
applied  
sciences

Article

Three-Dimensional Buckling Analysis of Functionally Graded
Saturated Porous Rectangular Plates under Combined
Loading Conditions

Faraz Kiarasi 1, Masoud Babaei 1, Kamran Asemi 2,* , Rossana Dimitri 3 and Francesco Tornabene 3,*

����������
�������

Citation: Kiarasi, F.; Babaei, M.;

Asemi, K.; Dimitri, R.; Tornabene, F.

Three-Dimensional Buckling Analysis

of Functionally Graded Saturated

Porous Rectangular Plates under

Combined Loading Conditions. Appl.

Sci. 2021, 11, 10434. https://doi.org/

10.3390/app112110434

Academic Editor: Angelo Luongo

Received: 14 October 2021

Accepted: 3 November 2021

Published: 6 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, University of Eyvanekey, Eyvanekey 99888-35918, Iran;
f.kiarasi@eyc.ac.ir (F.K.); masoudbabaei@eyc.ac.ir (M.B.)

2 Department of Mechanical Engineering, Faculty of Engineering, North Tehran Branch, Islamic Azad
University, Tehran 158474-3311, Iran

3 Department of Innovation Engineering, Faculty of Engineering, University of Salento, 73100 Lecce, Italy;
rossana.dimitri@unisalento.it

* Correspondence: k.asemi@iau-tnb.ac.ir (K.A.); francesco.tornabene@unisalento.it (F.T.)

Abstract: The present work studies the buckling behavior of functionally graded (FG) porous
rectangular plates subjected to different loading conditions. Three different porosity distributions are
assumed throughout the thickness, namely, a nonlinear symmetric, a nonlinear asymmetric and a
uniform distribution. A novel approach is proposed here based on a combination of the generalized
differential quadrature (GDQ) method and finite elements (FEs), labeled here as the FE-GDQ method,
while assuming a Biot’s constitutive law in lieu of the classical elasticity relations. A parametric study
is performed systematically to study the sensitivity of the buckling response of porous structures,
to different input parameters, such as the aspect ratio, porosity and Skempton coefficients, along
with different boundary conditions (BCs) and porosity distributions, with promising and useful
conclusions for design purposes of many engineering structural porous members.

Keywords: buckling; FE-GDQ; functionally graded materials; porosity; 3D elasticity

1. Introduction

In the last decades, an increased interest in porous materials has arisen among scien-
tists and designers regarding engineering materials and structures due to their remarkable
mechanical properties, electrical conductivity and high permeability. Besides, porous
materials can be used in the aerospace industry and sea structures because of their very
low density, but also in submarines, reformers and catalysts owing to their high specific
surfaces. Thus, many investigations on the mechanical behavior of functionally graded (FG)
porous plate and shell structures have been increasingly conducted in the literature from a
theoretical, experimental and computational standpoint. Biot [1] was one of the pioneers
who investigated the buckling response of a fluid-saturated porous slab under an axial
compression, and checked for the sensitivity of the buckling load to pore compressibility.
Similarly, Magnucki and Stasiewicz [2] suggested an analytical determination of the critical
buckling load of a compressed porous beam based on a broken-line hypothesis and the
principle of stationary action for the total potential energy. A shear deformation theory
was applied in [3] for the buckling study of porous beams with varying material properties,
and in [4] for the bending and buckling of rectangular plates made of a foam material with
a nonlinear symmetric porosity distribution. In the further work by Chen et al. [5], the
elastic buckling behavior of shear deformable FG porous beams was studied systematically
to check for the effect of different porosity distributions on the mechanical response. A
multiple analytical, numerical and experimental approach was proposed by Jasion et al. [6]
for the buckling study of plates and beams, with a foam core and external layers of perfect
material. In the last decades, different higher-order assumptions have been integrated with
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high-performance computational methods to treat buckling problems of perfect and/or
porous composite structures. A nonlinear dynamic buckling of FG porous beams was
performed by Kang Gao et al. [7]. The Galerkin method was applied by the authors to
determine the governing equations of the problem, which was then solved numerically by
means of a fourth-order Runge–Kutta method. A different approach based on a general-
ized differential quadrature (GDQ) method was applied by Tang et al. [8] to analyze the
nonlinear and linear buckling behavior of FG porous Euler–Bernoulli beams. A refined
theory was also proposed by Ebrahimi and Jafari [9] to treat the buckling problem of smart
magneto-electro-elastic-FG porous plates, accounting for two different FG distributions.
Hyperbolic higher-order shear deformation theory (HSDT) was combined with a mesh-free
approach in [10] to investigate the buckling and free vibration behavior of porous FG plates
resting on an elastic foundation. Among coupled problems, Cong et al. [11] focused on
the nonlinear thermomechanical buckling and post-buckling of porous FG plates with
two poro/nonlinear symmetric and non-symmetric distributions, by using the Reddy’s
HSDT and Galerkin method. Further recent contributions on the buckling and free vi-
bration response of perfect and porous FG plates applied first-order shear deformation
theory (FSDT) combined with the Chebyshev Polynomials-Ritz method [12–15], even for
graphene-reinforced nanocomposites. Tu et al. [16], instead, proposed a Galerkin-based
solution for the nonlinear buckling and post-buckling study of imperfect porous plates
subjected to different mechanical loads while applying classical shell theory–Von Karman
nonlinearity. In addition, Sekkal et al. [17] focused on a novel quasi-3D HSDT to assess
the buckling and vibration response of FG plates, whose solution was determined ana-
lytically. Shahsavari et al. [18] investigated the shear buckling of porous nanoplates with
even, uneven and logarithmic-uneven distribution templates, by means of the Galerkin
method, a novel size-dependent quasi-3D shear deformation theory and Eringen’s nonlocal
elasticity. Another successful application of mesh-free methods can be found in [19] for
the thermal buckling response of porous sandwich plates with CNT-reinforced nanocom-
posite layers. At the same time, Li et al. [20] studied the nonlinear vibration and dynamic
buckling of a sandwich FG porous plate reinforced by graphene platelets and resting
on a Winkler–Pasternak elastic foundation, where the Galerkin method was proposed
together with the fourth-order Runge–Kutta approach as theoretical and numerical tools.
A conventional FSDT approach was also employed by Shahgholian et al. [21] for the study
of the buckling behavior of FG graphene-reinforced porous cylindrical shells combined
with the Rayleigh–Ritz numerical method, whereas Zhao et al. [22] applied the classical
Euler–Bernoulli theory and the Galerkin method to check for the dynamic instability of FG
porous arches reinforced by graphene platelets.

