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Abstract: The combination of gesture recognition and aerospace exploration robots can realize the
efficient non-contact control of the robots. In the harsh aerospace environment, the captured gesture
images are usually blurred and damaged inevitably. The motion blurred images not only cause part
of the transmitted information to be lost, but also affect the effect of neural network training in the
later stage. To improve the speed and accuracy of motion blurred gestures recognition, the algorithm
of YOLOv4 (You Only Look Once, vision 4) is studied from the two aspects of motion blurred image
processing and model optimization. The DeblurGanv2 is employed to remove the motion blur
of the gestures in YOLOv4 network input pictures. In terms of model structure, the K-means++
algorithm is used to cluster the priori boxes for obtaining the more appropriate size parameters of
the priori boxes. The CBAM attention mechanism and SPP (spatial pyramid pooling layer) structure
are added to YOLOv4 model to improve the efficiency of network learning. The dataset for network
training is designed for the human–computer interaction in the aerospace space. To reduce the
redundant features of the captured images and enhance the effect of model training, the Wiener
filter and bilateral filter are superimposed on the blurred images in the dataset to simply remove
the motion blur. The augmentation of the model is executed by imitating different environments.
A YOLOv4-gesture model is built, which collaborates with K-means++ algorithm, the CBAM and
SPP mechanism. A DeblurGanv2 model is built to process the input images of the YOLOv4 target
recognition. The YOLOv4-motion-blur-gesture model is composed of the YOLOv4-gesture and the
DeblurGanv2. The augmented and enhanced gesture data set is used to simulate the model training.
The experimental results demonstrate that the YOLOv4-motion-blur-gesture model has relatively
better performance. The proposed model has the high inclusiveness and accuracy recognition effect
in the real-time interaction of motion blur gestures, it improves the network training speed by
30%, the target detection accuracy by 10%, and the value of mAP by about 10%. The constructed
YOLOv4-motion-blur-gesture model has a stable performance. It can not only meet the real-time
human–computer interaction in aerospace space under real-time complex conditions, but also can be
applied to other application environments under complex backgrounds requiring real-time detection.

Keywords: gesture recognition; YOLOv4; CBAM; deep learning; image blur restoration

1. Introduction

With the research and development of robotics, machine vision has been able to replace
the human eyes for certain target recognition and judgment. The visual recognition is very
important for robots, especially for the electrically driven large load-ratio multi-legged
robots in planetary exploration [1,2]. The intelligent target recognition of the robots can be
realized by applying deep learning in the robot vision task. Gesture recognition is widely
used in the interaction with robots in aerospace space with complex and harsh conditions.
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By making different command gestures to the robots, the command transmission can be
completed. Before the deep learning is widely adopted, the feature representation in the
traditional target detection is generally based on the manual design of feature detectors [3,4],
such as SIFT [5], HOG [6], and so on. These traditional target detections are based on the
content of a picture, which is difficult to design, low in portability, and low in recognition
accuracy. Taking the face detection in the picture as an example, the hand-designed features
usually need to repeatedly adjust the relevant parameters to fully detect the target in an
ideal environment. Early gesture recognition tasks require the users to wear data gloves to
perceive and complete the recognition. For example, the Mistry team designed a gesture
recognition interface WUW [7] based on the wearable video devices. The interface uses
a wearable camera to capture the gesture images. The gesture images can be converted
into the input signal operation commands. Although the recognition efficiency of that
method is high, it is inconvenient to use. The equipment is heavy and cumbersome to wear.
With the continuous development and optimization of wearable devices, researchers also
make them into the shape of wristbands and finger rings. However, their recognition and
perception are still based on the transmission of wires. There are still certain difficulties in
popularization and use of wearable devices [8,9]. For a more convenient and natural user
experience, the gesture recognition based on the machine vision has developed rapidly. To
complete non-contact gesture recognition, the study of gestures is performed through the
computer by researchers. The gesture images are collected by camera. By performing the
gesture segmentation, gesture tracking, and gesture feature extraction, the information can
be transmitted by the computer.

Based on a screen-printed conformal electrode array, Moin et al. put forward a wear-
able surface electromyography biosensing system [10]. That system has sensor adaptive
learning capabilities which can be applied to real-time gesture classification. Song et al.
designed a virtual reality interactive glove by using an actuator, which is very light and
easy for users to wear [11]. Lee et al. presented a skin-patchable magneto-interactive elec-
troluminescent display, which is capable of sensing, visualizing, and storing magnetic field
information to realize the 3D motion tracking [12]. Mantecón et al. proposed a hand gesture
recognition system by using near-infrared imagery. The hand gesture characterizes can be
recognized by the system directly [13]. Esteva et al. used the CNN in many recognition
and classification applications to achieve the machine learning [14]. Wang et al. performed
the method research of human gesture recognition by integrating the visual data and
somatosensory data from the skin-like stretchable strain sensors made from single-walled
carbon nano-tubes [15]. That method is neither limited by the quality of the sensor data
nor the incompatibility of the datasets. It can maintain the recognition accuracy under the
nonideal conditions of the high image noise, underexposure, or overexposure. Shinde et al.
utilized YOLO to complete the recognition and positioning of human actions, which can
accurately identify and locate the group frames or even single frames of human movements
in the video [16]. Yu et al. proposed a face mask recognition and standard wear detection
algorithm based on the improved YOLO-v4 [17]. The backbone network of the model
is improved. The adaptive image scaling algorithm is proposed. Additionally, the face
mask detection data set is made according to the standard wearing of masks. The model
proposed can improve the face mask recognition effectively. Roy et al. proposed a deep
learning enabled object detection model for multi-class plant disease to detect different
apple plant diseases under complex orchard scenarios [18].

