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Abstract: To comply with electric power grid automation strategies, new cyber-security protocols
and protection are required. What we now experience is a new type of protection against new
disturbances namely cyber-attacks. In the same vein, the impact of disturbances arising from faults or
cyber-attacks should be surveyed by network vulnerability criteria alone. It is clear that the diagnosis
of vulnerable points protects the power grid against disturbances that would inhibit outages such
as blackouts. So, the first step is determining the network vulnerable points, and then proposing a
support method to deal with these outages. This research proposes a comprehensive approach to
deal with outages by determining network vulnerable points due to physical faults and cyber-attacks.
The first point, the network vulnerable points against network faults are covered by microgrids.
As the second one, a new cyber-security protocol named multi-layer security is proposed in order to
prevent targeted cyber-attacks. The first layer is a cyber-security-based blockchain method that plays
a general role. The second layer is a cyber-security-based reinforcement-learning method, which
supports the vulnerable points by monitoring data. On the other hand, the trend of solving problems
becomes routine when no ambiguity arises in different sections of the smart grid, while it is far from
a big network’s realities. Hence, the impact of uncertainty parameters on the proposed framework
needs to be considered. Accordingly, the unscented transform method is modeled in this research.
The simulation results illustrate that applying such a comprehensive approach can greatly pull down
the probability of blackouts.

Keywords: smart grid vulnerability; microgrid; outages; multi-layer security; unscented transform;
uncertainties; cyber-attacks

1. Introduction

At present, protection schemes play an important role in smart grid operation in
terms of security and safety. During the development of a smart power grid, protection
scheme reliability has taken priority over verification of whole system security [1]. While
reinforcing the systems of protection guarantees grid reliability, the probability of their
false function may increase owing to higher complexity [2]. It has been experienced that the
hidden failures in the protection devices can lead to cascading outages, which in turn can
cause widespread power grid blackouts. A study has been reported by the North American
Electric Reliability Council (NERC) in which protective devices are involved in about 75%
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of main disturbances [3]. Several widespread cascading outages have turned up in recent
years, affecting vast customers in the United States. All of these reported blackouts were
associated with protection devices’ hidden failures due to other system disturbances [4,5].
Such cases, as mentioned above, create network vulnerable points.

In the status quo, the operators have to get a line on the vulnerability of the power
system due to the upsurge in the power grid intricacy and continuous development of it [6].
The vulnerability phrase does not have any general determinate description. Suitable ability
to tolerate all contingencies, stabilize and recover without passing limits of the system
is the commonly accepted description for a power grid, which is named an invulnerable
network [7]. In other words, the weaknesses and susceptibility that make damage to the
power grid likely are called vulnerability.

Several indices and approaches have been introduced in the literature. References [8–20]
propose ranking approaches based on certain performance indices, which consider infor-
mation as well as active and reactive power, bus voltages of the power grid. Authors
in [8] have tried to provide a deep-learning-based effective method in order to model the
security-constrained optimal power flow considering the automatic primary response of
generation units. This reference has represented the machine learning models’ effectiveness
at finding feasible solutions. Also assessing the vulnerability of the electrical grid has been
investigated in [9–11]. The vulnerable points in the network can be categorized based on
(1) the steady-state vulnerability assessment (SSVA) (2) dynamic vulnerability assessment
(DVA) as expressed by the authors of [12]. Authors in [13] have proved that the vulnerabil-
ity assessment is significant to examine the validation of measures in the electrical grid.
It is important to say that having a close look at the uncertainty and contingency effects
on the power system operation takes more attention in recent investigations. Hence, refer-
ences [14,15] have provided an effective model based on grid operation taking into account
the different contingencies in the electrical grid. Authors in [16,17] have tried getting into a
comprehensive survey of uncertainty modeling emerging from renewable sources within
a smart grid. The presence of uncertain parameters in the grid causes the emergence of
vulnerability challenges facing the electrical power operation, which is proven in [18–20].
Authors in [18] have proposed a two-stage adaptive robust optimization model to get an
immunized solution for vulnerability under uncertain conditions. In this method, some
decisions have been made before the uncertainty in the first stage. Then, the defender
decision as a second stage is considered after the uncertainty. The reconfirmation of lines
in the radial electrical grids can be introduced as an appropriate solution to analyze the
vulnerable points under uncertain conditions concerning reference [19]. Authors in [20]
have tried to present a mixed OPF-stochastic cascading failure model to assess the un-
certainty and vulnerability of a smart grid. The cascading-failure-based AC power flow
model proposed in this paper improves the simulation of voltage-related failures in the
grid under uncertainty. In the literature [21–23]; computational intelligence methods have
been utilized to minimize the time consumption of prior techniques. Reference [21] makes
capital out of the cloud method to satisfy the accuracy in vulnerability assessment. In other
words, the security scheme proposed in [21] using the vulnerability assessment could deal
with the main security issues. On the other hand, structured approaches like network
analysis methods based on power-flow are still up to date. The researchers in reference [22]
have utilized the DC power flow for computing the grid vulnerability. In this paper,
using a new index based on the time-sequential Monte Carlo simulation and an N-k′-1
scenario, the reliability and vulnerability were evaluated and it was proven that the AC
power flow can be privileged. In addition, reference [23] has designed and implemented
an attacker-defender bi-level linear program for vulnerability assessment. In the other
classification of the literature, surveys related to the network vulnerable points, effective
vulnerability mitigation methods have been focused on ensuring reliability and resiliency
of the grid. In the context of applications to strengthen power grid ability and prevent
consequential accidents, many attempts have been made by industrial initiatives [24,25],
supervisory mechanisms [26], load reduction techniques [27], and employment of energy



Appl. Sci. 2021, 11, 9972 3 of 29

storage [28]. This investigation employs microgrids for vulnerability mitigation. In ad-
dition, it may be an important point of view that network vulnerability can be utilized
as a significant criterion for evaluating the impact of cyber-attacks as well. As already
mentioned, to deal with the destructive effects of cyber-attacks in network vulnerability
points, the multi-layer cyber-security protocol is applied in this research. The first layer
is a public security protocol based on blockchain. Blockchain technology has emerged
in the economic environment, healthcare centers, and industry because of its remarkable
advantages. The applicability of blockchain technology in tasks including voting, identity
recognition, and data authenticity identification has brightened the concept of internet-of-
things (IOT) in recent years. The blockchain platform is basically a security infrastructure
based on the P2P networks without role-playing any governor, which guarantees the
ultimate transactions [28]. The second one is the Reinforcement Learning (RL) method
as the subset of machine learning techniques. Note that the detection of the vulnerable
points can be considered from an attacker’s view as well, in which the target would be to
define the attacking strategies to get the maximum possible destruction within the power
grid. Such an issue can be especially useful in network vulnerability analysis, that is,
with the aim of recognizing the worst possible destruction an attacker may insert into
the grid. Hence one can execute essential precautions. Several investigate vulnerability
surveys using RL as in [29] for false data injection (FDI) attacks and [30] for consecutive
grid topology attacks. Some explanations need to be described for the type of cyber-attacks
described here. As expressed in reference [31], considering the basic structure and approach
of both the blockchain technology and the RL method, it is expected that the proposed
framework can be acceptably able to cover attack types related to unauthorized access,
interception, distributed denial of service (DDOS) and the balanced attack. To realize
the challenges expressed in this paper, Table 1 shows the main differences between the
recent investigations and the suggested approach in detail [7,26,32–34]. As it can be seen,
the authors in [31] have tried to provide a security platform for the smart grid without
considering the network’s vulnerable points. In addition, checking the uncertainty effects
on the performance of the cyber-security approach against attackers pointed out in this
paper can be one of the significant concerns not considered in other literature.

