
applied  
sciences

Article

State-Feedback Control in Descriptor Discrete-Time Fractional-
Order Linear Systems: A Superstability-Based Approach

Kamil Borawski

����������
�������

Citation: Borawski, K. State-

Feedback Control in Descriptor

Discrete-Time Fractional-Order

Linear Systems: A Superstability-

Based Approach. Appl. Sci. 2021, 11,

10568. https://doi.org/10.3390/

app112210568

Academic Editor: Jan Awrejcewicz

Received: 8 September 2021

Accepted: 8 November 2021

Published: 10 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of
Technology, Wiejska 45D Street, 15-351 Bialystok, Poland; k.borawski@pb.edu.pl

Abstract: In this article, the superstabilizing state-feedback control problem in descriptor discrete-
time fractional-order linear (DDFL) systems with a regular matrix pencil is studied. Methods
for investigating the stability and superstability of the considered class of dynamical systems are
presented. Procedures for the computation of the static state-feedback (SSF) and dynamic state-
feedback (DSF) gain matrices such that the closed-loop DDFL (CL-DDFL) system is superstable
are presented. A numerical example is used to show the efficacy of the presented approach. Our
considerations were based on the Drazin inverse matrix method.
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1. Introduction

Descriptor systems (also known as singular systems) play an important role in modern
control theory, allowing us to model and analyze constrained dynamical systems [1–3].
These restrictions can be naturally imposed on a system (as a consequence of physical laws,
e.g., the law of conservation of energy) or determined by the engineer (e.g., the constrained
area of work).

In the second half of the 20th century, many papers and monographs on descriptor
systems were written, laying the foundations for this theory [4–11]. An overview of the
state of the art in the field of descriptor systems theory can be found in [1–3,7]. The
stability of such systems was examined in [2,3,7,12,13]. Static and dynamic feedback
control in descriptor systems was also investigated for state feedback [2,7,14] and the
output feedback [2,7,15–17]. Descriptor systems theory can be used in many areas, such
as electrical and mechanical engineering, robotics, fluid mechanics, chemical engineering,
economics, and demography, see e.g., [2,4,8,18–20].

In recent years, the analysis and synthesis problems of dynamical systems described by
fractional-order differential (or difference) equations have attracted a lot of attention [3,20–23].

The notion of the practical stability of positive fractional discrete-time systems was
introduced in [24] and conditions for practical stability were provided in [24,25]. The
stability of discrete-time linear systems with delays was investigated in [26,27].

Superstable systems are a subclass of asymptotically stable systems, in which dy-
namics are more restricted. Such systems provide some practically important properties,
e.g., superstability (as opposed to stability) remains under the presence of time-varying
and nonlinear perturbations, which allows researchers to solve problems relating to the
synthesis of robust systems easily. Moreover, superstable systems ensure the elimination of
peaks or sharp increases in the state vector trajectory [28–30].

In this article, the superstabilizing state-feedback control problem in DDFL systems
is studied. The main advantage of the presented approach is that it can be applied to the
analysis of descriptor systems properties which are determined by matrix entries, such as
positivity and superstability. This study is an extension of the results presented in [31].

The organization of the paper is as follows. In Section 2 the considered state-space
model is introduced. Section 3 is devoted to the application of the Drazin inverse to the
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analysis of DDFL systems. In Section 4 an equivalent model of this class of dynamical
systems is presented. Methods for investigating stability and superstability are given in
Section 5. In Sections 6 and 7 descriptor systems with static and dynamic state-feedback
are studied and procedures for the computation of the gain matrices such that the closed-
loop system is superstable are given. A numerical example showing the efficacy of the
discussed approach is presented in Section 8. In Section 9 some concluding remarks and
open problems are provided.

The following system of symbols will be used in the paper: R for the set of real
numbers, Rn×m for the set of n×m real matrices, C for the set of complex numbers, Z+ for
the set of nonnegative integers, and In for the n× n identity matrix.

2. Considered State-Space Model

Let us consider the DDFL system in the form

E∆αxi+1 = Axi + Bui, 0 < α < 1, i ∈ Z+, (1)

where xi ∈ Rn is the state vector, ui ∈ Rm is the input vector, E, A ∈ Rn×n, B ∈ Rn×m and
∆αxi is the Grünwald–Letnikov fractional-order backward difference defined by [21]

∆αxi =
i

∑
j=0

(−1)j
(

α

j

)
xi−j, (2)

where (
α

j

)
=

{
1 for j = 0,
α(α−1)...(α−j+1)

j! for j = 1, 2, 3, . . . .
(3)

In descriptor systems detE = 0 and therefore the matrix E is not invertible.

Definition 1. Let A, B be some matrices of the same size. A set of such matrices of the form A+λB
is called a matrix pencil, where λ is a parameter. If A, B are square matrices and det[A + λB] 6= 0,
then the pencil is called a regular one.

According to Definition 1 we distinguish two subclasses of descriptor systems:

1. with the regular matrix pencil of the pair (E, A), i.e., det[Eλ− A] 6= 0 for some λ ∈ C;
2. with the singular matrix pencil of the pair (E, A), i.e., det[Eλ − A] = 0 for some

λ ∈ C.