Noncontact gesture recognition has a good development prospect in the field of
human–computer interaction. Due to the complexity and variety of gestures, there are
great differences and uncertainties making gesture recognition more difficult. Noncontact
gesture recognition can be performed by segmenting and recognizing the color area or
the contour edge of the gesture. However, when the background and hand colors are
similar or the background is complex, the gestures based on machine vision cannot extract
the target features well. The recognition effect is not good. The image captured by the
camera is blurred when the human hand moves. The contour of the hand is not clear under
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the that situation. The feature extraction and region segmentation are difficult [19]. Due
to radiation, space station fluctuations, and other factors, the gestures captured by the
machine are usually blurred. The bur gesture images are not conducive to the recognition
and judgment of the robots and will cause command transmission delay or error. In the
abominable aerospace operations, a gesture recognition system with high recognition
efficiency and high tolerance can bring higher work efficiency.

To solve the above problems and facilitate the elaboration of this article, four different
gestures are utilized in the research of the actual human–computer interaction environment.
This article is divided into five parts. In Section 2, the K-means++ clustering algorithm
is used to cluster the labeled dataset for obtaining the appropriate prior frame sizes in
the target detection. In addition, the network structure is modified, such as adding the
CBAM and SPP modules to improve the effect of network feature extraction and network
learning attention. To ameliorate the model, the reasonable hyperparameters are chosen to
adjust. The motion blur is caused by relative motion between the hand and the camera. The
DeblurGanv2 is employed to remove the motion blur of gestures in the images. In Section 3,
the dataset for network training is designed for the human–computer interaction in the
aerospace. The expansion of the dataset is realized by simulating different environments.
To reduce the redundant features of the captured images and enhance the effect of model
training, the Wiener filter and bilateral filter are superimposed on the blurred images in
the dataset to simply remove the motion blur. In Section 4, the built model algorithm is
trained and tested on the processed gesture image through the Tensorflow framework. The
ROC, PR, mAP, and other evaluation indicators are employed to verify the reasonableness
of the YOLOv4-hand model. In the final section, the conclusions are presented. The
YOLOv4-motion-blur-gesture model proposed in this article cannot only be used in the
field of human–machine interaction robots for aerospace space exploration under complex
conditions, but also can be used on other occasions with complex conditions and high
requirements for the model. The schematic diagram of article content structure is shown in
Figure 1.
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Figure 1. Schematic diagram of article content structure.

2. Algorithm Improvement
2.1. YOLOv4 Target Detection Algorithm

The current target detection methods can be roughly divided into two categories: one
stage detection method and two stage detection method. The two stage targets detection
method is represented by RCNN series models. RCNN series models first extract the
proposal with the selective search method, then extract the feature with CNN, and finally
train the classifier with SVM to complete the targets detection task. YOLO (You Only
Look Once) is a proposal-free regression method [20]. YOLO removes the region proposal
module, can directly predict whether each grid contains targets and the probability of
including targets from the feature map. YOLO extracts the proposal and targets recognition



Appl. Sci. 2021, 11, 9982 4 of 19

by sharing convolution features. The region proposal is constrained by using the grid.
A faster training and testing speed can be obtained by avoiding repeatedly extracting
proposals in some areas. On the premise that the ground truth is known in the training
process, the regression equation from characteristic map to parameters such as coordinates
and confidence can be established by YOLO. The model fitting curve can finally be obtained
by learning the parameters of the regression equation through a lot of training. The
annotation, confidence, and category probability calculation of the end-to-end bounding
boxes of the targets can be completed only by inputting the picture once [21]. YOLO has
high recognition efficiency and is widely used in real-time detection. The predicted value of
YOLO can be represented by five elements (x, y, w, h, C). Where (x, y) is the center coordinate
position of the bounding boxes, w and h are the width and height of the bounding boxes,
and C is the confidence level of the bounding boxes. In YOLO’s classification task, each
cell must also give the conditional probability value C (C ∈ R+) [22]. The conditional
class probability of each grid is multiplied in the network test by the confidence of each
bounding box. The specific class confidence scores of each bounding box can be obtained.
The calculation method is described as follows.

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (1)

where IOUtruth
pred is the ratio of the intersection and union of predictor with the actual bound-

ing boxes in the computer detection task. Pr(Classi|Object) represents the probability that
the current cell has an object and belongs to class i. Pr(Object) indicates the probability of
the targets containing in the grid. Pr(Classi) represents the probability that the target in
the grid is class i.

