (1− µ)θ s, (1)

µ = min(1− 1
iter

, µ0), (2)

where µ is the smoothing coefficient hyper-parameter, iter is the global iteration step and
µ0 is the maximum value of µ. At the early training period, µ is small, therefore the teacher
is rapidly updated by the new student weights. In the later training period, when µ reaches
µ0, the teacher will have a longer memory since the improvement of the student is slow
down. As the perturbations to the input, random noise enhancement (η, η′) is applied to
the original sample xi before input to the models, so the predictions of the student and the
teacher are ŷ s

i = f (xi, θ s, η) and ŷ t
i = f (xi, θ t, η′). The usual mean teacher approach uses

the mean square error (MSE) as the consistency regularization loss (CRL) to minimize the
Euclidean distance between the teacher prediction and the student prediction.

LCRL(ŷ s
i , ŷ t

i ) =
∥∥ŷ s

i − ŷ t
i
∥∥2, (3)

Not all teacher predictions are reliable, and consistent constraints on the unreliable
predictions will damage model performance. To make the student model dynamically
select reliable predictions from the teacher, this paper adopts the certainty driven mecha-
nism, which is explained in detail in Section 2.2. At each iteration, m samples with reliable
teacher predictions are chosen from the mini-batch to form the subset M, and the consis-
tent constraint is computed on M. Then, the cost function is the sum of the consistency
regularization loss of each sample.

Jconsistency = ∑
xi∈M

LCRL(ŷ s
i , ŷ t

i ), (4)

To improve the robustness of MT to class imbalance, LDAM loss is applied to bl
labeled samples in the mini-batch to enhance the accuracy of the student model in the
supervised training. Moreover, the compression consistency loss (CCL) is introduced to
weaken the decision boundary smoothing effect of samples predicted to be the majority
class. Details of the class-imbalanced loss functions are descripted in Section 2.3. Finally,
the semi-supervised cost function of the mini-batch is

J = Jclassi f ication + Jconsistency

=
bl
∑

i=1
LLDAM(ŷ s

i , yi) + ∑xi∈M LCCL(ŷ s
i , ŷ t

i )
(5)

The pseudo code in Algorithm 1 presents the whole process of the proposed method.
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Algorithm 1 Training of the proposed method

Input: Dl, Du, B, bl, β, K
Initialization: θs, θt

for iter = 1 T do
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2.2. Certainty Driven Selection

The deficiency of existing perturbation-based semi-supervised learning methods is
that all the outputs are regularized without exception. A large part of the outputs can
be unreliable due to the confirmation bias [26]. Confirmation bias results from incorrect
predictions of unlabeled data used in subsequent training, increasing the confidence of
wrong predictions and making the model resist new changes. In this case, maintaining
the consistency regularization will result in the student model converging incorrectly. In
the absence of labeled targets as supervision, evaluating the certainty of teacher predic-
tions, and filtering out low-certainty samples is necessary to ensure that the consistency
constraints only apply to high-certainty samples.

The certainty driven selection method is shown in Figure 4. It is assumed that the
teacher network has H layers, with the parameters set θ t = {Φh}H

h=1 determined by limited
random variables, and Φh represents the parameters of layer h. For sample xi, the predicted
distribution q(ŷt

i

∣∣xi) of the teacher is approximated as [30]

q(ŷ t
i | xi) =

∫
p(ŷ t

i
∣∣xi, θ t)q(θ t)dθ t , (6)

where p(ŷ t
i

∣∣xi, θ t) is the prediction probability based on the input data xi and model
parameters θ t, and q(θ t) is the posterior distribution of model parameters, which cannot
be obtained directly but can be estimated by dropout variational inference. Dropout
variational inference is a practical method for approximating large and complex models [31].
Dropout is applied to every weight layer both in the training and the testing phase. The
inference is obtained by sampling the approximate posterior, also referred to as Monte
Carlo dropout. In addition, Liu et al. [32] believe that a prediction with high certainty
should be consistent under randomly sampled subnetworks and random noise in inputs.
Assuming that the set of sub-sampling results of K random enhancements of input data

is Y =
{

ỹ t
i,k(xi, θ t

k , η′k)
}K

k=1
, and the prediction variance (PV) [30] is used to measure the

uncertainty of the prediction. The higher the variance, the higher the uncertainty:

U(xi) = PV = ∑
c

Var[p(ỹ t
i,1 = c

∣∣∣xi, θ t
1, η′1), · · · , p(ỹ t

i,K = c
∣∣∣xi, θ t

K, η′K)]

= ∑
c
( 1

K ∑
k
(p(ỹ t

i,k = c
∣∣∣xi, θ t

k , η′k)− µc)
2
)

where µc =
1
K ∑

k
p(ỹ t

i,k = c
∣∣∣xi, θ t

k , η′k)

(7)
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For input data xi, i ∈ {1, · · · , B} of the mini-batch, the uncertainty values of teacher
predictions are [U(x1), · · · , U(xB)]. The inputs are sorted in ascending order of the
uncertainty to form the ordered input set {P1, . . . , PB}. The reliable input samples set
M = {P1, . . . , Pm} contains m lowest uncertainty samples chosen from the ordered input
set and is used for the consistency constraints. m = min(βe, B), e as the epoch, and β as the
ramp-up coefficient. The number of samples selected by certainty will increase over time,
as the teacher predictions will become more accurate during training.
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2.3. Class-Imbalanced Learning

Imbalanced learning is a machine learning paradigm in which the classifier learns
from dataset with a skewed class distribution. In this paper, we modify the training losses
to further improve the robustness of the model to the imbalanced dataset. There are
two main methods for solving class imbalance in supervised learning: loss re-weighting
and mini-batch resampling [33–35]. These methods make the proportion of samples of
different classes in the training loss closer to the test distribution to achieve a better trade-
off between the accuracy of majority and minority classes. However, the model’s scale
is usually massive relative to the number of samples of the minority class, so there is
the problem of over-fitting to the minority class. Label-distribution-aware margin loss
(LDAM Loss) [28] regularizes different classes according to the number of samples: The
regularization of the minority class should be stronger than that of the majority class to
boost the generalization ability of the model to the minority class without sacrificing the
fitting ability to the majority class. Figure 5 shows an example of binary classification, where
χ1 and χ2 represent the margin of majority class and minority class, respectively. Class
margin is the minimum distance from all samples of this class to the decision boundary.
The minority class should have a more significant margin than the majority class. For
the multi-classification problem, when the margin of class c is satisfied χc ∝ 1/N1/4

c , the
minimum test error can be obtained, where Nc is the sample number of class c.
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Therefore, Hinge loss is adopted to enforce the class margin. For the labeled sample
(xi, yi), hinge loss is

Lhinge = max(max
l 6=yi
{zl} − zyi + ∆yi , 0), (8)

where zl is the lth output of ŷ s
i predicted by the student model, ∆yi is the margin of class

yi, satisfying ∆yi = A/N 1/4
yi , and A is a constant for margin tuning. Since the hinge loss

is non-convex and non-continuous, it is hard to optimize. A smoother cross-entropy loss
with enforced class margin is adopted

LLDAM(ŷs
i , yi) = − log

ezyi−∆yi

ezyi−∆yi + ∑
l 6=yi

ezl
, (9)

The class imbalance will bring more challenges to the semi-supervised learning al-
gorithm because, based on the smooth hypothesis, the decision boundary is located in
the low-density area of the data space [23]. However, in the case of the class-imbalanced
dataset, the high-density area of the minority class is sparse relative to the majority class,
which causes that the decision boundary enters the minority class region, making the
model predict the minority class samples to be the majority class. Therefore, to prevent
the decision boundary from being overly smooth and infiltrating into the minority class
areas, when the prediction given by the teacher model is the majority class, the consistency
constraints should be suppressed. For m samples xj from the certainty-driven selection, the
compression consistency loss is defined as