Table 1. Categorization of the difference approaches.

Machine Learning Blockchain Vulnerability Uncertainty Electrical Grid

[7] X X

[26] X

[32] X X X

[33] X X

[34] X

Proposed Model X X X X X

Given all of the above, the main contributions in this paper can be summarized
as follows:

â Evaluating and mitigating smart grid vulnerability with the use of making a targeted
interactive framework between the smart grid and the microgrid.

â Proposing a multi-layer cyber-defensive structure embedded within the grid to pre-
vent the penetration of hackers to the critical and vulnerable areas of the smart grid.

â Comparing the proposed cyber-security scheme to the other approaches proves this
method’s effectiveness and validation against the targeted cyber-intrusions.

â Developing an uncertainty framework based on the unscented transform (UT) method
to reveal the negative effects of uncertain parameters on assessing the vulnerability
indices of the smart grid.

â The rest of the paper is structured as follows: Section 2 shows modeling of the
vulnerability indices in relation to the smart grid. Section 3 proposes a multi-layer
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security approach for the smart grid. In Section 4, the stochastic framework based
on UT is modeled to provide the stochastic effects. The relevant consequences on the
IEEE-test system are analyzed in Section 5. Finally, the main outcome of this paper is
briefly expressed in Section 6.

2. Definition of Vulnerability Indices Based on the Proposed Network

The growing demands and the structural complexity of power systems cause increases
in the risk of cascading failures and blackouts in the power system [35]. These issues
highlight the need for assessing vulnerable points in order to reduce the threats to society
due to the involved sequence of cascading failures. In other words, the power system
vulnerability can be introduced as an efficient tool to determine and measure the weakness
and incidence of the lines or the other sections related to the power system with regards
to the cascading events. Eventually, this paper tries to address two effective approaches
to prevent large-scale blackouts from both the technical and cyber-security points of view.
In this regard, there needs to be an appropriate modeling method to get the vulnerability
assessment of the power grid. To this end, the case of evaluating the vulnerable sections of
a power grid needs to be defined as disturbance-based indices comprising of several basic
parameters computed with regards to two cases: (1) normal condition (2) operation of the
power system under a simulated disturbance. Any perturbation including the transmission
line outage or generation unit outage might affect the other small/large-scale sections of
the power grid. Hence, assume a studied power grid with L line, B bus, and G generation
unit in the first place. Then, the unexpected effects arising from kth transmission line and
gth generator outages on the main sections of the grid, that is, buses, lines, and generation
units can be calculated as follows:

• Vulnerability indices of Bus

This part is aimed to represent the disturbance impacts of disconnecting k transmis-
sion lines on the grid buses by using the definition of vulnerability indices as shown in
Equations (1) and (2):

Bk
b =

(
1− TVmin,b

1− TVb,k

)2
×
(

(1− TVnormal,b)− (1− TVb,k)

(1− TVnormal,b)− (1− TVmin,b)

)2

(1)

VIBk
b =

{
1→ Bk

b > Bbasic
b

0→ Bk
b < Bbasic

b
(2)

where Bk
b is defined as the k line outage index of bus b and VIBk

b indicates the bus index
for the sake of disconnecting k line. It is needed to say that the variable TVb is considered
as the voltage deviation and 1− TVb shows the voltage of bus b. Based on Equation (1),
in the case that the outage of k line occurs, the voltage of bus b will be affected and altered
from the voltage level of normal to critical, which is shown by 1− TVk

b . This leads to a
growing trend in the k line index (Bk

b) up to a basic level (Bbasic
b ). Keeping this issue in mind,

the b bus index (VIBk
b) exposed to the k line disconnection will be equal to 1, if k line index

overtakes from the threshold. On the contrary, the VIBk
b = 0 means that the k line index is

still less than the basic level. In other words, the VIBk
b = 1 shows that the k line outage can

affect the voltage deviation of bus b and vice versa.

• Vulnerability indices of line

The same process related to the vulnerability indices of buses can be developed to
assess the vulnerability of the grid lines under k line outage as follows:

Lk
l =

(
Pk

l
Pmax

l

)2

×
(

Pk
l − Pk

normal,l

Pmax
l − Pk

l

)2

(3)
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VILk
l =

{
1→ Lk

l > Lbasic
l

0→ Lk
l < Lbasic

l
(4)

As mentioned before, a blackout over the power grid may be launched through the
cascading events. For instance, in the case that the outage of k line has occurred, the power
flow of the other lines of the grid might increase up to a level that the loading of lines
overtakes the maximum limit. For this reason, the security control system of the power
grid has to make the needed edicts to disconnect the other lines, getting to a steady-state
operation. In this regard, vulnerability assessment is provided by Equation (3) in which Lk

l
is defined as the k line outage index of the grid lines formulated based on the normal and
fault conditions. Focusing on Equation (4), the VILk

l = 1 means that the k line outage will
affect the power flow of line l and vice versa.

• Vulnerability indices of generator

It can be inferred that the generation units of the grid may be affected when a k line
outage happens. Hence, there needs to be defined the index of g generator (VIGg, VIQg)
as the disturbance effects arising from disconnecting k line. It is worth mentioning that the
index of g generator comprises of active and reactive power indexes (VIGg, VIQg ) depend-
ing on the generated active/reactive powers pertaining to the g generator. Accordingly,
Equations (5)–(8) indicate the formulation related to the indexes of g generator, which are
dependent on the k line outage index of g generator (Qk

g, Gk
g). It is important to say that the

argument mentioned in previous sections about vulnerability indices can be developed for
finding the critical points of the generation units.