The conditional class probability is predicted for each bounding box. We know that
YOLOv4 is obtained through a series of enhancements and improvements of YOLOv3. The
main contents are presented as follows.

1. Upgrading the original backbone feature extraction network Darknet-53 to CSPDarknet-53;
2. Enhancing the effect of feature extraction network, using the SPP and PANet structure;
3. Utilizing the Mosaic function to complete the data enhancement;
4. Using CIOU as return LOSS;
5. Using Mish function as the activation function of the network.

The YOLOv4 network structure diagram is shown in Figure 2. The YOLOv4 network
structure mainly includes the backbone feature extraction network (CSPDarknet53), the
spatial pyramid pooling structure (SPP), and the path aggregation network (PANet).
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2.2. Reclustering of Priori Boxes

The K-means clustering algorithm [23] is employed to cluster the COCO dataset in the
YOLOv4 target detection algorithm. Then, 9 priori boxes of different sizes and proportions
are obtained. The most common rectangular boxes in the dataset are also acquired so
that the network can use the more appropriate rectangular frames to lock the targets in
the subsequent target search. Consequently, the convergence of the model is accelerated.
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YOLOv2 (You Only Look Once, vision 2), the K-means clustering algorithm was utilized to
cluster the nine priori boxes of different sizes, which have different receptive fields and can
be used to identify targets of different sizes.

The initial clustering center of the network is determined by random selection under
the K-means algorithm. The initial points are more sensitive to noise and abnormal points.
The unstable clustering effect is always led by the random initial points selection. The
affection makes the clustering effect unstable and more sensitive to noise and abnormal
points. The initial point selection of the K-means++ [24] algorithm can significantly improve
the classification results and reduce the final error. The great improvement of algorithm is
realized in the selection of the first clustering center. To get a more reasonable distribution,
the distance between the selected initial clustering centers needs to be required as small
as possible. Firstly, a sample is randomly selected from the data as the initial cluster
center. The shortest distance between each sample and current existing cluster center can
be calculated. Then, the probability that each sample is selected as the next cluster center
can be calculated. The next cluster center can be chosen by the roulette method. After
determining the next cluster center, the above steps are repeated until the appearing of
k cluster centers. Therefore, the selection of the initial cluster center is completed. The
formula for calculating the probability of the next cluster center is defined as follows.

P =
D(x)2

∑x∈X D(x)2 (2)

where D(x) represents the shortest distance between each sample and the current existing.
In different application scenarios, the size of the target is different from the priori frame

sizes which are obtained by clustering the original COCO dataset. When the difference
of the target sizes is small, the original priori frame sizes with a larger threshold interval
are not fully invested in the training of the target detection neural network. The result
of the training network is not good. To improve the matching degree between the target
gestures and the prior boxes, the K-means++ algorithm is employed to regenerate the priori
boxes in the existing dataset. The priori frame size results diagram generated by K-means
clustering algorithm and the K-means++ clustering algorithm are shown in Figure 3. In
Figure 3, the target boxes of various scales can be divided by the K-means++ clustering
algorithm clearly. The clustering effect is unstable because of the randomness of the initial
point selection under the K-means clustering algorithm. The clustering results are easily
disturbed by extreme value information. To obtain the more reliable clustering results,
multiple clustering is usually used for comprehensive screening to get the final results.
Multiple clustering calculation consumes a lot of time and there are also many uncertainties.
To make improvements, the K-means++ clustering algorithm is cited in this experiment.
The K-means++ clustering algorithm can make the classification results more stable by
taking the target frames of various scales into account.

2.3. Introduction of Attention Mechanism

The size of the target pixel value can be calculated by the surrounding pixels in the
convolutional neural network. However, the results calculated by local information usually
lead to the loss of global information and deviation. To alleviate the information bias,
not only larger convolutional filters can be used, but also deeper convolutional neural
networks can be constructed. However, the relative amount of calculation climbs faster
and the effect is not significant [25]. Therefore, the attention mechanism is analyzed in this
article to improve the training effect of the network.

The information of interest can be located by adding the attention mechanism to the
neural network. The useless information can be suppressed. The attention mechanism is
mainly divided into three types: spatial attention mechanism, channel attention mechanism,
and mixed attention mechanism of the two. The spatial attention mechanism is responsible
for the establishment of the target positions. The channel attention mechanism is mainly
responsible for the classification of the targets.
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Convolutional Block Attention Module (CBAM) is an effective light-weight feedfor-
ward convolutional neural network attention module. The structure of the CBAM attention
mechanism is shown in Figure 4. The feature information of the two dimensions of space
and channel are combined in the CBAM model. The CBAM model has the advantages of
simple structure, small computation, and fast computation speed. It can be plugged into
the network architecture as needed to improve performance. If the intermediate feature
map is given, the attention map can be judged independently by the two dimensions of
channel and spatial in the CBAM module. Firstly, the input features are mapped to the
channel attention module. The corresponding attention mappings are output. Then, the
output map is multiplied by the input characteristics and attention map, which is output
through the spatial attention module. Finally, the output characteristics of the map are
obtained. The mathematical expressions are written as follows.