Based on the current literature on the buckling of FG porous structures, however, most
studies rely on the use of simple elastic Hooke’s laws, with limited attention to the effect of
pore fluid pressures stemming from poroelastic constitutive Biot’s laws. In such a context,
Jabbari et al. [23,24] proposed a closed-form solution for the axial buckling of FG-saturated,
porous, rectangular, simply supported Kirchhoff plates, immersed in a piezoelectric [23]
or thermal field [24], respectively. In [25], the same authors studied the axisymmetric
buckling of a saturated circular porous-cellular plate as provided by FSDT. In the further
work by Jabbari et al. [26,27], classical plate theory (CPT) or HSDT was implemented for
the analysis of the buckling capacity of circular porous plates under a radial compressive
load, and its sensitivity to some important poroelastic material properties. In another work,
Jabbari et al. [28] performed a buckling study of thin circular FG plates made of saturated
porous-soft ferromagnetic materials in transverse magnetic fields, whereas in [29,30],
a FSDT closed solution was proposed to the buckling problem of transversely graded
saturated porous plates with piezoelectric layers, and the axisymmetric post-buckling study
of saturated porous circular plates under a uniform radial compression. Among moderately
thick plates, Rezaei and Saidi [31] assessed the buckling behavior of fluid-infiltrated porous
annular sector plates, as provided by Mindlin plate theory involving fluid-saturated and
fluid-free conditions. Additional buckling studies for structural members made of metals
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or composite materials can be found in [32–35]. The available literature, however, shows
the potential application of buckling issues in many porous structures, although at the
present state, a proper study of the buckling response of saturated porous rectangular plates
subjected to normal and shear loads is still lacking. Based on the literature overview, it
seems that the analysis of porous structures is usually based on FSDT and HSDT. Moreover,
in most studies, the Hooke’s law or drained condition is commonly assumed to model
the porous behavior of structures. Based on the above-mentioned lacking aspects of the
problem, in this work, the buckling behavior is investigated for FG-saturated porous
rectangular plates subjected to a double normal and shear loads. To this end, 3D elasticity
theory and Biot’s constitutive law are applied, while proposing a mixed FE-DQM based on
a Rayleigh–Ritz energy formulation as an efficient computational tool to solve the problem.
The application of Biot’s constitutive law in lieu of the simple Hooke’s law provides more
realistic results and conclusions, even from a practical standpoint. Based on the fact that
plate theories overestimate the buckling loads for thick plates, 3D elasticity is implemented
here to account for the thickness stretching effects, for the sake of accuracy, together with
a more efficient mixed FE-GDQ method rather than conventional FEs. Three different
porosity distributions are selected here in the thickness direction, namely, a nonlinear
symmetric, a nonlinear asymmetric and uniform distribution. The objective of the work is
to check the effects of different porosity distributions, as well as the porosity and Skempton
coefficients on the critical buckling load of undrained rectangular plates with different
geometrical dimensions and BCs, as useful for many engineering applications.

The remainder of the paper is structured as follows. In Section 2, the geometrical and
mechanical properties of porous rectangular plates are briefly described, together with the
governing equations of the problem, as determined by means of the virtual work principle
and Biot’s constitutive poroelastic law. Section 3 presents the main basics of the mixed
FE-GDQ numerical formulation, as proposed here to solve the problem, whose numerical
examples are tested and discussed in Section 4 among a large systematic investigation.
Conclusions are finally drawn in Section 5.

2. Theoretical Definition of the Problem
2.1. Poroelastic Modeling of Plates

Let us consider a rectangular FG porous plate, with in-plane dimensions a and b,
and thickness h, as depicted in Figure 1, along with three different porosity patterns
throughout the thickness direction (0 ≤ z ≤ h), namely, a non-symmetric nonlinear porous
distribution (PNND), a symmetric nonlinear porous distribution (PNSD) and a uniform
porous distribution (PUD). Except for uniform porosities, the mechanical properties of the
material in terms of shear modulus, Young’s modulus and mass density, for a PNND and
PNSD, are defined as in Equation (1) [36–40].
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Figure 1. Geometrical scheme and loading conditions for a FG-saturated porous plate.
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E = E1[1− e0 Q]

G = G1[1− e0 Q]

ρ = ρ1[1− em Q]

(1)

In which

Q(z) =


(a)PNND cos

(πz
2h

)
(b)− PNSD cos

(π

2
− πz

h

) (2)

and 0 ≤ e0 ≤ 1 is the porosity coefficient. Moreover, E1, G1 and ρ1 denote the Young’s
modulus, the shear modulus and the mass density at z = h (for a PNND) and at z = 0 (for
a PNSD), whereby Ej = 2Gj(1 + ν), j = 0, 1 and the Poisson’s ratio, ν, is assumed to be
constant in the z-direction. The constitutive equations of FG-saturated porous rectangular
plates are derived from Biot’s theory, which accounts for the displacements field of the
solid, the pore fluid movement as well as their interactions owing to the applied loads [41].
Based on Biot’s theory, the constitutive law is thus written as [42]:

σij = 2Gεij + λεkkδij − pαδij (3)

where
p = M(Ψ− αεkk)

M =
2G(vu − v)

α2(1− 2vu)(1− 2v)

vu =
v + αβ(1− 2v)/3
1− αβ(1− 2v)/3

v=
ε jj

εii
|σii=0, p = 0, i 6= j

vu=
ε jj

εii
|σii=0, Ψ = 0, i 6= j

α = 1− K
KS

K =
2(1 + v)

3(1− 2v)
G

Ku =
2(1 + vu)

3(1− 2vu)
G

Note that p is the pore fluid pressure, such that, for p = 0, Biot’s law reverts to the clas-
sical Hooke’s law (or drained condition). In addition, λ denotes the Lamè constant, δij is the
Kronecker delta and α is the Biot’s effective stress coefficient (with 0 < α < 1). This param-
eter accounts for the effect of porosity on the structural behavior and resistance of porous
materials in the absence of an internal fluid. At the same time, M, G, νu, εkk, Ψ, Ks and
β stand for the Biot’s modulus, shear modulus, undrained Poisson’s ratio (ν < νu < 0.5),
volumetric strain, variation of fluid volume content, bulk modulus of a homogeneous ma-
terial and the Skempton coefficient, which introduces the pore fluid property, respectively.
This last coefficient, β, in particular, denotes a dimensionless parameter to include the
impact of a fluid within cavities on the overall response of a porous material in undrained
condition (Ψ = 0), and it is described as the ratio of the cavity pressure to the total body
stress, namely,

β =
dp
dσ

∣∣∣∣
Ψ=0

=
1

1 + e0
CP
CS

=
Ku − K

αKu
(4)
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In which Ku, K refer to the bulk modulus in undrained and drained conditions re-
spectively, and CP and CS stand for the fluid and solid compressibility in pores. Thus, the
Skempton coefficient defines the effect of fluid compressibility on the elastic modulus and
compressibility of the whole porous material [42].

2.2. Governing Equations

The governing equations of the problem are derived here from the principle of virtual
work, as follows:

δU − δVg = 0 (5)

where U is the total strain potential energy of the plate defined on the domain Ω as:

U =
1
2

∫
Ω

σijεijdΩ (6)

and Vg is the potential energy related to geometry, which takes the following form:

Vg =
1
2

∫
Ω


Px

[(
∂u
∂x

)2
+

(
∂w
∂x

)2
+

(
∂v
∂x

)2
]
+ Py

[(
∂u
∂y

)2
+

(
∂w
∂y

)2
+

(
∂v
∂y

)2
]
+

Pxy

(
∂w
∂x

∂w
∂y

+
∂v
∂x
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∂x
∂u
∂y

)
dΩ (7)

By substitution of Equations (6) and (7) into Equation (5), the following relation
is obtained:

∫ h

0

∫ a

0
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0
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+
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)
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(
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+
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 dv = 0 (8)

where the constitutive relations for FG-saturated porous plates in 3D poroelasticity can be
defined according to Biot’s constitutive law, as [σij] = [C][εij]. For FG-saturated porous
rectangular plates, the elasticity matrix reads as follows:

C =
E(1− ν)
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The elasticity modulus, E, is assumed to vary along the z-direction, whereas the 
Poisson’s ratio, ν , remains constant.  

=



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66



(9)

The elasticity modulus, E, is assumed to vary along the z-direction, whereas the
Poisson’s ratio, ν, remains constant.
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3. Mixed FE-GDQ Numerical Formulation

A set of rectangular-quadratic elements, Ne, is considered to discretize the x–y plane
of the domain. Each element should be differentiable at both in-plane and transverse
displacements for solving the governing equations. Hence, the displacement components
are approximated as:

u(x, y, z, t) =
N
∑

j=1
ϕj(x, y)Uj(z, t),

v(x, y, z, t) =
N
∑

j=1
ϕj(x, y)Vj(z, t), j = 1, 2, . . . , N

w(x, y, z, t) =
N
∑

j=1
ϕj(x, y)Wj(z, t)

(10)

where N stands for the total number of nodes in the discretized x–y plane, and ϕj(x, y) de-
notes the global Lagrange interpolation functions. By combination of Equations (3) and (8),
and integrating by parts in the z-direction, the following governing equations per each
node i (i = 1, 2, . . . , N) are obtained:

δUi :
N
∑

j=1
AijC55(zj)

∂2Uj

∂z2 +
N
∑

j=1

∂C55(zj)

∂z
∂Uj

∂z
+

N
∑

j=1

(
DijC55(zj)− DjiC12(zj)

)∂Wj

∂z

+
N
∑

j=1

∂C44

∂z
(zj)Wj −

N
∑

j=1

(
EjiC12(zj) + E ijC66(zj)

)
Uj −

N
∑

j=1

(
FijC11(zj) + H jiC66(zj)

)
Vj

−Px
N
∑

j=1
Db

ijVj − Py
N
∑

j=1
Bb

ijVj − Pxy
N
∑

j=1
Sb

ijVj − Pxy
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∑

j=1
Kb

ijVj = 0

(11)
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j=1
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+

N
∑

j=1

(
Dij C44(zj)− Dji C12(zj)