Gk
g =

(
Pk

g − Pk
normal,g

Pmax
g − Pmin

g

)2

×max

(Pmin
g

Pk
g

)2

,

(
Pk

g

Pmax
g

)2
 (5)

Qk
g =

(
Qk

g −Qk
normal,g

Qmax
g −Qmin

g

)2

×max

(Qmin
g

Qk
g

)2

,

(
Qk

g

Qmax
g

)2
 (6)

VIGk
l =

{
1→ Gk

g > Gbasic
g

0→ Gk
g < Gbasic

g
(7)

VIQk
l =

{
1→ Qk

g > Qbasic
g

0→ Qk
g < Qbasic

g
(8)

As shown in (9),
→

LO is defined as a logical matrix including the indexes of generators

and lines with a domination of L-to-R (B + L + G). The row/column subscripts of
→

LO
are assigned to the grid assets, that is, bus, line, and generators and the disconnected
lines, respectively.

k:1,2,......L←−−−−→

→
LO =


→

VIB
→

VIL
→

VIQ,
→

VIG

 (9)

Similar to the process related to line outage, the generator outages can be simulated
instead of the line outage and the vulnerability indices pertaining to the bus, line, and gen-
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eration unit indexes are calculated. By doing so, the vulnerability matrix arising from the g
generator outage index is provided by Equation (10).

g:1,2,......G←−−−−→

→
GO =


→

VIB
→

VIL
→

VIQ,
→

VIG

 (10)

The network line outage index (NLO) can be computed as the ratio of disturbance
effects caused by launching the line outage as indicated in Equation (11) in which parameter
R is comprised of elements from a number of networks such as bus, line, and generation
unit (R = L + B + G). In the same way, the network generator outage index (NGO) is
formulated by (12), each element of which expresses the vulnerability value considering
the g generator outage.

→
NLO =

→
LO
R

(11)

→
NGO =

→
GO
R

(12)

Finally, the objective function of the vulnerability index of the power grid comprises
both the network line/generator outage indexes. Hence, Equation (13) is provided as the
main goal of this paper which should be minimized.

NV = ∑
R

NLO + NGO (13)

The Proposed Network Formulation

In recent years, providing effective and new strategies in compliance with the mod-
ern power system standards to collapse the vulnerability indices is required. Technically,
employing a security policy in the power system reduces destructive threats such as black-
outs in post contingency situations. Hence, the main goal of this section concentrates on
getting to an efficient framework of energy exchange between the power grid and a mi-
crogrid including some distributed energy resources with the aim of mitigating the power
system vulnerability. To this end, there is a need to describe the power grid modeling in the
first place. In our suggested model, the power grid is formulated to charge the electrical
loads in order to minimize the total cost of generation [36,37]. For more clarification,
the objective function and limits of the smart grid are literally represented in (14)–(26).
Equation (14) shows the objective function including the operation cost, start-up/shot-
down costs, and cost of power exchange all of which need to be minimized. Besides this,
each generation unit should keep the generation capacity limits for the active/reactive
powers for the sake of the fuel limit. To clarify this problem, the power generation con-
straints of units are formulated in Equations (18) and (19) in which the binary variable
zκg,t is modeled for the start-up/shot-down (zκg,t = 1 or 0) rates of generation units. It is
significant to mention that the reserve power produced by generators can be employed to
keep the power balance of the grid in the contingency condition. Hence, Equations (20)
and (21) illustrate the limits of the generator’s reserve power at t. The utility constraint
for the power flow of feeders may cause positive/undesirable impacts on the procedure
of optimizing the power following the objective function. So, the feeder power flow is
computed and modeled by (22) and (23). The bus angles of the grid are indicated by ηmax

b ,
which should be restricted between the max/min values as shown in (24). Equations (25)



Appl. Sci. 2021, 11, 9972 7 of 29

and (26) represent the active/reactive power flow restrictions needed for the power grid
feeders, respectively.

min costgrid = ∑
t

∑
g

[
rc
(

Pt,g

)
+ St,g + Dt,g + Rt MPTS

t

]
(14)

∑
g

(
Pt,g

)
−∑

l

(
Pt,l

)
+ MPTS

t = PLoad
b,t ∀t ∈ ΩT , ∀b ∈ Ωb (15)

∑
g

QG
t + ∑

l

(
Qt,l

)
= QLoad

b,t
∀t ∈ ΩT , ∀b ∈ Ωb (16)

TVmin ≤ TVb,t ≤ TVmax ∀t ∈ ΩT , ∀b ∈ Ωb (17)

Pminzκg,t ≤ Pt,g ≤ Pmaxzκg,t ∀t ∈ ΩT , ∀g ∈ Ωg (18)

Qminzκg,t ≤ Qt,g ≤ Qmaxzκg,t ∀t ∈ ΩT , ∀g ∈ Ωg (19)

Pt,g − Pt−1,g ≤ D+
G zκ g,t−1 ∀t ∈ ΩT , ∀g ∈ Ωg (20)

Pt−1,g − Pt,g ≤ D−G zκ g,t ∀t ∈ ΩT , ∀g ∈ Ωg (21)

Pl = (TVb − TVm)R′l − X′l ηb ∀b ∈ Ωb, ∀m ∈ Ωm, ∀l ∈ Ωl (22)

Ql = −(1 + 2TVb)X′l0 − (TVb − TVm)X′l − R′lηb ∀b ∈ Ωb, ∀m ∈ Ωm, ∀l ∈ Ωl (23)

ηmin
b ≤ ηb,t ≤ ηmax

b ∀t ∈ ΩT , ∀b ∈ Ωb (24)

− Pmax
l ≤ Pl,t ≤ Pmax

l ∀t ∈ ΩT , ∀l ∈ Ωl (25)

−Qmax
l ≤ Qt,l ≤ Qmax

l ∀t ∈ ΩT , ∀l ∈ Ωl (26)

As mentioned before, the microgrid is proposed as a security strategy to get the min-
imum vulnerability indices. In other words, the power grid can settle down the energy
scheduling for grid vulnerability mitigation by buying/selling the surplus power to a
microgrid in contingency conditions. To clarify the power transaction amid microgrid
and utility, it is vital to model the central form of the microgrid construction [38–40].
The proposed microgrid model consists of the battery and some distributed generations
(DGs) such as Wind Park, photovoltaics, and tidal units, as well as some islanding loads at
far areas [41,42]. The microgrid ought to be able to dispatch power among DGs, aiming
to satisfy the fitting function (27) and the relevant constraints. About the event area in
the grid, the microgrid tries to transfer the surplus power to the power grid while its
operating costs related to DGs and transaction costs should be minimized as indicated in
(27). The generation power of each DG is formulated for wind, tidal, and photovoltaic
units in (28)–(31). Restrictions of the storage unit to meet power balance and restraints
of charging/discharging rate are modeled by (32)–(35). Equation (31) shows the equiva-
lence between loads and generated powers within the microgrid. In Equations (32) and
(33), the positive value of PB

t shows that the power is flowing from the grid toward the
batteries [17,42]. The time slot ∆t is assumed to be 1 since the analysis is performed for
each hour of the time horizon. PB

t covers both charging and discharging status of the
storage, where each one is limited by its upper and lower value and a binary variable to not
allow the storage to be charged and discharged at one time. The positive value of power
transactions (MPTS

t ) means the energy value received from the power grid and visa verse.

microgrid = min ∑
t∈ΩT

RWtP
W
t + RTtP

TI
t + RVtP

PV
t + RBtP

B
t − Rt MPTS

t (27)

PW
t =

1
2

SCK(UV
t )

3 ∀t ∈ ΩT (28)
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PTI
t =


0 0 ≤ XV

t ≤ XV
rated

0.5Pγλ
(
XV

t
)3 XV

cutin
≤ XV

t ≤ XV
rated

∀t ∈ ΩT

PTI
rated XV

rated
≤ XV

t

(29)