F′ = Mc(F)⊗ F (3)

F′′ = Ms(F′)⊗ F′ (4)

where⊗ represents element multiplication, F is the input feature map, Mc(F) is the channel
attention map output by the channel attention module, Ms(F′) is the space attention map
output by the space attention module, and F′′ is the feature map output by the CBAM.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19 
 

the channel enhancement effect is obtained by using the sigmoid function. Firstly, the 
maximum pooling and mean pooling are performed on the input images, respectively, 
under the spatial attention module. Then a convolution layer is used to learn the new 
feature map [26]. 

 
Figure 4. Structure diagram of CBAM attention mechanism. 

where the Max represents the maximum pool processing, the Avg represents the global 
average pooling processing, the Conv represents the convolution layer,   represents the 
sigmoid activation function. 

To obtain a more efficient attention network structure, the CBAM module is inserted 
among the three channels output of the CSPNet structure and the first two positions of 
the last five layers of each channel in the YOLOv4 network structure. The more focused 
learning effect of the network structure can be obtained by the above modification. The 
schematic diagram of adding the CBAM attention module to YOLOv4 network structure 
is shown in Figure 5. 

 
Figure 5. Schematic diagram of adding the CBAM attention module to the YOLOv4 network structure. 

2.4. SPP Spatial Pooling Pyramid Structure 
The SPP spatial pyramid pooling diagram is shown in Figure 6. In Figure 6, three 

different division methods are performed with image pooling processing by the SPP struc-
ture. The input of the SPP structure is an arbitrary size feature graph obtained by upper 
convolutions. Firstly, the SPP structure carries out the feature map with the sizes of 1 × 1, 
2 × 2, and 4 × 4. Then, three different partition results are spliced. The inputs of different 
scales are finally normalized output to the same scale. By using different image division 
methods, different scales of the information can be captured. To improve the robustness, 
the spatial feature information of different sizes can be extracted by adding the SPP spatial 
pooling pyramid structure in the model [27]. 

Input
feature

Refined
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Figure 4. Structure diagram of CBAM attention mechanism. Where the Max represents the maximum
pool processing, the Avg represents the global average pooling processing, the Conv represents the
convolution layer,

∫
represents the sigmoid activation function.

The maximum pooling and average pooling are first performed on the input image
by the channel attention module. Then, the transformation results are obtained through
several MLP layers. The results are respectively applied to two channels. The attention
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of the channel enhancement effect is obtained by using the sigmoid function. Firstly, the
maximum pooling and mean pooling are performed on the input images, respectively,
under the spatial attention module. Then a convolution layer is used to learn the new
feature map [26].

To obtain a more efficient attention network structure, the CBAM module is inserted
among the three channels output of the CSPNet structure and the first two positions of
the last five layers of each channel in the YOLOv4 network structure. The more focused
learning effect of the network structure can be obtained by the above modification. The
schematic diagram of adding the CBAM attention module to YOLOv4 network structure is
shown in Figure 5.
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Figure 5. Schematic diagram of adding the CBAM attention module to the YOLOv4 network structure.

2.4. SPP Spatial Pooling Pyramid Structure

The SPP spatial pyramid pooling diagram is shown in Figure 6. In Figure 6, three
different division methods are performed with image pooling processing by the SPP
structure. The input of the SPP structure is an arbitrary size feature graph obtained by
upper convolutions. Firstly, the SPP structure carries out the feature map with the sizes of
1 × 1, 2 × 2, and 4 × 4. Then, three different partition results are spliced. The inputs of
different scales are finally normalized output to the same scale. By using different image
division methods, different scales of the information can be captured. To improve the
robustness, the spatial feature information of different sizes can be extracted by adding the
SPP spatial pooling pyramid structure in the model [27].
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The YOLOv4-gesture model is improved based on the YOLOv4 model. In the YOLOv4-
gesture model, the SPP spatial pyramid pooling module is added after the output of the
last layer of CSPDarknet. After a convolution layer processing, the output of the last
layer of CSPDarknet is processed with three different sizes of maximum pooling. The
three kernel sizes are 5 × 5, 9 × 9, 13 × 13, respectively. The above three outputs are
spliced with the original output through a connection processing. The model sensibility
field can be enlarged by the maximum pooling layer while the feature map is unchanged.
The three maximum pooling processes with different sizes in the SPP model can not only
obtain the local receptive field of the feature map, but also obtain the near global receptive
field information. The expression ability of feature map can be improved by the fusion
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scale receptive field effectively. The detection performance can be improved by effectively
separate important information under the SPP model. Therefore, to enhance the expression
ability of feature map to receptive fields at different scales, the SPP model is added after the
other two sampling ports of the backbone network. The target features of local regions and
the target feature information under the global feature map can be enriched. The detection
effect of the YOLOv4 model can be improved while the accuracy of target positioning
and classification is increased. The schematic diagram of adding the SPP pyramid pool
structure to YOLOv4 network structure is shown in Figure 7.
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2.5. Motion Blur Reduction of Input Image

There is a certain relative motion between the robot camera and the hand in the
process of human–computer interaction which is not easy to avoid. The decline of target
recognition and judgment quality can be caused by the capture of blur gesture images. The
machine recognition of unprocessed blurred images not only has a poor effect, but also
often takes more time. The low tolerance of motion images makes the network unable to
meet the demand of real-time human–computer interaction.