If the matrix pencil of the pair (E, A) is regular, then the solution of the state equation
of a descriptor system exists and it is unique for any consistent initial condition [2,7].

There are several methods for analyzing the system (1) with the regular matrix pen-
cil, which are based on the Drazin inverse [5], the Laurent series expansion [9] and the
Weierstrass–Kronecker decomposition [11] methods.

3. Application of the Drazin Inverse

Let us assume that the matrix pencil of the pair (E, A) of the system (1) is regular.
As a consequence, we have det[Ec− A] 6= 0 for some c ∈ C. Premultiplication of (1) by
[Ec− A]−1 yields

Ē∆αxi+1 = Āxi + B̄ui, (4)

where

Ē = [Ec− A]−1E, Ā = [Ec− A]−1 A, B̄ = [Ec− A]−1B. (5)
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It is well known that premultiplication of a matrix equation by the nonsingular matrix
does not change its solution. Therefore, both Equations (1) and (4) have the same solution
xi. The substitution of (2) into (4) yields

Ēxi+1 = Āαxi +
i

∑
j=1

Ēcjxi−j + B̄ui, i ∈ Z+, (6)

where

Āα = Ā + Ēα. (7)

and

cj = (−1)j
(

α

j + 1

)
. (8)

Observe that the values of the coefficients cj determined by (8) highly decrease for
increasing j. Therefore, in many cases the upper bound of the summation can be limited by
some natural number L, which is called the length of practical implementation [24]. Hence,
we can write Equation (6) in the form

Ēxi+1 = Āαxi +
L

∑
j=1

Ēcjxi−j + B̄ui (9)

with x−k = 0, k = 1, 2, . . . .

Definition 2 ([3,7]). The Drazin inverse of Ē ∈ Rn×n, denoted by ĒD ∈ Rn×n, is a matrix
satisfying the following conditions

ĒĒD = ĒD Ē, ĒD ĒĒD = ĒD, ĒD Ēq+1 = Ēq, (10)

where q is the index of Ē, i.e., the smallest nonnegative integer such that

rankĒq = rankĒq+1. (11)

Every square matrix has its own unique Drazin inverse [3,5,7]. For a nonsingular
matrix the Drazin inverse is equivalent to the standard matrix inverse. Some methods for
the computation of the Drazin inverse can be found in [3].

Lemma 1 ([3,7]). The properties of the matrices Ē and Ā given by (5) are as follows:

ĀĒ = ĒĀ, ĒD Ā = ĀĒD, ĀD Ē = ĒĀD, ĀD ĒD = ĒD ĀD, (12)

kerĀ ∩ kerĒ = {0}, (13)

(In − ĒĒD)ĀĀD = In − ĒĒD, (In − ĒĒD)(ĒĀD)q = 0. (14)

Ē = T
[

J 0
0 N

]
T−1, ĒD = T

[
J−1 0
0 0

]
T−1, Ā = T

[
A1 0
0 A2

]
T−1, (15)

where T ∈ Rn×n and J ∈ Rn1×n1 are nonsingular matrices, N ∈ Rn2×n2 is a nilpotent matrix, i.e.,
for some µ we have Nµ−1 6= 0, Nµ = 0 and A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , n1 + n2 = n.

Let U ⊂ Rm be the set of admissible inputs ui ∈ U and X0 ⊂ Rn be the set of consistent
initial conditions x0 ∈ X0 for which Equation (1) has a solution xi for ui ∈ U.



Appl. Sci. 2021, 11, 10568 4 of 20

Theorem 1 ([3]). The solution to Equation (6) (or equivalently (1)) for x0 ∈ X0 and ui ∈ U is
given by

xi = Φ(ĒD Āα)
i ĒĒDv +

i−1

∑
k=0

Φ(ĒD Āα)
i−k−1 ĒD B̄uk + (ĒĒD − In)

q−1

∑
k=0

(ĒĀD)k ĀD B̄ψi,k, (16)

where the vector v ∈ Rn is arbitrary, q is the index of Ē determined by (11) and

Φ(ĒD Āα)
i+1 = Φ(ĒD Āα)

i ĒD Āα +
i

∑
j=1

cjΦ
(ĒD Āα)
i−j , Φ(ĒD Āα)

0 = In, (17)

ψi,0 = ui,

ψi,1 = ψi+1,0 − αψi,0 −
i

∑
j=1

cjψi−j,0

= ui+1 − αui −
i

∑
j=1

cjui−j,

ψi,2 = ψi+1,1 − αψi,1 −
i

∑
j=1

cjψi−j,1

= ui+2 − 2αui+1 + α2ui + 2α
i

∑
j=1

cjui−j −
i+1

∑
j=1

cjui−j+1

−
i

∑
j=1

cjui−j+1 +
i

∑
j=1

cj

i−j

∑
l=1

clui−j−l

...

ψi,q−1 = ψi+1,q−2 − αψi,q−2 −
i

∑
j=1

cjψi−j,q−2.