PPV
t =

Q× EPV
t

Z
× (1− RLloss) ∀t ∈ ΩT (30)

PTI
t + PW

t + PPV
t + PB

t + MPTS
t = Pload−S

t ∀t ∈ ΩT (31)

VB
t = VB

t−1 + PB
t ∆tηBat ∀t ∈ ΩT (32)

PB
t = Pch

t − Pdis
t ∀t ∈ ΩT (33)

Pmin ≤ PB
t ≤ Pmax ∀t ∈ ΩT (34)

Vmin ≤ VB
t ≤ Vmax ∀t ∈ ΩT (35)

3. Multi-Layer Security Approach Based on Vulnerability Indices

As mentioned in the previous section, identifying the vulnerable points of the power
system based on the aforementioned formulation and studying these points would be
necessary to better monitor the security control system of the network considering an
appropriate security platform. Generally, the main aim of this paper is to evaluate and
find the critical points of the network, which lead to widespread instability and cascading
failures in the power grid under intentional and random cyber-attacks. Hence, the first and
perhaps the most significant concern is to prevent the cascading failures and blackouts in
the power system from the cyber-attack point of view. In such cases, cyber-hackers can
intelligently get their malicious goals by targeting the vulnerable points of the grid for cyber-
attacks. In other words, by exposing these sensitive points of the grid to invasion, attackers
may take the many technical and financial consequences, that is, blackouts within the smart
grid with regards to suffering the negligible cost of the adversary attack. To overcome this
problem, there is a need to provide effective and efficient security architecture to protect the
vulnerable points of the smart grid against the malicious targeting of cyber-attacks. To do
so, this article proposes a multi-layer security scheme concerning the critical areas, which
are specified by the vulnerability assessment of the smart grid. For more clarification, this
approach is designed based on two cyber-security defense mechanisms consisting of the
blockchain architecture-based public defense and the RL-based private defense within the
smart grid. It is significant to say that the private defense of security is aimed at covering
only some significant and sensitive areas of the smart grid to prevent cyber-unauthorized
accesses. Figure 1 represents the relationship of both public and private layers to the smart
grid in order to clear the proposed framework. This means that the vulnerable areas of
the grid are secured not only by the public defense but also are placed under cover by the
second layer named the private security defense.

3.1. The Blockchain Architecture-Based Public Defense

This part tries to express the first layer of the proposed security mechanism designed
concerning the blockchain-structure-based data exchanging within the smart grid. In this
regard, it is necessary to first describe the performance of the blockchain architecture
aiming to get a secured effective scheme within the modern electrical grid. In recent years,
some investigations have advocated that the applications of blockchain technology have
embraced much attention [40].
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Figure 1. The multi-layer security process.

The blockchain structure is executed for different stages including the distributed and
fault-tolerant systems wherein every node is allowed to share its data without a specific
control system. However, there are some communication restrictions for broadcasting
data that obey the network graph based on the graph theory. In this way, each node has a
channel with its neighbors in a bidirectional manner that Figure 2 shows. In the same vein,
the two below constraints (36, 37) must be satisfied. Performing this theory gives rise to
disproving the virtual nodes; therefore, each node is active in its specific location.

λx(x, y) = λx(y, x) (36)

N(x) = Nin(x) = Nout(x) (37)

The constraint (36) is representative of the bidirectional network, and (36) is the set of
neighbors of x.

This framework can be useful to prevent the penetration of hackers who aim to ma-
nipulate the network data. This means that the blockchain system is aimed at deactivating
adversarial strategies related to attackers with the use of honest nodes, which are capable
of making high computational attempts [41]. In the rest, the fundamental structure of the
blockchain network is explained to elaborate on validating the security behavior of such
systems to overcome the malicious targets of attackers.

Figure 2. Bidirectional channel among nodes: (a) bidirectional form. (b) neighbors set.
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Blockchain Structure

The one of main features pertaining to the blockchain mechanism is to exchange data
among nodes in a decentralized situation. Such systems can align to provide the needed
conditions for agents that desire to participate in the transactions within the trustless
system. On the other hand, the decentralized blockchain platform will basically let the
nodes communicate with each other to validate the legitimacy of new transactions within
the consensus algorithm. Besides this, note that the information released by nodes needs
to be crypto graphed in such a security process. In view of these facts, the blockchain
system has some significant advantages compared to the centralization-based security
systems as follows: 1- Validating trades related to each node performed by a consensus
algorithm. 2- Organizing nodes in form of the peer-to-peer (P2P) structure, as indicated
in Figure 1, without any architecture to connect them in the network [42]. Regarding the
above argument, the structure of the blockchain system is basically designed using three
main sections, consisting of the decentralized network, consensus algorithm, and crypto-
graphic process. The basic construction of the decentralized network is to improve the
message exchange among nodes for keeping the distributed ledgers assigned to any node.
Generally, such a structure is based on a P2P construction in order to leave/join from/to
the network independently. It is axiomatic that the decentralization-based network archi-
tecture is able to reduce the failures of the nodes and connection [43]. As a second part,
the blockchain process needs to have an effective consensus protocol organized through
P2P-based construction to validate transactions related to every node. According to the
consensus procedure, the messages given from the P2P structure should be registered in
the ledgers. In addition, the consensus protocol according to the received blocks is aimed
to get an appropriate agreement with regard to the association of them. This consensus
protocol can guarantee new transactions being added to the network in such a way that
has no conflict with the other transactions within the system. Henceforth, the fresh trans-
actions are located in a block that needs to be submitted to the blockchain process with
the aim of confirming through the validation mechanism. The cryptographic process is
one of the most significant parts of blockchain technology, which is considered to get a
safe environment for data and records exchanged among nodes. For more clarification,
it is needed to describe the data structure in each node. The block is established in each
node in order to retain a growing list of records made by the distributed database of the
blockchain and there is a need to secure the network against malicious hackers by using
continual verification. In other words, each node joined to the network is able to view its
block including the list of transactions inserted in the ledger. Figure 3 shows a block shape
in blockchain technology. Focusing on this figure, it can be realized that a block made by a
node consists of the transactions, timestamp, the data related to the previous block, and a
tree chart of transactions named Merkle root.

As mentioned before, it is necessary that the data block is secured by each node to
make an obstacle for the invalid nodes. To do so, all nodes should reflect an encryption
system according to the data label of the block for generating current/amenable hash
addresses (HAs). To elaborate on the generation process of the previous/current HAs, in a
network are some nodes, each node in iteration i bounds up to generate a HA (current HA)
considering its hash function and keeps an HA (previous HA) made by the adjacent nodes
in iteration i-1. Each node saves both the recent and current HAs into its data block. This
trend makes two general results including validity and confirmation of the data block. It is
significant to mention that the HAs are generated in range of the 32-bit compounded words
concerning different hash functions [44], that is, SHA-512, SHA-384, SHA-256, SHA-224,
and SHA-1, consisting of letters and numbers {0–9, A-F}.