LCCL(ŷ s
j , ŷ t

j ) = g(Nĉ)
∥∥∥ŷ s

j − ŷ t
j

∥∥∥2

where g(Nĉ) = δ
1− Nmin

Nĉ

(10)

ĉ represents the class predicted by the model, δ ∈ (0, 1] is the compression coefficient,
and Nmin is the sample number of the class with the least samples. When Nĉ = Nmin,
g(Nĉ) = 1, the compression consistency loss of samples predicted to be the smallest class is
the same as the typical consistency regularization loss (CRL). The larger the data size of the
predicted class ĉ, the smaller g(Nĉ) is. Therefore, the final semi-supervised cost function is

J = −
bl

∑
i=1

log
ezyi−∆yi

ezyi−∆yi + ∑
l 6=yi

ezl
+ ∑

xj∈M
g(Nĉ)

∥∥∥ŷ s
j − ŷ t

j

∥∥∥2
(11)
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3. Results
3.1. Dataset

The original images of the assembly were captured from the production line by the
industrial camera BM-500GE (produced by JAI) with a CCD resolution of 2456 × 2058. We
clipped the original images to form an assembly image dataset to reduce the influence of
irrelevant background objects and focus on the central area of the assembly. The minimum
resolution of images in the dataset was 279 × 235, and the maximum resolution was
313 × 528. All assembly images were divided into three classes: two unqualified classes
(missing lead seal and missing lead seals and gaskets) and a qualified class. Three types
of images in the dataset are shown in Figure 6. There are only fine-grained differences
between the two unqualified classes, so distinguishing the two unqualified minority classes
is a great difficulty.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15 
 

3. Results 
3.1. Dataset 

The original images of the assembly were captured from the production line by the 
industrial camera BM-500GE (produced by JAI) with a CCD resolution of 2456 × 2058. We 
clipped the original images to form an assembly image dataset to reduce the influence of 
irrelevant background objects and focus on the central area of the assembly. The minimum 
resolution of images in the dataset was 279 × 235, and the maximum resolution was 313 × 
528. All assembly images were divided into three classes: two unqualified classes (missing 
lead seal and missing lead seals and gaskets) and a qualified class. Three types of images 
in the dataset are shown in Figure 6. There are only fine-grained differences between the 
two unqualified classes, so distinguishing the two unqualified minority classes is a great 
difficulty. 

 
(a) 

(b) 

 
(c) 

Figure 6. Examples of three classes of the dataset: (a) qualified; (b) missing lead seal and gasket; (c) 
missing lead seal. 

The training set contained a total of 16,663 images. Three labeled fractions ε  of 10%, 
20%, and 50% were adopted in experiments. We randomly extracted images for manual 
labeling to ensure that the labeled and unlabeled datasets had the same distribution. The 
sample numbers of three classes in the training set and test set are shown in Table 1. It is 
worth noting that, to verify the model’s classification performance on minority classes, we 
used a class-balanced test set in this study. In the labeled training set, the imbalanced ratio 
of the majority class to the minority class was as high as 5.3, which was severe for tradi-
tional classification methods. 

Table 1. Image numbers of the classes in training set and testing set 

Class 
Training Set 

Testing Set 
10%ε =  20%ε =  50%ε =  

Qualified 1136 2272 5680 100 
Both missing 311 622 1555 100 

Sealing missing 216 432 1080 100 
Unlabeled 15,000 13,337 8348 - 

  

Figure 6. Examples of three classes of the dataset: (a) qualified; (b) missing lead seal and gasket;
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The training set contained a total of 16,663 images. Three labeled fractions ε of 10%,
20%, and 50% were adopted in experiments. We randomly extracted images for manual
labeling to ensure that the labeled and unlabeled datasets had the same distribution. The
sample numbers of three classes in the training set and test set are shown in Table 1. It
is worth noting that, to verify the model’s classification performance on minority classes,
we used a class-balanced test set in this study. In the labeled training set, the imbalanced
ratio of the majority class to the minority class was as high as 5.3, which was severe for
traditional classification methods.