)∂Wj

∂z

+
N
∑

j=1

∂C44

∂z
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N
∑

j=1
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∂x

∂ϕj

∂y
dxdy

Db
ij =

a∫
0

b∫
0

∂ϕi
∂x

∂ϕj

∂x
dydx, Bb

ij =
a∫

0

b∫
0

∂ϕi
∂y

∂ϕj

∂y
dydx, Sb

ij =
a∫

0

b∫
0

∂ϕi
∂x

∂ϕj

∂y
dydx, Kb

ij =
a∫

0

b∫
0

∂ϕi
∂y

∂ϕj

∂x
dydx

(14)



Appl. Sci. 2021, 11, 10434 7 of 21

The BCs at the lower and upper surfaces (z = 0 and z = h) associated with Equations (11)–(13)
are defined as:

Either δUi = 0, or



N
∑

j=1
AijC55(zj)

∂Uj

∂z
+

N
∑

j=1
Bij C55(zij)Wj = 0 at z = 0,

N
∑

j=1
AijC55(zj)

∂Uj

∂z
+

N
∑

j=1
Bij C55(zij)Wj = 0 at z = h,

(15)

Either δVi = 0, or



N
∑

j=1
AijC44(zj)

∂Vj

∂z
+

N
∑

j=1
Dij C44(zj)Wj = 0 at z = 0,

N
∑

j=1
AijC44(zj)

∂Vj

∂z
+

N
∑

j=1
Dij C44(zj)Wj = 0 at z = h,

(16)

Either δWi = 0, or



N
∑

j=1
AijC11(zj)

∂Wj

∂z
+

N
∑

j=1
Dij C12(zj)Vj +

N
∑

j=1
BijC12(zj)Uj = 0 at z = 0

N
∑

j=1
AijC11(zj)

∂Wj

∂z
+

N
∑

j=1
Dij C12(zj)Vj +

N
∑

j=1
BijC12(zj)Uj = 0 at z = h

(17)

As far as the GDQ method is concerned, this approach discretizes the spatial deriva-
tives of a function f (z, t) as a weighted linear sum of the functional values at all nodes in
the solution domain, by means of some fixed weighting coefficients. Thus, the first- and
second-order derivatives of a one-dimensional function read as follows:

∂ f (z, t)
∂z

∣∣∣∣
z=zi

=
Nz
∑

j=1
Az

ij f
(
zj, t
)
=

Nz
∑

j=1
Az

ij f j(t)

∂2 f (z, t)
∂z2

∣∣∣∣
z=zi

=
Nz
∑

j=1
Bz

ij f
(
zj, t
)
=

Nz
∑

j=1
Bz

ij f j(t)
(18)

where Az
ij and Bz

ij are the weighted coefficients at the grid nodes of the solution domain. To
derive the weighting coefficients, the following relations are employed:

Az
ij =


M(zi)(

zi − zj
)

M(zi)
for i 6= j

−
Nz
∑

k=1,k 6=i
Az

ik for i = j
i, j = 1, 2, . . . , Nz, (19)

Bz
ij =


2

[
Az

ii A
z
ij −

Az
ij

zi − zj

]
for i 6= j,

−
Nz
∑

k=1,k 6=i
Bz

ik for i = j

i, j = 1, 2, . . . , Nz, (20)

being

M(1)(zi) =
N

∏
j=1,j 6=i

(
zi − zj

)
for i = 1, 2, . . . , N

To obtain more accurate results, a Chebyshev–Gauss–Lobatto quadrature-mesh size is
assumed here, in line with findings by Malik and Bert [43]. At the current stage, the GDQ
method is employed to discretize the system of equations through the thickness direction
(i.e., along the z-axis). A set of Nz grid points is assumed to discretize the domain along the
thickness direction for each quadratic grid point. This means that Equations (11)–(13) can
be rewritten in the domain (i.e., for each node k = 2, 3, . . . , Nz − 1), as follows:
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δUi :
N
∑

j=1

Nz
∑

m=1
AijC55(zj) BkmUjm +

N
∑

j=1

∂C55(zj)

∂z
Az

kmUjm +
N
∑

j=1

NZ
∑

m=1

(
BijC55(zj)− Bij C12(zj)

)
Az

kmWjm

+
N
∑

j=1

∂C44

∂z
(zj)Wj −

N
∑

j=1

(
EjiC12(zj) + E ijC66(zj)

)
Uj −

N
∑

j=1

(
FijC11(zj) + H jiC66(zj)

)
Vj

−Px
N
∑

j=1
Db

ijVj − Py
N
∑

j=1
Bb

ijVj − Pxy
N
∑

j=1
Sb

ijVj − Pxy
N
∑

j=1
Kb

ijVj = 0

(21)

δVi :
N
∑

j=1

NZ
∑

m=1
AijC44(zj)BkmVjm +

N
∑

j=1

NZ
∑

m=1

∂C44(zj)

∂z
Az

kmVkm +
N
∑

j=1

NZ
∑

m=1

(
DijC44(zj)− DjiC12(zj)

)
Az

kmWkm

+
N
∑

j=1

∂C44

∂z
(zj)Wj −

N
∑

j=1

(
EjiC12(zj) + EijC66(zj)

)
Uj −

N
∑

j=1

(
FijC11(zj) + H jiC66(zj)

)
Vj

−Px
N
∑

j=1
Db

ijVj − Py
N
∑

j=1
Bb

ijVj − Pxy
N
∑

j=1
Sb

ijVj − Pxy
N
∑

j=1
Kb

ijVj = 0

(22)

δWi :
N
∑

j=1

NZ
∑

m=1
AijC11(zj) Bz

kmWjm +
N
∑

j=1

NZ
∑

m=1

(
BijC12(zj)− BijC55(zj)