The existing image restoration tasks can be implemented by using the ResNet ar-
chitecture or multi-scale input to remove image blur. However, the multi-scale method
takes a long time and consumes too much memory. For the image with known motion
kernel, the method of adding filter is usually used directly. Although the method of
adding filter is very fast, it has no good effect on the processing of irregular blurred images.
The blurred images with unknown motion kernel can be processed by the Deblurganv2
model [28]. The network structure diagram of the Deblurganv2 is shown in Figure 8. The
Deblurganv2 performs feature fusion based on FPN structure. The relative discriminator
is used as a discriminator. The loss is distinguished by combining global and local scales.
The FPN structure includes the bottom-up and top-down paths. The bottom-up path is a
convolution network for the feature extraction. The spatial resolution is down sampled in
the bottom-up process. More semantic feature information is extracted and compressed.
Five different scales of the final characteristic map as output are finally obtained. These
features are then unsampled to a quarter of the input size and connected into a tensor. This
tensor contains different levels of semantic information. An upper sampling layer and
a convolution layer to restore clear images and remove artifacts are finally added in the
Deblurganv2 network. At the same time, the network also introduces a jump connection
from input to output in order to focus on the residual. Different image processing effects
can be obtained when different backbone networks are used for training. When using a
relatively complex backbone network, the image deblurring effect is better, but it takes a
longer time for training. To obtain more efficient blur image processing, a lighter backbone
network Mobilenet is selected for training in the real-time interactive application scenario.
The Deblurganv2 not only improves the image quality after deblurring, but also can easily
design a model with low computational cost. An efficient real-time processing of blurred
images can be realized by using the Deblurganv2 model.
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3. Dataset and Experimental Environment Construction
3.1. Dataset Establishment and Augmentation Optimization

Due to the limitation of image extraction environment, the training data of network
model has high similarity and poor robustness, which cannot produce good results in the
training of a neural network [29]. In the actual gesture recognition process, the difficulty
of network recognition and detection can be increased by different lighting conditions,
background features, hand skin color, and the distance or angle between the camera with
the acquisition camera. The human–computer interaction gesture data sets in the aerospace
space are difficult to obtain and limited in quantity. To make the network better adapt to
the aerospace operation environment, this article enhances the original data set. The data
set is processed by distorting the color gamut channel, adjusting the image scale, clipping
random image, adding random illumination, adjusting the image saturation, changing the
image contrast, adding filtering and noise to obtain a model with higher generalization
ability. The generalization ability of the network can be increased by such adjustment.
The recognition effect of different gestures can be augmented and improved by using the
dataset which merged the original dataset and the enhanced images. The gesture images
before and after augmentation are shown in Figure 9.
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The neural network recognition is better when the target is complete, the background
is clear, and the light is good. However, in the actual interaction process, the radiation, the
fluctuation of the space station, and the movement of the hand can lead to the changes
of the images collected by the robots. The information content of the image acquired will
be reduced. The quality of network training and recognition is reduced by using the low
information contained image. The motion blur of the collected image is caused by the
movement of the hand during the actual image acquisition. The reduction of the amount
of information contained in the image caused the poor network training effects. Therefore,
to reduce the image motion blur, Wiener (minimum mean square error) filtering combined
with bilateral filtering is selected to improve network performance.
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The Wiener filtering is an adaptive minimum mean square error filter, can process
pictures with noise very well [30]. The algorithm assumes that the input signal is the
sum of the useful signal and the noise signal. To find the estimate of the uncontaminated
images, the minimum mean square error criterion is employed. The mean square value of
the difference between the filter output signal and the desired signal should be as small
as possible. The image is clearer while the mean square deviation between the output
signal of the filter and the desired signal is the smaller [31]. The bilateral filtering is a
Gauss filtering function which is based on the spatial distribution. The values of pixels
farther away do not have much effect the pixel value on the edge. The weighted average
method is adopted in the bilateral filtering. The intensity of the pixel is expressed by the
weighted average of the brightness values of the surrounding pixels. The motion blur
images can be improved by the Wiener filtering and the bilateral filtering. Since an image
is composed of many pixels, the image processing is the processing of pixels. The Wiener
filtering and the bilateral filtering have different processing methods for the pixels. The
effect of filtering is different with different emphasis. For the motion blurred images in the
dataset, different effects can be obtained by adding a single or different filter superposition.
When the appropriate parameters are selected, the processing effects of different filters on
blurred images are shown in Figure 10.
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In Figure 10, the motion blur image obtained for the collection is superimposed on the
processing effect map after different filtering. Among them, the original motion-blurred
image is given in Figure 10a. The processing effect map after superimposed Wiener
filtering is shown in Figure 10b. The effect map selected after trial and error is presented in
Figure 10c when the Wiener filtering and bilateral filtering are superimposed. According
to Figure 10, it can be concluded that although the use of Wiener filter also has a certain
effect on the processing of blurred images, the effect of using the superposition method of
two filters is better.