3.2. Reinforcement Learning-Based Private Defense

The private defense as the second security layer is designed and embedded for the sig-
nificant areas assessed by the vulnerability indices of the power grid. With the descriptions
mentioned before, this section is dedicated to providing the details of the private defense
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scheme organized based on the features of the learning machine method. In recent years,
sundry methods considering the learning machine theory have been proposed to detect
cyber-attacks, that is, supervised learning, RL, and unsupervised learning. The recent
investigations have shown that reinforcement-based detection methods are more effective
and reliable schemes than the other methods due to interaction with the environment [39].
The fundamental framework of the RL method is represented in Figure 4. As can be seen
in this figure, such an approach comprises of two main parts: (1) environment (2) agent.
For more clarification about the detection process, note that The RL method is generally
executed based on two main phases: (1) learning phase (2) detection phase. In the first
phase, the agent tries to recognize the environment with the use of opting for sundry
actions related to the environment observation. By doing so, the agent would receive
different rewards depending on the action selection. This trend is stopped when the agent
takes the maximum reward, which results in the best action.

Figure 3. A block construction in blockchain.

Figure 4. The reinforcement learning approach.

It is essential to say that the detection method function needs to be defined based on
the Partially Observable Markov Decision Processes (POMDP) problem as described in [45].
In this regard, the objective function of this method is defined to get into the attack alarm
concerning the minimum detection delay. To this end, the POMDP concept-based relevant
scheme to detect attack is defined in accordance with Figure 5. Suppose that the attacker
trends to attack the system considering the unknown method at time κ. Regarding the
unknown attack strategy, the relevant states are defined by the “pre-attack”, “post-attack”
and “final” states. As it can be seen in Figure 5, to transfer the agent from the “pre-attack”,
“post-attack” states to “final” states, there are two permissible actions including “continue”,
and “stop”. Hence, the attack alarm occurs when the agent takes a “final” state for the
sake of opting for the “stop” action. If so, the agent would keep the “pre-attack” state
using the selection of the “continue” action. As mentioned before, the agent will take the
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rewards 1 and 0 regarding the relevant action. On the other hand, the reward b is defined
as the “continue” action selected by the agent in the “post-attack” state. Keeping this in
mind, the fitting function of the agent is developed to decline the summation of the penalty
coefficients arising from action choice as shown in Equation (38).

minPpen = Eκ

[
(ret|ts < Tt) +

∞

∑
t=T

b|ts > Tt

]
(38)

Wherein the objection function is dependent on the stopping time (ts) and the expected
value of the penalty coefficient (Ppen). According to the attack time and the received reward,
the objective function is defined in terms of ts < T and ts > T. For more clarification, two
underlying phases related to this approach can be seen in Algorithms 1 and 2. Algorithms 1
describes the trend of obtaining random action-observation pairs in a pseudo-code manner.
Based on the learning phase in the random action-observation pair section, there is a
need to first describe the arbitrary action-observation pair (P (o, a)) named the action value.
Based on the learning phase, there is a need to first describe the arbitrary action-observation
pair (P (o, a)) named the action value. As a next stage, the arbitrary action and observation
are necessary to define in the “pre-attack” state (U) at time 1. Firstly, the observation signal
(ot+1) is computed regarding the estimate of likelihood ϕt and Xt at time t + 1. To describe
ot+1, the optimal action (at+1) is obtained based on the ε-greedy policy in order to select the
best action. It is important to say that the current P will be updated with the use of the
SARSA algorithm to carry out well over the PODMP problem [11]. Finally, to apply the
second phase, there is a need to save P in the Y table.

Figure 5. The attack detection scheme.

After the learning phase that is executed in the pseudo-code of Algorithm 1, the newly
recorded data are compared with the same condition in table y. The end of the process will
detect false data. This trend is shown in Algorithm 2 as pseudo-code. The second phase is
designed based on the Y table obtained in the previous phase as represented in Algorithm 2.
In fact, this phase is aimed at raising alarm about the cases of the data manipulation with
the aim of minimizing the stopping time ts. Overall, the proposed method procedure
indicates that such a learning agent is able to detect the attack in minimum stopping time.
Therefore, considering the RL method based on a smart grid, the relevant devices measure
the needed data from the smart grid such as voltage, bus, angle, power generation, load,
etc. to analyze energy management of the electrical grid in the first place. Then, these data,
in order to detect false data, are assessed by the learning process.
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Algorithm 1: Learning phase framework.

1-Pick up random action-observation pair (Reset P (o, a))
2- for s = 1:S (Episode)
3- t = 0
4- U = “pre-attack” state
5- Choose “continue” command and an observation relaying to the “before-attack” state.
6- for t = 1:t’

7- t = t + 1
8- if at = “stop” and t < T
9- rt =1.
10- Ut = “final” sate.
11- Pt (ot, at) = P (ot, at) + α (rt-Pt (ot, at)).
12- end
13- if at = “continue” and t > T
14- rt =b.
15- Ut = “post-attack” sate.
16- else
17- r = 0.
18- end
19- Take Dt and evaluate the observation signal (ot + 1)
20- Select the optimal action (at + 1) according to the observation signal (ot + 1) using ε-greedy policy.
21- Revise the action (Pt + 1) by relaying to SARSA control:
22- Pt (ot, at) = P (ot, at) + α (rt + Pt + 1 (ot + 1, at + 1)-Pt (ot, at)).
23- Update Y table.
24- ot = ot + 1

25- at = at + 1

26- end
27- end

Algorithm 2: Detection phase framework.

1-Feed Y according to the learning phase.
2- U = “pre-attack” state
3- Opt “continue” action and an observation relaying to the “pre-attack” state.
4- for t = 1:t’

5- t = t + 1
6- if at = “stop”
7- ts = t (the stopping time).
8- Alarm attack.
9- end
10- Find Dt and evaluate observation signal (ot + 1)
11- Choose the optimal action (at + 1) according to the observation signal (ot + 1) by ε-greedy policy.
12- Update the action value (Pt + 1) by relaying to SARSA:
13- at = at + 1

14- end

4. Uncertainty Modeling

It is vital to provide a precise analysis of the noteworthy impacts of the random
variables on the power grid performance [46–50]. This part tries to represent the modeling
of the uncertainty impacts related to the renewable resource and loads with the use of the
UT method. There is a need to mention that wind speed, solar radiation, tidal current,
and demand and correlation among them can be modeled by the proposed method. The UT
model is shown by F = f̂ (R) in which the output of uncertainty function (U) is calculated
by using 2b + 1 points. According to the average value and the standard deviation of
variables indicated by z and A, the normal distribution function is provided for each
variable. The modeling procedure of the UT method is simulated in (1) to (3):

Step 1: 2b + 1 points are computed with the use of (39)–(41) as below:

R0 = z (39)

Rk = z +
(√

p
1−W0 Aaa

)
k

k = 1, 2, . . . , b (40)
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Rk+c = z−
(√

p
1−W0 Aaa

)
k

k = 1, 2, . . . , b (41)