)
Az

kmUjm

+
N
∑

j=1

Nz
∑

m=1

(
DijC12(zj)− DjiC44(zj)

)
Az

kmVjm −
N
∑

j=1
Bij ∂C12(z)

∂z
Uj +

N
∑

j=1
Dij ∂C12(z)

∂z
Vj

+
N
∑

j=1

(
FijC44(zj) + HijC55(zj) + Aij ∂C11(z)

∂z

)
Wj − Px

N
∑

j=1
Db

ijWj − Py
N
∑

j=1
Bb

ijWj

−Pxy
N
∑

j=1
Sb

ijWj − Pxy
N
∑

j=1
Kb

ijWj = 0

(23)

Likewise, the BCs in Equations (15)–(17) at the top and bottom sides of the structures
take the following form:

Either Uik = 0, or



N
∑

j=1

Nz
∑

m=1
Aij C55(zj)Az

kmUjm+
N
∑

j=1
BijC55(zj)Wjk = 0 for k = 1

N
∑

j=1

Nz
∑

m=1
Aij C55(zj)Az

kmUjm+
N
∑

j=1
BijC55(zj)Wjk = 0 for k = NZ

(24)

Either Vik = 0, or



N
∑

j=1

Nz
∑

m=1
AijC44(zj)Az

kmVjm+
N
∑

j=1
DijC44(zj)Wjk = 0 for k = 1

N
∑

j=1

Nz
∑

m=1
AijC44(zj)Az

kmVjm+
N
∑

j=1
DijC44(zj)Wjk = 0 for k = NZ

(25)

Either Wik = 0, or



N
∑

j=1

Nz
∑

m=1
AijC11(zj)Az

kmWjm+
N
∑

j=1
Dij C12(zj)Vjk +

N
∑

j=1
BijC12(zj)Ujk = 0, for k = 1

N
∑

j=1

Nz
∑

m=1
AijC11(zj)Az

kmWjm+
N
∑

j=1
Dij C12(zj)Vjk +

N
∑

j=1
BijC12(zj)Ujk = 0, for k = NZ

(26)
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For a unified treatment of the problem, the degrees of freedom (DOFs) can be divided
into the domain- and boundary-type DOFs, as follows:

Ud =


U12
U13
...
UN(Nz−1)

, Vd =


V12
V13
...
VN(Nz−1)

, Wd =


W12
W13
...
WN(Nz−1)

,

Ub =


U11
U21
...
UNNz

, Vb =


V11
V21
...
VNNz

, Wb =


W11
W21
...
WNNz

,

(27)

In which Wmn = Wm(zn, t), Vmn = Vm(zn, t), Umn = Um(zn, t).
This means that Equations (21)–(23) can be rearranged in matrix form as:[

kbb kbd
kdb kdd

][
db
dd

]
= P

[
0 0
0 G

][
db
dd

]
(28)

where the stiffness quantities kbb, kdb, kbd, kdd refer to the boundary, b, and domain, d,
weighting coefficients of the plate respectively, [db dd]

T is the displacement vector, P refers
to the buckling load and G is the stability matrix due to the in-plane stresses.

At the same time, from Equations (23)–(26), the boundary weight coefficients can be
replaced by the domain weight coefficients as follows:

db = kbb
−1kbddd (29)

By substitution of db from Equation (29) into Equation (28), and considering the

harmonic solution

 Ud
Vd
Wd

 =

 Ud
Vd
Wd

eiwt, the governing equations of the problem can be

rewritten in terms of the domain unknowns, as follows:

K

 Ud
Vd
Wd

− PG

 Ud
Vd
Wd

 = 0 (30)

where K is the stiffness matrix, defined as:

K = Kdd −KdbKbb
−1Kbd (31)

The solution of Equation (30) corresponds to the critical buckling load of the structure
under in-plane conditions, labeled hereafter as λ.

In what follows, three different BCs for the buckling analysis of the plate structure
are considered:

(i) Simply supported BCs at all edges (SSSS):

w(0, y, z) = w(a, y, z) = w(x, 0, z) = w(x, b, z) = 0
u(0, y, z) = u(a, y, z) = v(x, 0, z) = v(x, b, z) = 0

(32)

(ii) Clamped BCs at edges parallel to the y-axis (i.e., at x = 0, a) and free BCs at edges
parallel to the x-axis (i.e., at y = 0, b) (CFCF):

u, v, w(0, y, z) = u, v, w(a, y, z) = 0 (33)
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(iii) Clamped BCs at edges parallel to the x-axis (i.e., at y = 0, b) and free BCs at edges
parallel to the y-axis (i.e., at x = 0, a) (FCFC):

u, v, w(x, 0, z) = u, v, w(x, b, z) = 0 (34)

Note that the (i)-type BC is considered for both uniaxial and biaxial loading conditions.

4. Numerical Investigation

The numerical study starts with a preliminary validation of the proposed formulation
against the classical FE results (Ansys Workbench). At the present stage, the porosity
coefficient is assumed to be zero (e0 = 0), together with a null Skempton coefficient,
a null Biot’s modulus M = 0, a null pore fluid pressure p = 0 and νu = ν = 1/3,
E1 = 210 GPa. The rectangular plate selected here for the analysis has b = 1 m, a/b = 2
and h = 0.1 m. Table 1 summarizes the results for the first three buckling loads (λ1, λ2, λ3),
as provided by our proposed FE-GDQ formulation and FEs, while considering the three
different BCs (32)–(34) alternatively, as well as a uniaxial or biaxial loading condition. To
model the problem in Ansys Workbench, the most accurate 20-node hexahedral quadratic
elements were chosen to mesh the plate. First, a linear static analysis for edge loads
equal to 1 Pa was performed in a static structural environment, and then the solutions
were transferred to an eigenvalue buckling environment. Based on the results from this
table, the good correspondence among predictions from the two alternative computational
strategies proves the reliability and accuracy of the proposed FE-GDQ method to handle
the problem. This is also confirmed in terms of mode shapes, as visible in the contour
plots of Figures 2 and 3, at least for the SSSS rectangular plate under a shear and biaxial
loading, respectively.