Table 1. Image numbers of the classes in training set and testing set.

Class
Training Set Testing Set

ε = 10% ε = 20% ε = 50%

Qualified 1136 2272 5680 100
Both missing 311 622 1555 100

Sealing missing 216 432 1080 100
Unlabeled 15,000 13,337 8348 -
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3.2. Training Settings and Metrics

The teacher and student were initialized by the pre-trained weights of DenseNet121
on ImageNet [36], and 100 epochs were performed with the mini-batch size of 16, where
the batch size of labeled data was 8. Because the number of unlabeled images was no less
than the labeled images, in every epoch, labeled images were iterated unlimited times until
every unlabeled image was iterated once. We used stochastic gradient descent (SGD) to
optimize the network, with a learning rate of 0.1, weight decay of 0.0001, and momentum
of 0.9. The maximum value of EMA coefficient µ0 of the teacher model was 0.999. To
obtain the certainty values of teacher model predictions, we used MC dropout five times,
and the ramp-up coefficient β was 2. For the LDAM, parameter A was tuned so that the
maximum margin was 0.5. For CCL, δ was set to 0.5. Random augmentations applied
to training data included random horizontal flipping and color jitter of brightness and
contrast. After random augmentations, all images were resized to 224 × 224 before being
sent to the network.

We used two common metrics in class-imbalanced learning to evaluate the perfor-
mance of the model on the test set: balanced accuracy (bACC) [37] and geometric mean
score (GM) [38], which are arithmetic and geometric mean scores, respectively, defined as

bACC =
1
C

C

∑
c=1

TPc

Nc
, (12)

G−Mean =
C

∏
c=1

1
C

√
TPc

Nc
, (13)

where Nc represents the sample number of class c, and TPc represents the sample number
both belonging to class c and predicted to be class c.

We trained the proposed and conventional methods for comparison on the training
sets with the labeled fraction ε of 10%, 20%, and 50%. Then the classification performances
were compared on the test dataset. Conventional methods included: supervised learning
with limited labeled data; The standard mean teacher method; The mean teacher method
with three commonly used class-imbalanced learning strategies: (1) re-weighting: the loss
of each sample was re-weighted by the inverse of the sample number of the corresponding
class, and re-normalized to make the average weight in the mini-batch was 1; (2) resampling:
the sampling probability of each sample was inversely proportional to the sample number
in its class; (3) focal loss [39]: the loss of the relatively correctly classified sample was
reduced, and the loss of the difficult and incorrectly classified sample was increased. To
ensure fair comparisons, all methods adopted the DenseNet121 model structure and the
same hyper-parameters as the proposed method, such as pre-training initialization, labeled
data batch size, and the optimization method mentioned above. All the training and testing
experiments were repeated ten times, and the experimental results on the test set were
averaged. The algorithm in this paper was implemented using Python toolkit PyTorch,
and experiments were carried out on a computer with Intel Core I5-8500 @ 3.00 GHz CPU
and 12G NVIDIA Titan RTX GPU.

3.3. Experimental Results

Figure 7 shows the differences in the representation of the training set between the
supervised learning method (a) and the proposed method (b). T-SNE [40] projection with
perplexity of 50 was used for visualization. In Figure 7a, the boundaries of the three classes
were mixed. Therefore, under the condition of limited and imbalanced data, the model
trained by the conventional supervised learning method was hard to learn discriminative
data representation. The proposed method could form better class boundaries and obtain
better classification performance.



Appl. Sci. 2021, 11, 10373 11 of 15
Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 15 
 

  
(a) (b) 

Figure 7. T-SNE visualization of the training set: (a) supervised learning; (b) the proposed method. 