(18)

For any admissible ui ∈ U the consistent initial conditions should satisfy the equality

x0 = ĒĒDv + (ĒĒD − In)
q−1

∑
k=0

(ĒĀD)k ĀD B̄ψ0,k, (19)

which is obtained from (16) and (17) for i = 0, the vector v ∈ Rn is arbitrary and ψ0,k ∈ Rm

is given by (18). The solution (16) of (1) for x0 ∈ X0 can be computed, substituting v = x0.
Observe that the matrices (5) and their Drazin inverses appear in the solution (16) as

products ĒĒD, ĒD Ā, ĀD Ē, ĒD B̄, ĀD B̄. This is an important property since these products
do not depend on the choice of the parameter c, unlike the matrices Ē, Ā, B̄ themselves [7].

4. Equivalent State-Space Model

We shall show that Equation (4) is equivalent to two equations (subsystems). Based
on [3,31] we obtain the following. To simplify the notation we introduce

Ā1 = ĒD Ā, B̄1 = ĒD B̄, B̄2 = (In − ĒĒD)ĀD B̄, N̄ = (In − ĒĒD)ĀD Ē. (20)

Lemma 2 ([3]). Let

x1,i = ĒĒDxi, x2,i = (In − ĒĒD)xi, (21)

x1,i + x2,i = xi. (22)

Equation (4) can be decomposed into the following equations:
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∆αx1,i+1 = Ā1x1,i + B̄1ui, (23)

N̄∆αx2,i+1 = x2,i + B̄2ui. (24)

Substituting (2) into (23)–(24) and introducing the length L of practical implementation
(the constraint on the upper limit of the summation), as in the case of (9), gives

x1,i+1 = Ā1αx1,i +
L

∑
j=1

cjĒĒDx1,i−j + B̄1ui, (25)

N̄x2,i+1 = (In + N̄α)x2,i +
L

∑
j=1

cjN̄x2,i−j + B̄2ui, (26)

where N̄ is a nilpotent matrix with the nilpotency index q and

Ā1α = Ā1 + ĒĒDα. (27)

It is not difficult to verify that the solution (16) is the sum of solutions to
Equations (25) and (26) for L = i.

5. Stability and Superstability Analysis

Methods for investigating the stability and superstability of DDFL systems will be
presented in this section.

5.1. Stability Analysis

Definition 3. The DDFL system (1) with ui = 0, i ∈ Z+ is called asymptotically stable if

lim
i→∞

xi = 0 (28)

for all consistent initial conditions x0 ∈ X0.

From the solution to Equation (26), which is a third component of (16), it follows that
for ui = 0 the vector x2,i is equal to zero for any i ∈ Z+. Taking into account (22), the
stability of the DDFL system (1) depends only on the vector x1,i, which is a solution to
Equation (25).

The stability of the DDFL system (1) can be tested using well-known methods in the
literature; see, e.g., [27]. For the analysis, either Equation (6) or (25) can be used.

Definition 4. The DDFL system (1) is called practically stable for given length L of practical
implementation if the DDFL system (9) (or equivalently (25)) is asymptotically stable. If the DDFL
system (9) (or equivalently (25)) is asymptotically stable for L→ ∞, then the DDFL system (1) is
called asymptotically stable (independent of L).

Theorem 2 ([3]). The DDFL system (1) with given length L of practical implementation is
practically stable if and only if all roots of the characteristic equation

det

[
Ēz− Āα −

L

∑
j=1

Ēcjz−j

]
= 0 (29)

are located inside the unit circle.

Taking into account that [32]

∞

∑
j=1

cjz−j = z− α− (z− 1)αz1−α (30)
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from (29) we obtain the following.

Theorem 3 ([3]). The DDFL system (1) is asymptotically stable (independent of L) if and only if
all roots of the characteristic equation

det
[

Ē(z− 1)αz1−α − Ā
]
= 0 (31)

are located inside the unit circle.

The stability of the DDFL system (1) can also be tested using the approach based on
the Equation (25).

Lemma 3. The characteristic equation of (25) has the form

det

[
Inz− Ā1α −

L

∑
j=1

ĒĒDcjz−j

]
= zn−rdet

[
Ēz− Āα −

L

∑
j=1

Ēcjz−j

]
= 0 (32)

and it has r = rankĀ1 roots of the characteristic Equation (29) along with additional n − r
zero-valued eigenvalues.

Proof. Using (15) we have

det

[
Ēz− Āα −

L

∑
j=1

Ēcjz−j

]
= det

{
T
[

Jλ− A1 0
0 Nλ− A2

]
T−1

}
= detTdet[Jλ− A1]det[Nλ− A2]detT−1

= det[Jλ− A1]det[Nλ− A2]

(33)

since detTdetT−1 = In and

λ =

(
z− α−

L

∑
j=1

cjz−j

)
. (34)

Again using (15), we can write

det

[
Inz− Ā1α −

L

∑
j=1

ĒĒDcjz−j

]
= det

{
T
[
In1 λ− J−1 A1 0

0 In2 z

]
T−1

}
= detTdet[In1 λ− J−1 A1]det[In2 z]detT−1

= zn2det[In1 λ− J−1 A1]

(35)

since detTdetT−1 = In and λ is given by (34). By (12) we have ĒĀ = ĀĒ and from (15) it
follows that NA2 = A2N if and only if A2 = γIn2 , where γ ∈ R, i.e., A2 is a scalar matrix.
Therefore, Equation (33) can be written as

det[Jλ− A1]det[Nλ− γIn2 ] = (−γ)n2det[Jλ− A1]

= (−γ)n2det[In1 λ− J−1 A1]
(36)

since det[Nλ− γIn2 ] = (−γ)n2 . Equating (33) and (36) to zero and denoting n1 = r and
n2 = n− r we obtain (32).