Table 1. Comparative evaluation of the first three buckling loads (10 GPa), as provided by our formulation and from FEM
for different boundary conditions.

FE-GDQ FE Difference (%)

BC λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

Shear load CFCF 0.314 0.529 0.624 0.317 0.574 0.678 0.94 7.83 7.96
Shear load FCFC 1.405 1.406 2.168 1.430 1.430 2.117 1.74 1.67 2.35
Shear load SSSS 2.534 2.642 3.062 2.575 2.691 3.0628 1.59 1.82 0

Axial load (x-direction) SSSS 1.197 1.231 2.381 1.206 1.240 2.401 0.74 0.72 6.7
Biaxial load SSSS 0.259 0.489 0.790 0.264 0.494 0.794 1.89 1.01 0.506

After this validation step, the numerical study aimed at computing the buckling
load of FG-saturated porous plates in undrained conditions, accounting for the effects
of different BCs, aspect ratios, Skempton coefficients, porosity distributions and porosity
coefficients, while keeping the geometry and material properties of the structure fixed. In
Tables 2–4, the first four shear buckling loads are summarized for a FG-saturated plate
under the SSSS, FCFC and CFCF BCs respectively, while keeping the Skempton coefficient
constant. The systematic study starts by considering a square plate with aspect ratio
a/b = 1, thus extending the analysis to a rectangular plate with a/b = 2. In each case,
the porosity coefficient, e0, is gradually increased from 0.3 up to 0.6, by steps of 0.3, to
check for the sensitivity of the buckling response to porosity. As expected, when the
porosity coefficient increases, the stiffness of the structure decreases, and the buckling load
decreases as well. The results demonstrate that the maximum and minimum values of
the buckling load are associated with the symmetric (PNSD) and uniform (PUD) porosity
distributions respectively, due to the highest and lowest stiffness reached in the structure.
An intermediate buckling load level, instead, is always obtained for a PNND porosity
distribution within the material. It also seems that the effect of the porosity coefficient,
e0, on the buckling load becomes more pronounced for a uniform porosity distribution
than the other ones. Moreover, by increasing the aspect ratio a/b, the buckling load can
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decrease or increase, under the same assumptions of porosity coefficient and distribution,
depending on the selected BC. Differently from the FCFC case, a clear reduction of the
buckling load is noticed for a SSSS and CFCF porous plate with an increased aspect ratio.
This confirms the strict dependence of the stiffness on the geometrical dimensions and BCs
of the structural member.
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Table 3. First four shear buckling loads for a FCFC FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 1.143 0.897 0.536 1.199 0.978 0.692 1.020 0.636 0.177
λ2 1.150 0.900 0.543 1.208 0.983 0.693 1.020 0.645 0.182
λ3 1.653 1.267 0.773 1.705 1.337 0.845 1.455 0.865 0.219
λ4 1.664 1.275 0.778 1.717 1.343 0.849 1.464 0.868 0.219

a/b = 2

λ1 1.216 0.954 0.576 1.276 1.039 0.737 1.082 0.680 0.191
λ2 1.217 0.955 0.576 1.277 1.040 0.738 1.083 0.680 0.191
λ3 1.768 1.360 0.834 1.824 1.401 0.912 1.558 0.931 0.238
λ4 1.768 1.360 0.834 1.824 1.402 0.912 1.558 0.931 0.238

Table 4. First four shear buckling loads for a CFCF FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 1.143 0.897 0.536 1.199 1.006 0.692 1.020 0.636 0.177
λ2 1.150 0.900 0.543 1.208 1.007 0.693 1.020 0.645 0.182
λ3 1.653 1.267 0.773 1.705 1.434 0.845 1.455 0.865 0.219
λ4 1.664 1.275 0.778 1.717 1.350 0.849 1.464 0.868 0.219

a/b = 2

λ1 0.310 0.255 0.153 0.330 0.292 0.241 0.287 0.186 0.055
λ2 0.497 0.393 0.229 0.538 0.470 0.375 0.449 0.281 0.078
λ3 0.598 0.466 0.281 0.610 0.520 0.405 0.528 0.325 0.096
λ4 0.805 0.622 0.374 0.817 0.682 0.504 0.708 0.430 0.116
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The same parametric investigation was then repeated for a biaxial loading (Table 5)
and a uniaxial loading acting in the x-direction of a SSSS structure (Table 6). Based on
a comparative evaluation of results in Tables 5 and 6 with Table 2, a uniaxial or biaxial
loading condition clearly reduces the buckling load of the structure under the same values
of e0, a/b and porosity distribution.