In Equations (37)–(39), Aaa indicates the covariance matrix and R = z.
Step 2: Weights pertaining to all points determined in (40) and (41) are calculated

by (42):

Wk =
1−W0

2c
k = 1, 2, . . . , 2c (42)

It is important to note that the sum of the weights should be equal to 1.
Step 3: The points defined by step 1 are inserted into the nonlinear function Fk = f̂

(
Rk
)

and then, the output values are calculated as follows:

F =
2p

∑
k=0

WkFk (43)

PFF =
2p

∑
k=1

Wk
(

Fk − F
)(

Fk − F
)T

(44)

5. Simulation Results

To prove and validate the explanations described in previous sections, it is significant
that the outcome of this article resulted according to the vulnerability analysis for technical
and cyber-aspects. To this end, we try to first execute a microgrid deployment into the
smart grid structure in normal and contingency conditions. From a technical standpoint,
this section will examine and assess the critical areas of the smart grid and represent
the overthrow of the vulnerability indices for the sake of exchanging power between the
microgrid and the grid in the most proper time. In the case of the second viewpoint,
we check the successful probability of the launching attack in the smart grid regarding
the multi-layer-based proposed security scheme compared to the other approaches. It is
axiomatic that the smart grid structure comprises fossil fuel, buses, feeders, and loads, all of
which are located in the IEEE 24-bus case study. Figure 6 shows the single line schematic of
the IEEE 24-bus grid. The technical characteristics of smart grid and microgrid are taken
by [37,39], respectively. Table 2 also expresses some parameters related to each bus that
are part of a criterion for assessing the vulnerability. It should be mentioned that each
of the buses is also a node that connects the blockchain platform to the smart grid [44].
In addition, the microgrid aims to supply the load demands embedded in the far away
from the grid with the use of some renewable resources, including photovoltaic, wind unit,
tidal unit, and storage. The point of common coupling (PCC) will be in the place of the
bus if the operation of the bus is the responsibility of RES. On the other hand, the primary
controller sends out the command of islanding mode when the voltage security margin is
endangered; however, the aim of the simulation is to improve the vulnerability through
the RESs. Therefore, the scenarios are designed to realize the aim of the investigation.

For more clarification about the above concepts, we try to first find and assess the
vulnerable areas related to the smart grid taking into account the objective functions (13),
(14), and (27) and the relevant constraints (3–13) and (15–35) based on case (I). Then, we im-
plement the multi-layer security platform proposed in Section 3 on the vulnerable points
of the smart grid and prove the usefulness of this framework compared to other methods
in case II. In addition, case III aims to fulfill the modeling of uncertain parameters in accor-
dance with relations (39– 44) and examinants its effects on the vulnerability assessment
process. Simulation executed utilizing a computer with 4 GHz processor, core i7, and 16 GB
of RAM in GAMS software environment using CPLEX solver for MILP problems, which is
linked with MATLAB software.
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Figure 6. Single line schematic of IEEE 24-bus grid.

Table 2. The bus and demand parameters.

Bus Number Vmin Vmax Pd (MW) Qd (MVAR)

1 0.95 1.05 108 22
2 0.95 1.05 97 20
3 0.95 1.05 180 37
4 0.95 1.05 74 15
5 0.95 1.05 71 14
6 0.95 1.05 136 28
7 0.95 1.05 125 25
8 0.95 1.05 171 35
9 0.95 1.05 175 36
10 0.95 1.05 195 40
11 0.95 1.05 0 0
12 0.95 1.05 0 0
13 0.95 1.05 265 54
14 0.95 1.05 194 39
15 0.95 1.05 317 64
16 0.95 1.05 100 20
17 0.95 1.05 0 0
18 0.95 1.05 333 68
19 0.95 1.05 181 37
20 0.95 1.05 128 26
21 0.95 1.05 0 0
22 0.95 1.05 0 0
23 0.95 1.05 0 0
24 0.95 1.05 0 0

Case I: Assessing and relieving the vulnerability indices in the smart grid
Case II: validating the multi-layer based proposed security approach
Case III: the impact of uncertainty on the vulnerable points of the studied case

5.1. Assessing and Relieving the Vulnerability Indices in the Smart Grid

This part is focused on the microgrid’s effectiveness at reducing the smart grid vul-
nerability when an unexpected outage of the sundry equipment, including the lines and
generation unit, happens [51–53]. To do so, we implemented the smart grid structure
considering a special microgrid in the first place and provided information on how the
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power is transferred between them. These results can be seen in Figures 7 and 8. Assume
that the positive value of power represents the power exchanging from the microgrid to
the smart grid and vice versa. As it can be seen in Figure 7, the microgrid transfers the
different ranges of power to the smart grid during the 24-h scheduling horizon. Such power
fluctuations may have resulted from reasons such as the profile of loads located in the smart
grid and the vulnerable areas of the grid. For instance, the maximum exchanging power is
taken to be nearly 92 kW in hour 21 due to the load-peak at the same time. On the contrary,
the power broadcasted from the microgrid to the smart grid shows a marked decline of
almost 34 kW at hour 4. As it is mentioned in a previous part, the microgrid comprises the
PV, WT, and tidal units. In addition, the battery system is used to satisfy the power balance
in uncertain conditions pertaining to renewable resources. Hence, the output power of
these units is represented in the form of generation power percent in Figure 8. It is clear
that the range of utilizing PV units to supply the load demands and the needed power
transaction is almost from t = 7 to t = 16. Changing the generation power percent related to
each unit is dependent on the energy price and the relevant unit capacity at each hour as
indicated in Figure 8. This topic needs to be opened up for economic discussion, the results
of which are indicated in Table 3. Comparing the smart grid operation incorporating
microgrid to the ignoring connection link can reveal that this framework is useful to reduce
the operation cost of both parties. Results are clear that the considered structure leads to
achieving a marked cost decline from 7,087,396,670 ¢ to 2,208,945,142¢. This means that
the microgrid can have notable effectiveness at scheduling in critical situations within the
smart grid.

Figure 7. The power exchanging between microgrid and the smart grid.

Figure 8. The generation power of each unit.
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Table 3. Comparison among different conditions.

Conditions/Costs (¢) Smart Grid Microgrid Total

With connection link 2,197,716,343 11,228,799.15 2,208,945,142
Without connection link 7,007,211,265 80,185,404.84 7,087,396,670

For the aforementioned reasons, we decide to accomplish such a scheduling frame-
work aiming to dwindle the significant effects of the smart grid vulnerability. To prove
this, there is a need to first carry out the vulnerability modeling of the grid to get the
assessment and finding of the different vulnerable areas within the smart grid. To this
end, we implement the formulation of vulnerability indices, which is defined in (1)–(13)
and the relevant results are demonstrated in Figures 9 and 10. It is significant to say that
the vulnerability rate pertaining to each piece of equipment is calculated for the condition
in which all lines and generators are separately eradicated in the grid structure for any
reason. Keeping this issue in mind, the vulnerability rate related to each generation unit
named NGO index can be seen in Figure 9. Regarding the relevant consequence, the points
marked by multiplication sign reply to the generation units taken at approximately high
vulnerability rate arising from the outage of lines and generators compared to the other
units. In other words, the NGO indices related to the G1, G2, G3, G4, and G10 take up to a
level that has overtaken the threshold. This means that a failure in any area of the grid can
have more effect on these areas identified as the more sensitive and vulnerable points than
the other areas. In the same way, the NLO index indicating the vulnerability rate of each
line is computed in accordance with Figure 10. As can be seen in this figure, some lines
take more NLO index than the threshold, which is a compelling reason to highlight the
vulnerable lines.