Taking into account the above considerations, the following theorems can be formu-
lated.
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Theorem 4. The DDFL system (1) is practically stable for a given length L of practical implemen-
tation if and only if r = rankĀ1 roots of the characteristic equation

det

[
Inz− Ā1α −

L

∑
j=1

ĒĒDcjz−j

]
= 0 (37)

lie inside the unit circle and n− r its remaining roots are zero-valued.

Theorem 5. The DDFL system (1) is asymptotically stable (independent of L) if and only if
r = rankĀ1 roots of the characteristic equation

det
[
(In − ĒĒD)z− Ā1 + ĒĒD(z− 1)αz1−α

]
= 0 (38)

lie inside the unit circle and n− r its remaining roots are zero-valued.

5.2. Superstability Analysis

The value of the free response of an asymptotically stable system decreases to zero
over time, but it may considerably increase in the initial part of the trajectory. In superstable
systems, which are a subclass of asymptotically stable systems, state variables are limited
by the value of the norm of the state vector, which decreases monotonically to zero over
time [28–30].

Furthermore, the problems of static output stabilization, the simultaneous stabilization
of more than one system, robust stabilization under matrix uncertainty, etc., are solved
easily for superstable systems [29].

In this paper the following vector and matrix norms will be used:

1. the infinity-norm of a vector xi = [xi,k] ∈ Rn

‖xi‖ = max
1≤k≤n

|xi,k|, (39)

2. the infinity-norm of a matrix A = [aij] ∈ Rn×n

‖A‖ = max
1≤i≤n

(
n

∑
j=1
|aij|

)
. (40)

Definition 5 ([29]). A matrix A = [aij] ∈ Rn×n of the discrete-time linear system

xi+1 = Axi (41)

is called superstable if

σ(A) = σ = 1− ‖A‖ > 0 (42)

or equivalently

‖A‖ < 1, (43)

where the quantity σ is called the superstability degree of the matrix A.

A superstable matrix is also a stable one, but the reverse implication is not true (a
stable matrix may not be a superstable one).

Theorem 6 ([29]). For the superstable discrete-time linear system (41) the following holds:

‖xi‖ ≤ σi‖x0‖, i ∈ Z+. (44)
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Now let us consider the DDFL system (1). From (25) and (26) for ui = 0, i ∈ Z+ we
have

xi = x1,i = ĒĒDxi, i ∈ Z+ (45)

since x2,i = 0. Taking into account (45) and (In − ĒĒD)ĒĒD = 0, Equation (25) for ui = 0,
i ∈ Z+ can also be written as

xi+1 = F̄xi +
L

∑
j=1

cjĒĒDxi−j, (46)

where

F̄ = Ā1α + Ḡ(In − ĒĒD) (47)

and the matrix Ḡ ∈ Rn×n is arbitrary.
In descriptor systems the matrix Ā1α acts as a pseudo-state matrix. From the solution

of Equation (23) it follows that Ā1α may contain insignificant entries that are further
reduced through multiplication by x0 ∈ Im ĒĒD. To eliminate such entries from the matrix
Ā1α we can use the term Ḡ(In − ĒĒD), which does not change the solution to the state
equation [3,31].

Taking into consideration (16) and (45) the solution to Equation (46) for v = x0 can be
expressed by

xi = Φ(F̄)
i ĒĒDx0, (48)

where

Φ(F̄)
i+1 = Φ(F̄)

i F̄ +
L

∑
j=1

cjΦ
(F̄)
i−j, Φ(F̄)

0 = In, Φ(F̄)
−k = 0, k = 1, 2, . . . . (49)

Let us introduce the definition of practical superstability for DDFL systems, analogous
to the definition of practical stability given in Section 5.1.

Definition 6. The DDFL system (1) is called practically superstable for a given length L of practical
implementation if the DDFL system (46) is superstable. If the DDFL system (46) is superstable for
L→ ∞, then the DDFL system (1) is called superstable (independent of L).

Theorem 7. The DDFL system (46) is superstable if there exists an arbitrary matrix Ḡ ∈ Rn×n

such that

‖F̄‖ ∈
(

d−
√

d2 − 4cL
2

;
d +

√
d2 − 4cL
2

)
for L ≥ 1 (50)

or

‖F̄‖ < 1 for L = 0, (51)

where the matrix F̄ is defined by (47) and

d = 1−
L−1

∑
j=1

cj. (52)

Proof. From Theorem 6 it follows that for a superstable system we have ‖xi+1‖ < ‖xi‖.
Let us assume that the DDFL system (46) is superstable. Hence, we obtain
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∥∥∥Φ(F̄)
i+1

∥∥∥∥∥∥Φ(F̄)
i

∥∥∥ < 1, i ∈ Z+ (53)

since ‖xi‖ ≤
∥∥∥Φ(F̄)

i

∥∥∥∥∥ĒĒDx0
∥∥. Taking into account that

∥∥∥Φ(F̄)
i+1

∥∥∥ ≤ ∥∥∥Φ(F̄)
i

∥∥∥‖F̄‖+ ∥∥∥∥∥ L

∑
j=1

cjΦ
(F̄)
i−j

∥∥∥∥∥ (54)

the inequality (53) can be rewritten as [3]