Table 5. First four biaxial buckling loads for a SSSS FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 0.392 0.303 0.166 0.406 0.362 0.309 0.346 0.216 0.069
λ2 0.929 0.723 0.408 0.949 0.830 0.658 0.827 0.523 0.151
λ3 0.929 0.723 0.408 0.949 0.830 0.658 0.827 0.523 0.151
λ4 0.141 0.108 0.604 0.144 0.127 0.926 1.245 0.763 0.210

a/b = 2

λ1 0.233 0.186 0.106 0.240 0.221 0.193 0.209 0.138 0.0420
λ2 0.434 0.336 0.188 0.405 0.400 0.329 0.384 0.239 0.0680
λ3 0.698 0.564 0.333 0.703 0.634 0.519 0.634 0.426 0.120
λ4 0.778 0.603 0.341 0.804 0.702 0.570 0.688 0.427 0.131

Table 6. First four uniaxial buckling loads (in the x-direction) for a SSSS FG-saturated porous plate with different aspect
ratios, a/b, porosity distributions and porosity coefficients, e0, keeping β = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9 e0 = 0.3 e0 = 0.6 e0 = 0.9

a/b = 1

λ1 0.781 0.603 0.330 0.808 0.721 0.614 0.690 0.430 0.122
λ2 0.981 0.774 0.446 0.983 0.875 0.703 0.879 0.568 0.168
λ3 1.554 1.225 0.724 1.526 1.320 0.981 1.394 0.895 0.261
λ4 2.147 1.688 1.017 2.081 1.856 1.218 1.925 1.225 0.350

a/b = 2

λ1 1.053 0.816 0.462 1.073 0.943 0.771 0.930 0.574 0.159
λ2 1.101 0.860 0.495 1.117 0.982 0.795 0.977 0.613 0.173
λ3 2.097 1.553 0.880 2.082 1.725 1.314 1.801 1.020 0.260
λ4 2.331 1.771 1.042 2.293 1.907 1.405 2.035 1.204 0.319

As expected, this reduction is much more pronounced for rectangular plates subjected
to a biaxial loading condition, due to the overall decay of the structural stiffness. A further
investigation considered the effect of the porosity distribution and Skempton coefficient
on the first four buckling loads of FG-saturated plates, as listed in Tables 7–9 (for a shear
loading condition), in Table 10 (for an axial loading condition) and in Table 11 (for a
biaxial loading condition), while keeping the porosity coefficient fixed at e0 = 0.6. The
same BCs from Table 1 are accounted here for the analyses. Based on a comparative
estimation of results from these tables, it is confirmed that the maximum and minimum
buckling loads are always associated with a symmetric (PNSD) and uniform (PUD) porosity
distribution, respectively.

Table 7. First four shear buckling loads for a SSSS FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 1.839 1.935 1.941 1.954 1.961 1.982 1.196 1.212 1.303
λ2 1.913 1.944 1.951 1.957 1.961 1.986 1.196 1.212 1.303
λ3 2.216 2.255 2.264 2.236 2.265 2.274 1.478 1.480 1.486
λ4 2.240 2.261 2.273 2.250 2.266 2.275 1.478 1.483 1.486

a/b = 2

λ1 1.689 1.863 1.963 1.942 2.005 2.012 1.190 1.281 1.326
λ2 1.738 1.865 1.964 1.953 2.029 2.043 1.203 1.283 1.326
λ3 1.913 1.968 2.018 2.050 2.068 2.094 1.284 1.334 1.341
λ4 2.038 2.044 2.048 2.130 2.139 2.147 1.343 1.356 1.386
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Table 8. First four shear buckling loads for a FCFC FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 0.848 0.897 0.955 0.969 0.978 0.989 0.583 0.636 0.709
λ2 0.853 0.900 0.967 0.978 0.983 0.993 0.583 0.645 0.728
λ3 1.231 1.267 1.299 1.329 1.337 1.346 0.831 0.865 0.878
λ4 1.240 1.275 1.306 1.338 1.343 1.371 0.836 0.868 0.879

a/b = 2

λ1 0.903 0.954 1.021 1.031 1.039 1.042 0.618 0.680 0.765
λ2 0.904 0.955 1.026 1.032 1.040 1.068 0.619 0.680 0.765
λ3 1.318 1.360 1.399 1.423 1.401 1.414 0.890 0.931 0.955
λ4 1.318 1.360 1.399 1.423 1.402 1.416 0.890 0.931 0.955

Table 9. First four shear buckling loads for a CFCF FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 0.848 0.897 0.955 0.969 0.978 0.989 0.583 0.636 0.709
λ2 0.853 0.900 0.967 0.978 0.983 0.993 0.583 0.645 0.728
λ3 1.231 1.267 1.299 1.329 1.337 1.346 0.831 0.865 0.878
λ4 1.240 1.275 1.306 1.338 1.343 1.371 0.836 0.868 0.879

a/b = 2

λ1 0.237 0.255 0.280 0.284 0.292 0.296 0.164 0.186 0.222
λ2 0.367 0.393 0.425 0.494 0.470 0.482 0.254 0.281 0.314
λ3 0.458 0.466 0.500 0.520 0.524 0.529 0.302 0.325 0.387
λ4 0.600 0.622 0.615 0.682 0.689 0.798 0.404 0.430 0.465

Table 10. First four biaxial buckling loads for a SSSS FG-saturated porous plate with different aspect ratios, a/b, porosity
distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 0.288 0.303 0.325 0.361 0.362 0.389 0.198 0.216 0.246
λ2 0.683 0.723 0.781 0.825 0.830 0.846 0.472 0.523 0.603
λ3 0.683 0.723 0.781 0.825 0.830 0.846 0.472 0.523 0.603
λ4 0.103 0.108 0.146 0.123 0.127 0.131 0.711 0.763 0.843

a/b = 2

λ1 0.171 0.186 0.207 0.213 0.221 0.229 0.119 0.138 0.168
λ2 0.319 0.369 0.362 0.397 0.400 0.405 0.219 0.239 0.273
λ3 0.513 0.564 0.635 0.616 0.634 0.638 0.362 0.426 0.480
λ4 0.573 0.603 0.644 0.697 0.702 0.713 0.393 0.427 0.526