3.2. Establishment of Experimental Environment

To compare the actual training and recognition effects of the models, the original
model needs to be modified for experimental comparison. The performance parameters of
different structural models can be obtained by training the recompiled models. Network
training is divided into blur image processing module and gestures target detection module.
This experiment is based on the Win10 system. The experiment hardware configuration is
shown in Table 1. The experimental effect is more significant with a higher configuration.
The Pychram software is used to compile the model. The Anaconda software is used
to manage Python and install third-party libraries. By calling different libraries, the
configuration of model training environment is configured. The model is compiled by
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using a highly modular Tensorflow framework. In order to make the experimental results
more comparable, each different structural model is trained in the same environment. The
results were compared. The verification environment of experiment is shown in Table 2.
The parameters of the training network are shown in Table 3.

Table 1. Experiment hardware configuration.

System Central Processing Unit

Win10-64bit Intel(R) Core (TM) i7-5500U CPU @ 2.40GHz

Table 2. Verification environment of the experiment.

Model Tensorflow Keras Numpy Opencv-Python

DeblurGanv2 2.3.0 2.4.3 1.19.2 4.5.1.48

YOLOv4
YOLOv4-gesture

YOLOv4-motion-blur-gesture
1.14.0 2.3.1 1.19.4 4.5.0

Table 3. Training network parameters.

Parameter Value

Batch size 2
Learning rate 0.001

Init_epoch 0
Freeze_epoch 50

Unfreeze_epoch 100
Fixed image size 416*416

Based on VOC format datasets, the training of the neural network is executed. The
verification datasets are static gesture images collected by the rear camera of the mobile
phone in common use scenarios. Four different gestures are defined, they are forward,
stop, victory, and holding. Each gesture has 100 pictures. The picture size is 1080*1438.
Each gesture image set accounts for no less than 50% of the blurred images. The three
gesture original datasets total 400. After data enhancement processing, the final dataset
number is 200 images of each gesture. The final dataset is 800 in total. In general, 80% of the
dataset is used to implement the network training. In total, 20% of the dataset is employed
to verify the effect of network training. The annotation of the dataset is completed by
using Labelimg software. The annotation diagram of the dataset is shown in Figure 11.
The .xml file is generated by selecting the target gesture in the picture and entering the
gesture category. After all the datasets are marked, the .xml file is converted into a .txt
file, which contains the image path, target category, and location information of the target
gesture. The .xml file can be utilized in the later training of network. In Figure 11, the
original pictures in the dataset are annotated by Labelimg software to generate the .xml
files. Among them, the original image is given in Figure 11a. The image after labeling the
target gesture through Labelimg software is given in Figure 11b. The .xml file generated
after image annotation is given in Figure 11c. The .xml file contains the information such
as the reading route of the files, the size of the pictures, the target category, the location of
the target boxes, and the sizes of the target boxes.
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4. Network Training and Model Effect Analysis
4.1. Model Performance Evaluation

The network ROC curve, PR curve, network mAP value, and the time which is
taken to recognize randomly selected images are selected as the performance evaluation
indicators. The YOLOv4-gesture model is combining with k-means++, the CBAM and SPP
mechanism on the basis on the YOLOv4 model. The YOLOv4-motion-blur-gesture model
adds the DeblurGanv2 network basis on the YOLOv4-gesture model to preprocessing the
blur images. The network training and effect comparison are carried out under the same
parameters. The evaluation of the model is judged from two dimensions: accuracy and
real-time. The schematic diagram of network sample allocation is shown in Figure 12. In
Figure 12, the positive samples that are correctly classified are represented as True Positives
(TP). The negative samples that are correctly classified are defined as True Negatives (TN).
The negative samples that are incorrectly assigned as positive samples are represented as
False Positives (FP). The positive samples that are incorrectly assigned as negative samples
are represented as False Negatives (FN). The ratio of correctly classified positive samples
among all positive samples is called accuracy. The ratio of the correctly classified positive
samples to all the actual positive samples is called recall rate.
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4.2. Effect Analysis of Motion Blur Gesture Detection

The target recognition algorithm based on the deep learning is utilized to complete
the recognition of static gestures. The training of the deep learning neural network should
be done first to complete the automatic recognition task of static gestures. After the
corresponding algorithm is given, the features of an image in the dataset can be learned by
training the neural network and generating weights at the same time. The weight out is the
criterion for finding and judging the target. Then, the task of recognizing the target gesture
can be completed by writing the weight file into the model algorithm. The processing of
network input motion blur images is realized through the learning and training of dynamic
blur and clear images through the network.
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4.2.1. Image Motion Blur Reduction Effect