∥∥∥Φ(F̄)
i+1

∥∥∥∥∥∥Φ(F̄)
i

∥∥∥ ≤ ‖F̄‖+
∥∥∥∥∥ L

∑
j=1

cjΦ
(F̄)
i−j

∥∥∥∥∥∥∥∥Φ(F̄)
i

∥∥∥

≤ ‖F̄‖+

∥∥∥∥∥∥∥∥∥∥∥
[

c1In c2In . . . cLIn
]


Φ(F̄)
i−1

Φ(F̄)
i−2
...

Φ(F̄)
i−L



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
[

F̄ c1In . . . cL−1In
]


Φ(F̄)
i−1

Φ(F̄)
i−2
...

Φ(F̄)
i−L



∥∥∥∥∥∥∥∥∥∥∥
≤ ‖F̄‖+

L
∑

j=1
cj

‖F̄‖+
L−1
∑

j=1
cj

< 1.

(55)

From (55) we have

‖F̄‖2 + ‖F̄‖
(

L−1

∑
j=1

cj − 1

)
+

L

∑
j=1

cj −
L−1

∑
j=1

cj < 0. (56)

The conditions (50)–(52) are obtained by solving (56) with respect to ‖F̄‖.

Theorem 8. The DDFL system (46) is superstable for L→ ∞ if there exists an arbitrary matrix
Ḡ ∈ Rn×n such that

‖F̄‖ < α, (57)

where the matrix F̄ is defined by (47).

Proof. From the equality [25]

∞

∑
j=1

cj = 1− α. (58)

and (56) for L→ ∞ we get

‖F̄‖2 − ‖F̄‖α < 0 (59)
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The condition (57) is obtained by solving (59) with respect to ‖F̄‖.

Combining Theorems 7 and 8 gives the following.

Theorem 9. The DDFL system (1) is:

1. practically superstable for a given length L of practical implementation if there exists an
arbitrary matrix Ḡ ∈ Rn×n such that (50)–(52) holds;

2. superstable (independent of L) if there exists an arbitrary matrix Ḡ ∈ Rn×n such that (57)
holds.

The matrix Ḡ shall be chosen so that the norm ‖F̄‖ takes its minimal value.

6. Static State-Feedback Synthesis

In this section DDFL systems with SSF will be studied. The procedure for the compu-
tation of the gain matrix such that the CL-DDFL system is superstable will be given.

6.1. Problem Formulation

Let us consider the DDFL system (1) with the SSF

ui = −K̄xi = −K̄(x1,i + x2,i), (60)

where x1,i ∈ Rn, x2,i ∈ Rn are defined by (21) and K̄ ∈ Rm×n. Substitution of (60) into (25)
and (26) yields

x1,i+1 = (Ā1α − B̄1K̄)x1,i +
L

∑
j=1

cjĒĒDx1,i−j − B̄1K̄x2,i, (61)

N̄x2,i+1 = (In + N̄α− B̄2K̄)x2,i +
L

∑
j=1

cjN̄x2,i−j − B̄2K̄x1,i. (62)

The problem of the SSF synthesis is to find the gain matrix K̄ for a given fractional
order α and the matrices Ā1α, B̄1, B̄2, N̄ such that the CL-DDFL system (61) and (62) is
superstable.

6.2. Problem Solution

Lemma 4 ([31]). The matrix K̄ can be chosen so that

K̄x1,i 6= 0 and K̄x2,i = 0

or
K̄x1,i = 0 and K̄x2,i 6= 0.

If we choose the matrix K̄ such that K̄x2,i = K̄(In − ĒĒD)xi = 0, i.e., K̄(In − ĒĒD) = 0,
then from (61) and (62) we obtain

x1,i+1 = ĀC1x1,i +
L

∑
j=1

cjĒĒDx1,i−j, (63)

N̄x2,i+1 = (In + N̄α)x2,i +
L

∑
j=1

cjN̄x2,i−j − ĀC2x1,i, (64)

where

ĀC1 = Ā1α − B̄1K̄, ĀC2 = B̄2K̄. (65)

Taking into account the considerations presented in Sections 3 and 4, the solution to
Equation (63) is given by
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x1,i = Φ(ĀC1)
i ĒĒDx10 = Φ(ĀC1)

i ĒĒDx0, (66)

where x10 = ĒĒDx0 and Φ(ĀC1)
i is defined analogously to (49) for the matrix ĀC1 given by

(65). The solution to Equation (64) has the form [3]

x2,i =
q−1

∑
k=0

N̄k ĀC2θi,k, (67)

where

θi,0 = x1,i,

θi,1 = θi+1,0 − αθi,0 −
L

∑
j=1

cjθi−j,0 = x1,i+1 − αx1,i −
L

∑
j=1

cjx1,i−j,

...