Following the vulnerable areas of the smart grid, reducing the grid vulnerability
with the use of the defined points can be guaranteed by the interconnected microgrid and
smart-grid-based framework against unexpected events. In other words, such an energy
management framework can be trustworthy to prevent cascading failures and blackouts
with the use of injecting power at the proper times within the smart grid. To prove this
proposition, we carry out the smart grid under different events considering the micro-
grid and compared to the scenario of ignoring the microgrid within the grid. By doing
so, the comparative results for considering and ignoring the microgrid are provided in
Figures 11–14. The outage of simulation shows that the microgrid leads to get a marked
decline for the NGO indices ranging from 28% to 57% as represented in Figure 11. Similarly,
for the generator outage, comparing the NLO indices for scenarios of ignoring and consid-
ering microgrid proves the microgrid’s effectiveness at reducing the line vulnerability of
the smart grid (see Figure 12). Moreover, Figures 13 and 14 show the comparison of the
total cost of the smart grid for the relevant scenarios including the outage of all lines and
generators, separately. As it can be seen, the total cost of the grid takes the least detriment
using the proposed framework when occurring different events.
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Figure 9. The NGO indexes of generators.

Figure 10. The NLO indexes of lines.

Figure 11. The NGO indexes of generators for different scenarios.
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Figure 12. The NLO indexes of lines for different scenarios.

Figure 13. The total cost under the line outage.

Figure 14. The total cost under the generation unit outage.
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5.2. Validating the Multi-Layer Based Proposed Security Approach

This section is dedicated to illustrating and validating the efficiency of the multi-
layer security approach against cyber-attacks. To this end, we try to use the probability
computing approach to reveal the probability of successful attacks. In addition, validating
this method is represented by comparing to the other methods such as single-layer security
based on machine learning and blockchain concepts. As it was said in previous sections,
the blockchain technology in this approach is utilized to secure and cover over the network
as the public defense in the first place. On the other hand, the machine-learning-based
private defense as the second layer is obliged to only safe the vulnerable and sensitive
points of the grid to prevent the unauthorized access of hackers. Keeping this brief
description in mind, it is needed to first provide how the blockchain system can secure
the network. In this paper, we focus on an attack of FDI type in order to calculate the
probability and assess the functionality of the blockchain. It is significant to say that such
attacks do not interrupt the network but they will lead to misgiving. Hence, the attacker
tries to penetrate the network for an FDI attack. This work can be carried out everywhere
in the network. When making a cyber-penetration within the network, it is needed to
compute the probability of an attack launched by hackers. Hence, the successful probability
of attacks for carrying out destruction can be achieved in the following:

λ = h(Xd + c)− h(Xd) (45)

Pa =
1
3

(
n

∏
k=1

hk

)
(46)

where, 0 ≤ hk ≤ 1, k = 1, 2, . . . , n, . . . , N.
In the above equation, h is the attack vector, c is a factor that defines the alternation

of data due to the attack Xd defines the data of the system. As h() shows the function
of the measurement device based on the relevant data can be different for each device.
The success probability of attack (Pa) can be computed by Equation (46) in which n is the
number of attacks and h indicates the occurring probability of attack in iteration k for the
system. In addition, the attack needs to update its data to delude the system’s devices.

According to the argument aforementioned, the Sabotage probability in the network is
dependent on the type of cyber-security scheme considered for preventing attacks. Firstly,
we implement three cases based on the security approach including, case1: the single-layer
security schemes based on the machine learning method, case 2: the block-chain-based
single-layer security case 3: the multi-layer based proposed security method. Moreover,
we try to prove the proposed security framework (case 3) in order to prevent the attack
in vulnerable areas of the network structure compared to the other cases. In the first
step, we as an FDI attack apply the incorrect data to the measurement devices based on
(45) in order to monitor these data for the network operator. This process continues for
iteration number 100 under launching three cases based on the security scheme (second
step). As the last step, we compute the successful probability of attack for three schemes
considering Equation (46). For instance, regarding the reinforcement learning method
(case 1), the occurring probability of attack will be 1 if not detected by the RL method. This
description can be expanded for other cases in order to calculate the attack probability in
system. In this regard, by launching a FDI attack in the network, the successful probabilities
of this attack for three cases are calculated and represented in Figure 15. It can be seen in
this figure, by increasing the percentage of iteration, the successful probability of attack in
the proposed method is more downtrend than case 1 and case 2 for the various iterations.
This means that the double-layer-based proposed security framework can be a hard barrier
for hackers to gain access to the critical points within the network. On the other hand,
according to Table 4, the security system can decrypt more data by merging blockchain
and RL compared with the two others. As expressed in previous sections, the penetration
of cyber-attacks to the blockchain system depends on the needed computational power to
solve the mathematical function named consensus approach among nodes of network [45].
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Hence, evaluating the studied case for the different threat levels of attack concerning its
computational power may prove the proposed security framework’ effectiveness. To do so,
we consider randomly the different power percentages of attack including 15%, 23%, 32%,
29%, 38% and 51% and indicate the relevant consequence by Figure 16. It can be deducted
that the occurring probability of attack under the suggested framework for most cases takes
a decreasing percentage less than 50%. This means that the double-layer security structure
may remarkably be trustable to cover the exchanging data of grid against the targeted
cyber-attacks. All to all, developing such scheme in the smart grid leads to decline the
cascading failures and blackouts, which are happened through making the cyber-attacks in
the vulnerable regions of the grid assessed by the relevant indices (refer to Section 2).

Figure 15. Assessing the successful probability of attack for different cases.

Figure 16. Assessing the double-layer security scheme.

Table 4. Comparison among cases based on calculated hash rate.