Results denote that in drained conditions (i.e., β = 0), the plate always features the
smallest buckling load, under a fixed aspect ratio, porosity coefficient and distribution. An
increasing value of the Skempton coefficient, instead, enables an increased buckling load,
because of a decreased compressibility of the fluid within pores. In other words, if the
compressibility of the pore fluid becomes high ( β→ 0), the mechanical response of the
plate resembles that of a porous plate in drained conditions (i.e., in the absence of fluid). In
this condition, the structural stiffness reaches its minimum value along with the lowest
buckling load. Differently, when the compressibility of a pore fluid becomes small ( β→ 1),
the plate behaves as a rigid solid, thus reaching its highest load magnitude. Furthermore,
the effect of the Skempton coefficient on the buckling load, for a uniform distribution,
seems to be more pronounced than other porosity distributions. By comparing Tables 2–6
with Tables 7–11, it is worth observing the higher sensitivity of the buckling response to the
porosity coefficient than the Skempton coefficient. The first four buckling mode shapes are
finally plotted in Figures 4–8, for a rectangular plate with a = 2 m, b = 1 m, under different
loading and boundary conditions, and a fixed value of e0 = β = 0.6. More specifically, in
Figures 4–6, the rectangular plate is subjected to a shear loading condition, with a clear
compatibility among the displacement field and the selected BCs (i.e., CFCF, FCFC and
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SSSS, respectively). Figures 7 and 8 plot the four mode shapes for the same plate under
a uniaxial (Figure 7) and biaxial (Figure 8) loading, where the kinematic response clearly
changes depending on the selected loading condition.

Table 11. First four uniaxial buckling loads (x-direction) for a SSSS FG-saturated porous plate with different aspect ratios,
a/b, porosity distributions and Skempton coefficients, β, while keeping e0 = 0.6 fixed.

Aspect Ratio Buckling Load (10 GPa)
PNND PNSD PUD

β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9 β = 0.0 β = 0.6 β = 0.9

a/b = 1

λ1 0.572 0.603 0.648 0.719 0.721 0.737 0.394 0.430 0.491
λ2 0.722 0.774 0.848 0.867 0.875 0.884 0.502 0.568 0.672
λ3 1.147 1.225 1.331 1.318 1.320 1.384 0.796 0.895 1.046
λ4 1.589 1.688 1.817 1.756 1.856 1.878 1.100 1.225 1.403

a/b = 2

λ1 0.777 0.816 0.868 0.938 0.943 0.941 0.531 0.574 0.636
λ2 0.813 0.860 0.923 0.977 0.982 0.993 0.558 0.613 0.693
λ3 1.560 1.553 1.550 1.720 1.725 1.749 1.009 1.020 1.042
λ4 1.735 1.771 1.817 1.901 1.907 1.923 1.163 1.204 1.276
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5. Conclusions

The present work focused on the buckling behavior of FG-saturated porous rectan-
gular plates subjected to normal and shear loads, while adopting Biot’s constitutive law
and proposing a combined FE-GDQ as an efficient computational tool to solve the prob-
lem. This means that the in-plane problem has been discretized in the x–y-directions by
means of classical FEs, and follows a weak formulation. Along the thickness direction (the
z-direction), instead, the problem is defined in a strong form based on a GDQ approxima-
tion. This mixed method deals with a three-dimensional theory of elasticity without any
additional kinematic assumption for the plate deformability. Various numerical examples
have been considered and solved systematically to check for the reliability of the proposed
method against a pure FE response, as well as to study the sensitivity of the response to
some input parameters, i.e., the geometrical aspect ratio, the Skempton coefficients, the
porosity distribution and coefficient and the BCs. Based on the parametric analysis, the
main conclusions can be summarized as follows:

• The porosity coefficient more significantly affects the buckling load than the Skempton
coefficient. In detail, an increased porosity coefficient and a decreased Skempton
coefficient yield an overall decrease of the buckling load.

• Among different boundary and loading conditions, the maximum and minimum
values of the buckling load are reached for a FCFC plate under a shear loading and a
SSSS plate under a biaxial loading condition, respectively.
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• The influence of the porosity coefficient on the buckling load for a uniform distribution
is larger than other types of non-uniform porosity distributions.

• The effect of the Skempton coefficient on the buckling load, for a uniform distribution,
is larger than other types of porosity distributions.

• By increasing the ratio, the buckling load generally decreases, except for a FCFC plate
under a shear load and a SSSS plate under a normal uniaxial load, because of the
variability in stiffness of the overall structure.

• The proposed method is verified to be a reliable tool for the computational study of
saturated porous materials and structures, even from a design standpoint.
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Nomenclature

Fluid compressibility in pores CP
Solid compressibility in pores Cs
Shear modulus G
Porosity coefficient e0
Biot’s effective stress coefficient α

Skempton coefficient β

Variation of fluid volume content Ψ
Volumetric strain εkk
Poisson’s ratio ν

Undrained Poisson’s ratio νu
Lamè constant λ

Pore fluid pressure P
Bulk modules K
Undrained bulk modules Ku
Biot’s modulus M
Total strain potential energy U
Potential energy related to geometry Vg
Elasticity modulus E
Stress tensor [σij]

Strain tensor [εij]

Elasticity matrix [C]
Displacement components along x, y and z directions u, v, w
Global Lagrange interpolation functions ϕj(x, y)
Weighted coefficients at the grid nodes of the solution domain Az

ij, Bz
ij

Buckling load λ

Stability matrix due to the in-plane stresses G
Stiffness matrix K
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