θi,q−1 = θi+1,q−2 − αθi,q−2 −
L

∑
j=1

cjθi−j,q−2

(68)

and θi,−k = 0, x1,−k = 0, k = 1, 2, . . . . Given that

x1,i+1 = ĀC1x1,i +
L

∑
j=1

cjĒĒDx1,i−j,

x1,i+2 = ĀC1x1,i+1 +
L+1

∑
j=1

cjĒĒDx1,i−j+1

= Ā2
C1x1,i + ĀC1

L

∑
j=1

cjĒĒDx1,i−j +
L+1

∑
j=1

cjĒĒDx1,i−j+1

...

x1,i+h = ĀC1x1,i+h−1 +
L+h−1

∑
j=1

cjĒĒDx1,i−j+h−1

(69)

from (68) and (69) we obtain

θi,0 = x1,i,

θi,1 = ĀC1x1,i,

θi,2 = Ā2
C1x1,i,

...

θi,q−1 = Āq−1
C1 x1,i

(70)

and thus the solution (67) takes the form

x2,i =
q−1

∑
k=0

N̄k ĀC2 Āk
C1x1,i. (71)

Lemma 5. For the DDFL system (1) with the SSF (60) such that K̄x2,i = 0 we have lim
i→∞

x2,i = 0

if and only if lim
i→∞

x1,i = 0.

Proof. The proof follows immediately from (71).
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In consequence, the stability of the CL-DDFL system (63)–(65) depends only on
Equation (63) and for its analysis we can use Theorems 2–5, substituting:

1. (Āα − B̄K̄) for Āα in Theorems 2 and 4;
2. ĀC1 for Ā1α in Theorems 3 and 5.

The superstability of the CL-DDFL system (63)–(65) can be tested using the following
approach.

Theorem 10. The DDFL system (1) with the SSF (60) such that K̄x2,i = 0 is practically super-
stable for given length L of practical implementation if there exists an arbitrary matrix G such
that:

1. the conditions (50)–(52) are satisfied for the norm of the matrix

F̄C = ĀC1 + Ḡ(In − ĒĒD); (72)

2. the following inequality is true ∥∥∥∥∥q−1

∑
k=0

N̄k ĀC2 F̄k
C

∥∥∥∥∥ ≤ 1. (73)

Proof. The proof for the first condition follows immediately from Theorem 9. If the norm
of (72) satisfies the conditions (50)–(52), then from (66) we have

‖x1,i‖ ≤
∥∥∥Φ(ĀC1)

i

∥∥∥∥∥∥ĒĒDx0

∥∥∥ ≤ σi‖x0‖, (74)

where ĒĒDx0 = x0 since x0 ∈ ImĒĒD. Using (22), (66) and (71) we obtain

xi = x1,i + x2,i =

(
In +

q−1

∑
k=0

N̄k ĀC2 Āk
C1

)
x1,i

=

(
In +

q−1

∑
k=0

N̄k ĀC2 Āk
C1

)
Φ(ĀC1)

i ĒĒDx0.

(75)

Note that

xi =

(
In +

q−1

∑
k=0

N̄k ĀC2 F̄k
C

)
Φ(F̄C)

i ĒĒDx0 =

(
In +

q−1

∑
k=0

N̄k ĀC2 Āk
C1

)
Φ(ĀC1)

i ĒĒDx0, (76)

since Φ(F̄C)
i ĒĒD = Φ(ĀC1)

i ĒĒD and F̄k
C ĒĒD = Āk

C1ĒĒD. The matrix Φ(F̄C)
i is given by (49)

for F̄C defined by (72). It is easy to show [31] that the norm of (76) can be expressed by

‖xi‖ ≤
∥∥∥Φ(ĀC1)

i

∥∥∥∥∥∥ĒĒDx0

∥∥∥ (77)

or

‖xi‖ ≤
∥∥∥∥∥q−1

∑
k=0

N̄k ĀC2 Āk
C1

∥∥∥∥∥∥∥∥Φ(ĀC1)
i

∥∥∥∥∥∥ĒĒDx0

∥∥∥. (78)

If the condition (73) is satisfied, then from (74), (77) and (78) it follows that the norm of the
state vector decreases monotonically and the CL-DDFL system is superstable.

Observe that the term Ḡ(In − ĒĒD), which eliminates insignificant elements that may
occur in the matrix ĀC1, does not change the solution xi and the choice of the matrix Ḡ is
arbitrary.

Theorem 11. The DDFL system (1) with the SSF (60) such that K̄x2,i = 0 is superstable if there
exists an arbitrary matrix G such that:
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1. the condition (57) is satisfied for the norm of the matrix F̄C defined by (72);
2. the inequality (73) is true.

Proof. The proof follows immediately from Theorems 9 and 10.

7. Dynamic State-Feedback Synthesis

In this section DDFL systems with DSF will be studied. The procedure for the compu-
tation of the gain matrices such that the CL-DDFL system is superstable will be given.

7.1. Problem Formulation

Let us consider the DDFL system (1) with the DSF

ui = −H∆αxi+1 − Kxi, (79)

where H ∈ Rm×n, K ∈ Rm×n. Substituting (79) into (1) we obtain

(E + BH)∆αxi+1 = (A− BK)xi. (80)

The problem of the DSF synthesis is to find the gain matrices K, H for given fractional
order α and the matrices E, A, B such that the CL-DDFL system (80) is superstable.