Different Cases PC Type Evaluation Time Calculation of Data Block
(Data Packet)

The single-layer security schemes based on
machine learning method - Detection delay = 3 Second

The blockchain-based single-layer security 512-HA 1 k hash (Kh) per second
The multi-layer based proposed security method 256-HA 2 k hash (kh) per second
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5.3. The Effect of Uncertainty on the Vulnerable Points of the Studied Case

This part tries to express how the uncertainty effects can be significant on achieving
over goals considered in this paper. On the other hand, concerning the uncertainty model
for scheduling the energy management of the smart grid based on the proposed framework
is a must. Moreover, it is needed to check how the uncertainty modeling can change the
vulnerability rates of different areas within the grid. To realize this issue, we deploy the UT
method based on uncertain parameters in the energy scheduling of the smart grid regarding
the proposed framework. In addition, we provide the consequence related to uncertainty
impacts on the different significant aspects including the power exchange between two
the electrical grids, financial management of the smart grid and the vulnerability indices,
which is the most important goal in this section. Hence, Figures 17–19 indicate the relevant
results of uncertainty modeling. As it was mentioned before, the power exchange between
the microgrid and the smart grid is determined concerning different criteria aiming to get
the vulnerability rate reduction. Figure 17 shows the power injection of the microgrid to
the smart grid for both deterministic and stochastic scenarios, respectively. According
to Figure 17, altering energy exchange in the stochastic model compared to scenario one
proves that it is necessary to think about the uncertainty modeling in scheduling to get
effective and accurate energy management. The important facts about the various situations
will be twigged by observing Figure 17a,b. The cumulative diagram of power exchange
across 24 h between stochastic and normal manners have a lot of conflict with each other
(Figure 17b), although the difference between them is insignificant for 24 h in a one by
one manner (Figure 17a). It is inferred that we should watch out for failure in schedules
if we ignore the impact of uncertainty. Hence, we try to indicate the results related to
case I for uncertainty state as shown by Figures 20 and 21. In addition, the strategy’s
effectiveness proposed in part I in order to reduce the costs is obviously proven based
on the uncertainty by Table 5. As a second goal, Figure 19 shows the comparison of the
NGO and NLO indexes related to the study case in both uncertainty and deterministic
scenarios. For instance, we assume that the outages of lines 22, 15, and the generation unit
15 happened within the smart grid and the relevant vulnerability indexes on a case-by-
case basis are represented. The consequences indicate that the uncertainty model causes
varied changes ranging from 2%, 3.5%, and 10% in the vulnerability rates of the smart
grid compared to scenario one, respectively. This results in the microgrid’s effectiveness at
preventing the cascading events in the smart grid, which will be seen if the uncertainty
effects are modeled using the UT method. Comparing the costs pertaining to microgrid
and the smart grid in the uncertain condition with the normal one (refer to Figure 18), it is
seen that the costs of microgrid, smart grid, and total cost take higher fluctuations, which
are 2%, 23%, and 1.4%, respectively (see Figure 18). To sum, the smart grid is better to
make use of the uncertainty framework to assess the vulnerable areas in the grid and to get
effective scheduling in the bargaining power with the microgrid.

Figure 17. Cont.
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Figure 17. The comparison of power exchange: (a) the power transaction in 24 h, (b) cumulative
changes across 24 h.

Figure 18. The comparison of vulnerability indices.

Figure 19. Cont.
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Figure 19. The operation costs of smart grid (a) and microgrid (b) in stochastic and normal conditions.

Figure 20. The vulnerability indices arising from line outage in uncertainty condition.

Figure 21. The vulnerability indices arising from generation unit outage in uncertainty condition.
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Table 5. Comparison among different conditions for uncertainty state.

Conditions/Costs (¢) With Connection Link Without Connection Link

Smart grid 2,230,789,393 7,058,134,347
Microgrid 14,589,325.15 83,172,312.71

Total 2,245,378,718 7,141,306,660

6. Conclusions

This paper proposed a targeting framework to reduce the vulnerability indices of
the smart grid. To actualize this target, two separate approaches have been deployed.
The first approach addresses reducing vulnerability indices in terms of technical criteria.
The second one focused on providing a cyber-security protocol to make an obstacle against
the penetration of cyber-hackers. In the technical approach, the microgrid prevented the
occurrence of cascading outages with the use of making a bilateral energy exchange with
the smart grid. The most obvious finding to emerge from this part is a significant reduction
in the network vulnerability indices owing to the cooperating microgrid. In the security
respect, a multi-layer cyber-security protocol has been performed in this investigation.
As already mentioned, the detection of the vulnerable points can be considered from an
attacker’s view as well. This can be an important issue for future research. One of the more
significant findings to emerge from this part is the effectiveness of the proposed multi-layer
protocol in comparison with the other approaches. On the other hand, the measuring of
network vulnerability would be incorrect if the uncertainty parameter is not taken into
account. For the future scope of this work, the recent vulnerability-scoring models can
be considered in other to provide an accurate method in the study or in future works.
In the same vein, the utility of the adopted multi-layer method includes merged blockchain,
and RL can compare to other state-of-the-art approaches such as smart grids cyber security
toolbox. In future works, the authors would make use of new advanced cybersecurity
software such as SGIS to check information security.
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Nomenclature

Sets/Indices
l/Ωl Set/index for feeder
g/Ωg Set/index for power unit
t/ΩT Set/index for hour
b, m/Ωb,m Set/index of bus bar
Limitations
Z Solar energy
RLloss PV losses
UV

t /S Wind speed/density
XV

cutin
, XV

rated
Tidal cut-in speed and rated speed

Q Direct irradiation
γ Water density
P Seawater density
λ Brushed area of the turbine blades
C Rotor blade area
X′l ,Rl ,X′l0 Technical characteristics of line
St,g, Dt,g Unit start-up, shut down
EPV

t PV Capacity
P g,t , Q g,t Smart grid demand
Rt Power transaction price
XV

t Current speed of tidal
PTI

rated Rated generation of tidal
Vmin, Vmax High/low limits for storage system
Pload−S

t Microgrid demand
Pmin, Pmax Active power limitations
Pmin

l , Pmax
l Line active power limitations

Qmin
l , Qmax

l Line reactive power limitations
Qmin, Qmax Reactive power limitations
D+

G , D−G Up/down Limits of reserve
TVmin, TVmax Limits of voltage
ηmin

b , ηmax
b Limits of angle

PLoad
b,t Smart grid active demand in each bus

QLoad
b,t

Smart grid reactive demand in each bus
rc Generation price of the generator.
RWt, RTt, RVt, RBt Bidding offer for WT, tidal, PV and battery
Pmax

g ,Pmin
g ,Qmax

g ,Qmin
g High or low limit of the power transaction

z, w Mean and variance
W0 weight of the mean value
Aaa covariance matrix
c Number of uncertain parameters
R vector of stochastic inputs
Variables
PB

t , PW
t , PTI

t , PPV
t Generation amount of storage, WT, tidal and PV

Bk
b Line outage index of bus b

VIBk
b Bus index

Lk
l Line outage index of line l

VILk
l line index

Gk
g unit outage active index of line l

VIGk
g unit index

Qk
g unit outage reactive index of line l

VIQk
g unit index

Qt,g, Ql,t Generator and feeder reactive power at time t.
Pt,g, Pl,t Generator and line active power at time t.
MPTS

t Power trade between microgrid and smart grid.
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Pch
t , Pdis

t Charging/Discharging rate.
zκt,g Binary variables of the generator.
TVb, ηb Bus voltage or angle.
VB

t Energy of battery.
mincostgrid, microgrid Operation cost functions of smart grid and microgrid.
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