Table 2 shows the mean and standard deviation of bACC and GM for the above 
methods on the test set. The proposed algorithm achieved an average bACC of 93.67% 
and an average GM of 93.57% when the labeled fraction was 10%. When the labeled frac-
tion was 20%, an average ACC of 98.83% and an average GM of 98.83% were achieved. 
When the labeled fraction was 50%, an average ACC of 99.17%, and an average GM of 
98.99% were reached. The proposed method performed better than the supervised learn-
ing method and all the mean teacher methods with existing class-imbalanced learning 
strategies, indicating that the proposed method was effective in the case of limited labeled 
data with the imbalanced class distribution. In addition, with less annotated data, the pro-
posed method had more advantages and had a higher accuracy than other methods. 

Table 2. Classification performance comparison on the assembly test set (bACC(%)/GM(%)). 

Methods 10%ε =  20%ε =  50%ε =  
bACC GM bACC GM bACC GM 

Supervised 85.34 ± 0.94 85.10 ± 0.99 94.50 ± 0.42 94.32 ± 0.45 97.00 ± 0.09 96.98 ± 0.09 
MT 88.22 ± 0.45 87.87 ± 0.47 95.50 ± 0.52 95.37 ± 0.54 98.16 ± 0.05 98.16 ± 0.05 

MT + Reweight 89.34 ± 0.66 88.98 ± 0.70 94.67 ± 0.56 94.50 ± 0.61 97.84 ± 0.05 97.82 ± 0.04 
MT + Resample 90.34 ± 0.47 90.06 ± 0.29 95.84 ± 0.52 95.80 ± 0.53 97.84 ± 0.05 97.82 ± 0.05 

MT + Focal 88.50 ± 0.81 87.86 ± 0.90 93.33 ± 0.28 92.95 ± 0.32 97.50 ± 0.09 97.46 ± 0.11 
Proposed 
method 

93.67 ± 0.27 93.57 ± 0.28 98.83 ± 0.14 98.83 ± 0.14 99.17 ± 0.07 98.99 ± 0.04 

Figure 8 shows the error rates of all methods in the three classes. Figure 8a–c resulted 
from training the models under the labeled fraction ε  of 10%, 20%, and 50%, respec-
tively. The proposed method kept a low error rate in the majority and minority classes. 
When labeled data were few (Figure 8a,b), the supervised learning method showed high 
error rates in all classes. In contrast, although the mean teacher method achieved higher 
accuracy, its error rates in the minority classes did not decrease significantly because of 
confirmation bias. The mean teacher method combined with class-imbalanced learning 
strategies led to overfitting in the lead seal missing class, which was the greatest minority. 
Although it achieved a lower error rate, it sacrificed its fitting ability in the similar sub-
minority class–both lead seal and gaskets missing. In addition, with the gradual increase 
of labeled data, the supervised learning algorithm had already obtained a low error rate, 
and the mean teacher method with class-imbalanced learning strategies did not observa-
bly improve the error rate. 

Figure 7. T-SNE visualization of the training set: (a) supervised learning; (b) the proposed method.

Table 2 shows the mean and standard deviation of bACC and GM for the above
methods on the test set. The proposed algorithm achieved an average bACC of 93.67%
and an average GM of 93.57% when the labeled fraction was 10%. When the labeled
fraction was 20%, an average ACC of 98.83% and an average GM of 98.83% were achieved.
When the labeled fraction was 50%, an average ACC of 99.17%, and an average GM
of 98.99% were reached. The proposed method performed better than the supervised
learning method and all the mean teacher methods with existing class-imbalanced learning
strategies, indicating that the proposed method was effective in the case of limited labeled
data with the imbalanced class distribution. In addition, with less annotated data, the
proposed method had more advantages and had a higher accuracy than other methods.

Table 2. Classification performance comparison on the assembly test set (bACC(%)/GM(%)).