7.2. Problem Solution

The DSF synthesis problem can be solved in two steps. First, we find the matrix H
such that

det(E + BH) 6= 0. (81)

Premultiplication of (80) by (E + BH)−1 gives

∆αxi+1 = ACxi, (82)

where
AC = (E + BH)−1(A− BK). (83)

Taking into consideration (2) and introducing the length L of practical implementation
(the constraint on the upper limit of the summation), as in the case of (9), from (82) we
obtain

xi+1 = ACαxi +
L

∑
j=1

cjxi−j, (84)

where

ACα = AC + Inα (85)

and x−k = 0, k = 1, 2, . . ..
In the second step, we find the matrix K such that the closed-loop system (84) has the

desired properties. The stability of (84) can be tested using well-known methods.

Theorem 12 ([27]). The DDFL system (1) with the DSF (79) satisfying (81) is practically stable
for given length L of practical implementation if and only if all roots of the characteristic equation

det

[
Inz− ACα −

L

∑
j=1

Incjz−j

]
= 0 (86)

are located inside the unit circle.
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Theorem 13 ([27]). The DDFL system (1) with the DSF (79) satisfying (81) is asymptotically
stable (independent of L) if and only if all roots of the characteristic equation

det
[
In(z− 1)αz1−α − AC

]
= 0 (87)

are located inside the unit circle.

The superstability of the closed-loop system (84) can be tested using the following
approach.

Theorem 14. The DDFL system (1) with the DSF (79) satisfying (81) is:

1. practically superstable for given length L of practical implementation if the conditions (50)–(52)
are satisfied for the norm of the matrix (85);

2. superstable if the condition (57) is satisfied for the norm of the matrix (85).

Proof. The proof follows immediately from Theorem 9.

The analysis can be simplified by finding the matrix H such that

E + BH = In. (88)

Equation (88) has the solution if and only if

rankB = rank
[

B In − E
]
. (89)

If rankB = m, then there exists the left pseudoinverse of the matrix B given by [33]

BL = (BT B)−1BT + H1

[
In − B(BT B)−1BT

]
, (90)

where the matrix H1 ∈ Rm×n is arbitrary. Using (88) and (90) we obtain

H = BL(In − E) =
{
(BT B)−1BT + H1

[
In − B(BT B)−1BT

]}
(In − E). (91)

In the particular case when H1 = 0 we have

H = (BT B)−1BT(In − E). (92)

Thus, we obtain the closed-loop system (84) with AC = A− BK. However, in many
cases it is impossible to fulfill the condition (89).

8. Numerical Example

Let us consider the DDFL system (1) with α = 0.4 and [3]

E =

 0 −2 0
−3.3333 −5 0

0 −1 0

, A =

 0 1 0
1 0 0
0 0 1

, B =

 1 0
0 −2
1 −1

,

Aα = A + 0.4E =

 0 0.2 0
−0.3333 −2 0

0 −0.4 1

.

(93)

The matrix pencil of the pair (E, A) of (93) is regular since

det[Eλ− A] = 0.3333(2λ + 1)(10λ + 3) 6= 0. (94)

From (5) for c = 0 we have
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Ē = [−A]−1E =

 3.3333 5 0
0 2 0
0 1 0

, Ā = [−A]−1 A =

 −1 0 0
0 −1 0
0 0 −1

,

Āα = Ā + 0.4Ē =

 0.3333 2 0
0 −0.2 0
0 0.4 −1

.

(95)

Observe that rankĒ = rankĒ2 and q = 1. The Drazin inverse of the matrix Ē can be
computed using one of the methods from the literature; see, e.g., [3]. Thus, we obtain

ĒD =

 0.3 −0.75 0
0 0.5 0
0 0.25 0

, ĀD = Ā−1 = Ā (96)

and

Ā1α = ĒD Āα =

 0.1 0.75 0
0 −0.1 0
0 −0.05 0

, B̄1 = ĒD Ā =

 0.75 0.6
−0.5 0
−0.25 0

,

B̄2 = (I3 − ĒĒD)ĀD B̄ =

 0 0
0 0

0.5 −1


N̄ = (I3 − ĒĒD)ĀD Ē =

 0 0 0
0 0 0
0 0 0

.

(97)

Assuming Ḡ = 0 the norm of the matrix

‖F̄‖ =
∥∥∥Ā1α + Ḡ(I3 − ĒĒD)

∥∥∥ =

∥∥∥∥∥∥
 0.1 0.75 0

0 −0.1 0
0 −0.05 0

∥∥∥∥∥∥ = 0.85 (98)

takes its minimal value. The desired values of the norm (98) for superstable systems can be
determined using (50)–(52). Therefore, we have

‖F̄‖ ∈ (0; 1) for L = 0,

‖F̄‖ ∈ (0.1464; 0.8536) for L = 1,

‖F̄‖ ∈ (0.0785; 0.7965) for L = 2,
...

‖F̄‖ ∈ (0; 0.5) for L→ ∞.

(99)

From (99) it follows that the considered system is practically superstable for L = 1.
The state vector norms for x0 = [ 1 4 2 ] and different values of L are plotted in Figure 1.
We can see the monotonic decrease only for L = 1.
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Figure 1. The state vector norms of the DDFL system (1) with α = 0.4 and (93) for x0 = [ 1 4 2 ]

and different values of L.