Motion blurred images exist widely in the process of human–computer interaction,
which interferes with target recognition. To make the network have better detection and
recognition ability for motion blurred images, DeburGanv2 network module is inserted
before the input channel recognized by YOLOv4model. The Deburganv2 network module
is used to process the input unknown blur kernel image to realize the optimization of
the motion image. The conclusion is obtained by comparing the effect and processing
time between the blurred images and the processed blurred images. The motion blurred
image processing effects of four different gestures compared in the experiment are shown
in Figure 13. The DeburGanv2 network has an excellent processing effect for four kinds of
gestures and can remove the motion blur in the image well. The MobileNet is used as the
backbone network to train DeburGanv2 network. In terms of processing time, the YOLOv4
target detection network added to the DeburGanv2 network to process blurred images
has increased by 10%. In terms of network recognition effect, the accuracy of YOLOv4
target detection model with the DeburGanv2 network for blur image processing has been
increased by 30%.
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4.2.2. Motion Blur Gesture Detection Accuracy and Recognition Speed Effect

To obtain more reliable clustering results, the K-means++ clustering algorithm is used
to replace the original K-means clustering algorithm. The prior frame sizes calculated
under different clustering algorithms are used for network training. The frame selection
effects of the two methods are compared to draw a conclusion. The network detection
effect chart under the k-means and k-means++ clustering algorithms is shown in Figure 14.
The experiment compared the frame selection effects of four different gestures. The frame
selection integrity of victory gesture and the accuracy of target recognition are the most
different. The improvement of the priori boxes clustering algorithm achieves good results.
In Figure 14, the using of k-means++ clustering algorithm is not prone to the invalid
selection. The k-means++ clustering algorithm has higher frame selection integrity for
target gestures. In contrast, the more complete target gesture selection effect can be obtained
by using the k-means++ clustering algorithm to reset. The training effect of the network
is improved with the improvement of the superior target selection degree. The above
improvements play a important role in the recognition of specific targets.
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To verify the effectiveness of adding the SPP and CBAM module in the YOLOv4
model, the ablation experiments are carried out in this article. The SPP module and CBAM
module are added into the YOLOv4 to build the YOLOv4-SPP model and YOLOv4-CBAM
model. The YOLOv4-gesture model is obtained by collaborating with the YOLOv4-SPP
model and YOLOv4-CBAM model. The three models are trained with the same parameters.
The changes of mAP of the three models during training are shown in Table 4. Based on
Table 4, it can be concluded that the addition of the SPP and CBAM modules improved
the performance of YOLOv4 network. When the epoch is 100, the mAP value of the
YOLOv4-SPP model improved by 2.37%, the YOLOv4-CBAM model improved by 4.96%,
the YOLOv4-gesture model improved by 8.28%. Therefore, the proposed YOLOv4-gesture
model is effective.

Table 4. The mAP values of the three models under different epochs.

Model mAP (epoch = 50) mAP (epoch = 75) mAP (epoch = 100)

YOLOv4 60.33% 73.66% 88.48%
YOLOv4-SPP 64.76% 78.21% 90.85%

YOLOv4-CBAM 64.83% 83.74% 93.44%
YOLOv4-gesture 65.35% 85.57% 96.76%

The performance effect of the network under different task requirements can be
reflected by the ROC curves. In different application tasks, different cut-off points can be
selected according to requirements to compare the performance of the model. The more
forward the position is, the higher the precision is required. On the contrary, it requires
higher recall. The ROC curves are drawn with the false positive rate of the horizontal
axis and the true rate of the vertical axis. The threshold range of true positive rate is from
0 to 1. Therefore, the closer the curve is to the (0,1) point, the more comprehensive the
network effect. The ROC curves of different structure networks are shown in Figure 15. The
YOLOv4-motion-blur-gesture is the final network model of the experiment. To facilitate
the evaluation of the comprehensive ability of the model, the straight line passing through
the point (0,1) at an angle of 45◦ to the vertical axis is drawn in Figure 15. In Figure 15, P
is the intersection point between the straight line and the ROC curve of YOLOv4-motion-
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blur-gesture model. The most comprehensive effect of the YOLOv4-motion-blur-gesture
model is represented by the cut-off point P. In Figure 15, the classification effect of the
YOLOv4-motion-blur-gesture model is better than YOLOv4-gesture and YOLOv4 model
under any limit value condition. The best effect is the YOLOv4-motion-blur-gesture model,
it is closest to the (0,1) point.
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The ratio of the truly positive samples in the predicted positive results is represented
as the accuracy rate (Precision). The correct predicted sample ratio in the original sample
is referred to as Recall. To facilitate the evaluation of the comprehensive ability of the
model, the straight line passing through the point (0,0) at an angle of 45◦ to the horizontal
axis is drawn in Figure 16. The intersection between the PR curve and diagonal line
is the classification result under the comprehensive consideration of the network. The
relationship between the precision rate and the recall rate is represented by the PR curve.
The network PR graph and mAP values of three models are shown in Figure 16. In
Figure 16, it can be concluded that the YOLOv4-motion-blur-gesture model has the best
effect. The effect of YOLOv4 is relatively poor. In target detection, the average accuracy
(AP) is the area under the PR curve. The mAP value of the YOLOv4-motion-blur-gesture is
higher than other two models, reaching 96.76%.
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In the real-time monitoring reference environment, the speed of network target recog-
nition also affects the final work efficiency. The improved YOLOv4-gesture and YOLOv4-
motion-blur-gesture models are used to recognize 100 randomly selected gesture pictures.
The identification time sampling diagram of the three models is shown in Figure 17. The
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average recognition time of YOLOv4-gesture and YOLOv4-motion-blur-gesture models is
longer than the YOLOv4 model. Moreover, whether the input is a blurred image or a clear
image, the performance of YOLOv4-motion-blur-gesture model is more stable. In a good
interactive environment, the YOLOv4-motion-blur-gesture model may take longer time
than YOLOv4 model. However, in the aerospace space with harsh environment, blurred
images exist widely, the YOLOv4-motion-blur-gesture model proposed in this article has
higher reliability.
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It can be seen from Figures 14–17 that the YOLOv4-motion-blur-gesture model pro-
posed in this article has made great progress in motion blurred gesture detection. The
accuracy, precision, recall, mAP value of target detection, and the detection speed of motion
blurred image are improved in the YOLOv4-motion-blur-gesture model. To express the
improvement effect obtained by the YOLOv4-motion-blur-gesture model more intuitively,
the mAP value and the average detection time of the three models are shown in Table 5. In
Table 5, the average detection accuracy and the mAP value of the YOLOv4-gesture model
are improved by 7.07% and 6.09%, respectively, compared with the YOLOv4 model. The
YOLOv4-gesture model also reduces the average detection time of targets by 0.27 s. Com-
pared with the YOLOv4-gesture model, the average detection accuracy and the mAP value
of YOLOv4-motion-blur-gesture model are improved by 1.37% and 2.19%, respectively.
The YOLOv4-motion-blur-gesture model also reduced the average detection time of the
target by 0.24 s. Compared with the YOLOv4 model, the YOLOv4-motion-blur-gesture
model has a greater improvement. The average detection accuracy and the mAP value
were improved by 8.44% and 8.28%, respectively. The YOLOv4-motion-blur-gesture model
also reduced the average detection time of the target by 0.51 s.