Methods
ε = 10% ε = 20% ε = 50%

bACC GM bACC GM bACC GM

Supervised 85.34 ± 0.94 85.10 ± 0.99 94.50 ± 0.42 94.32 ± 0.45 97.00 ± 0.09 96.98 ± 0.09
MT 88.22 ± 0.45 87.87 ± 0.47 95.50 ± 0.52 95.37 ± 0.54 98.16 ± 0.05 98.16 ± 0.05

MT + Reweight 89.34 ± 0.66 88.98 ± 0.70 94.67 ± 0.56 94.50 ± 0.61 97.84 ± 0.05 97.82 ± 0.04
MT + Resample 90.34 ± 0.47 90.06 ± 0.29 95.84 ± 0.52 95.80 ± 0.53 97.84 ± 0.05 97.82 ± 0.05

MT + Focal 88.50 ± 0.81 87.86 ± 0.90 93.33 ± 0.28 92.95 ± 0.32 97.50 ± 0.09 97.46 ± 0.11
Proposed method 93.67 ± 0.27 93.57 ± 0.28 98.83 ± 0.14 98.83 ± 0.14 99.17 ± 0.07 98.99 ± 0.04

Figure 8 shows the error rates of all methods in the three classes. Figure 8a–c resulted
from training the models under the labeled fraction ε of 10%, 20%, and 50%, respectively.
The proposed method kept a low error rate in the majority and minority classes. When
labeled data were few (Figure 8a,b), the supervised learning method showed high error
rates in all classes. In contrast, although the mean teacher method achieved higher accuracy,
its error rates in the minority classes did not decrease significantly because of confirmation
bias. The mean teacher method combined with class-imbalanced learning strategies led
to overfitting in the lead seal missing class, which was the greatest minority. Although it
achieved a lower error rate, it sacrificed its fitting ability in the similar sub-minority class–
both lead seal and gaskets missing. In addition, with the gradual increase of labeled data,
the supervised learning algorithm had already obtained a low error rate, and the mean
teacher method with class-imbalanced learning strategies did not observably improve the
error rate.

Figure 9 compares the accuracy and loss of the proposed method and the standard
mean teacher method in the training process. The accuracy values were the validation
accuracy after each epoch. A thousand uniform sampled loss values from all iterations were
used to plot Figure 9(a2–c2). It can be seen that the proposed method converged faster and
tended to be more stable, and a model with higher accuracy could be obtained with fewer
iteration steps. In Figure 10, the accuracy and prediction variance (PV) during the training



Appl. Sci. 2021, 11, 10373 12 of 15

process are compared. With the ascending of model accuracy, the uncertainty of prediction
labels gradually decreased. There was a strong inverse relationship between classification
accuracy rate and average PV, which verified certainty driven selection’s effectiveness.
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4. Conclusions

This paper represents a semi-supervised class-imbalanced learning method based on
the mean teacher to detect unqualified assembly samples. For consistency constraints, sam-
ples with high reliability are selected according to the model prediction certainty to improve
the performance. Label distributed aware margin loss and compression consistency loss are
employed to guarantee the accuracy of classification without sacrificing the fitting ability
to the majority class. Experiments were carried out on the assembly image dataset, and
the performance was evaluated and compared with traditional deep learning classification
methods. To verify the performance of the proposed method on a small amount of labeled
data, 10% of the total data were labeled. Experimental results show that the prediction
accuracies of the supervised learning method, mean teacher algorithm, and the proposed
method were 85.34%, 88.22%, and 93.67% respectively. The proposed method overcame
the performance degradation of the traditional semi-supervised learning algorithm on
class-imbalanced datasets, kept low error rates in all classes, and could effectively avoid
over-fitting on the minority class that occurred in the commonly used class-imbalanced
learning methods. The model performances were also discussed when the labeled fraction
increased to 20% and 50%, and the proposed method still achieved the highest accuracies
of 98.83% and 98.99%. Future work will focus on applying the proposed method to more
manufacturing scenarios and further enhancing classification accuracy.
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