Now let us consider the SSF (60) with

K̄ =

[
k11 k12 k13
k21 k22 k23

]
(100)

and

K̄ĒĒD =

[
k11 k12 + 0.5k13 0
k21 k22 + 0.5k23 0

]
,

K̄(I3 − ĒĒD) =

[
0 −0.5k13 k13
0 −0.5k23 k23

]
.

(101)

Choosing k13 = 0, k23 = 0 yields K̄(I3 − ĒĒD) = 0. From (97) and

K̄ =

[
0 0 0
0 1 0

]
(102)

we have

ĀC1 = Ā1α − B̄1K̄ =

 0.1 0.15 0
0 −0.1 0
0 −0.05 0

, ĀC2 = B̄2K̄ =

 0 0 0
0 0 0
0 −1 0

 (103)

and from (72) F̄C = ĀC1 for Ḡ = 0. The desired values of the norm ‖F̄C‖ are also given by
(99) since the superstability conditions of Theorems 7 and 8 depend only on the fractional
order α of the system. Thus, we have

‖F̄C‖ = ‖ĀC1‖ =

∥∥∥∥∥∥
 0.1 0.15 0

0 −0.1 0
0 −0.05 0

∥∥∥∥∥∥ = 0.25,

‖ĀC2‖ =

∥∥∥∥∥∥
 0 0 0

0 0 0
0 −1 0

∥∥∥∥∥∥ = 1.

(104)

Therefore, by Theorem 11 the DDFL system (1), (93) with α = 0.4 and the SSF (60),
(102) is superstable (for L→ ∞) since ‖F̄C‖ < 0.4 and ‖ĀC2‖ ≤ 1. The state vector norms
for x0 = [ 1 4 − 2 ] and different values of L are plotted in Figure 2. We can see the
monotonic decrease in every considered case. Similar results can also be obtained for any
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L > 10. The set of consistent initial conditions of the CL-DDFL system with SSF is different
since from (75) for i = 0 we have x0 ∈ Im(I3 + ĀC2)ĒĒD.

0 2 4 6 8 10
i

0

0.5

1

1.5

2

2.5

3

3.5

4

||x
i||

L = 1
L = 2
L = 10

Figure 2. The state vector norms of the DDFL system (1), (93) with α = 0.4 and the SSF (60), (102) for
x0 = [ 1 4 − 2 ] and different values of L.

Finally, let us consider the DSF (79). In this case we cannot find the matrix H such that
(88) holds since rankB = 2, rank[ B I3 − E ] = 3 and the condition (89) is not satisfied.
Using (83), (85), (93) and

H =

[
0 2 2
0 −2 2

]
, K =

[
0 1 0.125
0 0 0

]
(105)

we obtain

AC = (E + BH)−1(A− BK) =

 −0.3 0.1 −0.0125
0 −0.3333 0.2917
0 0 −0.0625

 (106)

and

ACα = AC + I3α =

 0.1 0.1 −0.0125
0 0.0667 0.2917
0 0 0.3375

. (107)

The norm of (107) is given by

‖ACα‖ =

∥∥∥∥∥∥
 0.1 0.1 −0.0125

0 0.0667 0.2917
0 0 0.3375

∥∥∥∥∥∥ = 0.3584. (108)

Therefore, by Theorem 14, from (99) it follows that the DDFL system (1), (93) with
α = 0.4 and the DSF (79), (105) is superstable (for L → ∞) since ‖ACα‖ < 0.4. The state
vector norms for x0 = [ 1 4 2 ] and different values of L are plotted in Figure 3. We can
see the monotonic decrease in every considered case. Similar results can also be obtained
for any L > 10.
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Figure 3. The state vector norms of the DDFL system (1), (93) with α = 0.4 and the DSF (79), (105)
for x0 = [ 1 4 2 ] and different values of L

9. Concluding Remarks

In this article, the superstabilizing state-feedback control problem in DDFL systems
with a regular matrix pencil has been studied. Methods for investigating the stability and
superstability of such systems have been provided. Procedures for the computation of
the SSF and DSF gain matrices such that the CL-DDFL system is superstable have been
proposed. The main advantage of the presented approach is that it allows us to design the
feedback control that affects pole-independent system properties such as superstability, for
which the standard approach discussed in the literature is not applicable.

The main contributions of the article are as follows. A method for investigating the
stability of DDFL systems based on the equivalent state-space model has been suggested
(Theorems 4 and 5). Sufficient conditions for the superstability of DDFL systems have been
provided (Theorem 9). Procedures for designing the SSF and DSF such that the CL-DDFL
system is superstable have been proposed (Theorems 10, 11 and 14). The effectiveness of
the presented approach has been demonstrated on a numerical example.

The sufficient conditions presented in the article were obtained through the use of
many inequalities of matrix norms, which are easy to apply, but which do not give the
exact result, e.g., from the inequalities (55) a noticeable overestimation may arise. An open
problem is that of establishing the necessary superstability conditions of the considered
class of dynamical systems.

This analysis can be further extended to fractional descriptor systems with different
fractional orders.
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SSF static state-feedback
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