Table 5. Average detection accuracy, mAP, and average detection time of three models.

Model Average Detection Accuracy mAP Average Detection Time

YOLOv4 89.35% 88.48% 3.19s
YOLOv4-gesture 96.42% 94.57% 2.92s

YOLOv4-motion-blur-gesture 97.79% 96.76% 2.68s

5. Conclusions

The recognition effect of network on the gestures of motion blur was researched in this
article. In the process of human–computer interaction, the phenomenon of image motion
blur is produced by the movement between the hand and the camera. The motion blur
affects the network recognition and is not easy to avoid. To improve the speed and accuracy
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of motion blurred gestures recognition, the research of YOLOv4 algorithm was studied
from the two aspects of motion blurred image processing and model optimization. The
DeblurGanv2 model is used to remove the motion blur of the gestures in YOLOv4 network
input pictures. The K-means++ algorithm is used to cluster the priori boxes for obtaining
the more appropriate size parameters of the priori boxes. The CBAM attention mechanism
and SPP spatial pyramid pooling structure are added to YOLOv4 model to improving
the efficiency of network learning. The dataset for network training is designed for the
human–computer interaction in aerospace space. To reduce the redundant features of the
captured images and enhance the effect of model training, the Wiener filter and bilateral
filter are superimposed on the blurred images in the dataset to simply remove the motion
blur. The augmentation of the model is executed by imitating different environments.

The network structure optimization is obtained through experimental comparison.
A YOLOv4-gesture model is built, which collaborates with K-means++ algorithm, the
CBAM and SPP mechanism. A DeblurGanv2 model is built to process the input images of
the YOLOv4 target recognition. The YOLOv4-motion-blur-gesture model is composed of
the YOLOv4-gesture and the DeblurGanv2. Based on the original data set used in model
training, the augmented simulation under aerospace conditions was carried out to complete
the expansion. The YOLOv4-gesture model and YOLOv4-motion-blur-gesture model were
compared with the YOLOv4 model by drawing the ROC curves, PR curves, and time
curves for the image detection and mAP histogram in the experiment. The proposed
model has a stable recognition effect in the real-time interaction of motion blur gestures, it
improves the network training speed by 30%, the target detection accuracy by 10%, and the
value of mAP by about 10%. The experimental results show that the YOLOv4-motion-blur-
gesture model is reasonable and can be better adapted to the real-time human–computer
interaction application.

The YOLOv4-motion-blur-gesture model proposed in this article can well meet the mo-
tion blur gesture recognition in the real-time interactive environment. The model proposed
in this article realizes the real-time recognition of blur images with high accuracy without
much change in the detection speed. The radiation, space station turbulence, and hand
motion blur always present in the aerospace environment. In the harsh space operation
environment, it can realize high inclusive gesture recognition. The model also greatly
improved the training speed and can carry out targeted training for specific application
environment to get better results. Further research should be based on the extended data
set of simulated aerospace environment to carry out the simulation experiments in special
environments. The research results of this article can not only provide a technical basis
for the multimodal human–computer interaction of electrically driven large-load-ratio
multi-legged robot in interstellar exploration, but also can be applied to detection and
interaction scenes in other complex environments with high real-time requirements.
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