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Abstract: Passive Q-switching is an effective approach for generating pulsed lasers, owing to its com-
pact and additional modulation-free design. However, to compare favorably with active Q-switching
and multi-stage amplification, the output energy needs to be enhanced for practical applications.
Kramers Ytterbium ion (Yb3+)-doped borate crystals, with their excellent energy storage capacity,
have been proven to be high-potential laser gain mediums for achieving pulsed lasers with moderate
and high output energy using passive Q-switching technology. In this study, the growth, characteriza-
tion, and laser generation of one Yb3+-doped borate crystal, the Yb3+:ScBO3 crystal, are systematically
reviewed. The continuous-wave and passive Q-switching laser characteristics are presented in detail,
and the self-pulsations derived from intrinsic ground-state reabsorption are also demonstrated. The
specific characteristics and experiments confirm the potential of the Yb3+:ScBO3 crystal for future
pulsed laser applications with moderate or even high energy output.

Keywords: ytterbium-doped laser crystal; Czochralski crystal growth; solid-state lasers; passive
Q-switching

1. Introduction

Pulsed lasers with typical single-pulse energy at the microjoule scale play vital roles in
ranging, remote sensing, micro-machining, medical treatment, and other applications [1–6].
Generally, the commonly used passive Q-switching technology has been of great interest
because it has a compact structure and no need for additional modulation and control sys-
tems, compared with active Q-switching technology, multi-stage amplification, etc. [7–12].
However, the output energy of passive Q-switching still needs to be improved to allow
its use in practical applications. Based on the solid-state laser theory and the passive
Q-switching rate equation, a laser gain medium with a high energy storage capacity is bene-
ficial for moderate- and high-energy pulsed laser output [13,14]. Such a laser gain medium
possesses desirable emission characteristics, such as a long fluorescence lifetime, small
emission cross-section, and broad fluorescence spectra. The laser crystal, an important
component of various laser gain media, is composed of doping ions and host materials. The
comprehensive emission equities of the crystal are ascertained by the electronic structure
and crystal field [15,16]. Therefore, laser crystals with favorable doping ions and host
materials are desired for passive Q-switching laser applications.

Ytterbium ions (Yb3+) with only two 4f electronic states have received considerable
scrutiny due to its plentiful superior qualities, including concentration quenching, erad-
icated up-conversion, and excited-state absorption [16]. Meanwhile, they belong to the
Kramers ions with uneven electrons in the 4f shell, which generate spin–orbit interac-
tions among the electrons, as well as strong coupling between electrons and the crystal
field [15,17]. Thus, Yb3+-doped laser crystals generally possess relatively wide fluores-
cence spectra and long fluorescence lifetimes, which are conducive to moderate, and even
high-energy, pulsed laser output. Many prominent Yb3+-doped laser crystals have been de-
veloped, including the garnets (e.g., Yb3+:Y3Al5O12 (YAG) [18], Yb3+:Y3Ga5O12 (YGG) [19],
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Yb3+:Gd3Ga5O12 (GGG) [20], (YbxY1−x)3(Sc1.5Ga0.5)Ga3O12 (YSGG) [21], Yb3+:Lu3Ga5O12
(LuGG) [22]), tungstates (e.g., Yb3+:KGd(WO4)2 (KGW) [23,24], Yb3+:NaY(WO4)2 (NaYW) [25],
Yb3+:NaGd(WO4)2 (NaGdW) [26], Yb3+:KLu(WO4)2 (KLuW) [27]), and borates
(Yb3+:YCa4O(BO3)3 (YCOB) [28–30], Yb3+:GdCa4O(BO3)3 (GdCOB) [28,31]). Among them,
Yb3+-doped borates with short bond lengths (e.g., Yb:YCOB and Yb:GdCOB) have rela-
tively smaller emission cross-sections (~0.5 × 10−20 cm2), longer fluorescence lifetimes
(~2 ms), broader emission spectra (45 nm), and have been proven to be excellent energy
storage materials. For example, a passive Q-switching laser with a pulse energy of 1.02 mJ
was achieved in 2016, using GaAs as the saturable absorber [29].

In 1993, the spectral characteristics of Yb3+:ScBO3 crystal were reported, with an emis-
sion cross-section of ~0.1× 10−20 cm2 and a fluorescence lifetime of ~5 ms, indicating that it
can be an ideal gain medium for obtaining Q-switching lasers with moderate or high pulse
energy [32]. However, the growth difficulties of Yb3+:ScBO3 crystal with its high optical
quality have hindered further progress in laser applications. Most recently, the first optical
grade Yb3+:ScBO3 crystal was successfully grown and both CW and passive Q-switching
lasers have been realized [33,34]. In addition, the growth method, characteristics, and laser
performance of Yb3+:ScBO3 crystal has been systematically reviewed. The self-Q-switching
characteristics derived from intrinsic ground-state reabsorption are also discussed. All
results presented a high potential gain medium for moderate- or even high-energy pulsed
laser generation using both active and passive Q-switching technologies.

2. Bulk Crystal Characteristics
2.1. Crystal Structure

The ScBO3 crystal remains a trigonal crystal system, a
–
3m1 point group, and a R

–
3c

space group. As exhibited in Figure 1a, the Sc atoms and O atoms are coordinated to
form ScO6 octahedra, which are connected to each other to form a pore structure. The B
atoms are located in the pores and coordinate with the O atoms to form BO3 tetrahedra. In
addition, the effective ionic radii of Yb3+ and Sc3+ are 0.868 and 0.745 Å [35], respectively,
which is beneficial, even for the Yb3+-dropped and lattice pattern distortion in Yb3+:ScBO3
crystals.
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Figure 1. (a) Structural diagram of ScBO3 and (b) comparison between X-ray powder diffraction
pattern of standard PDF#79-0097 and Yb3+:ScBO3 crystal [34].

The diffraction indices of ScBO3 crystal, measured by X-ray powder diffraction,
matched well with standard PDF#79-0097, as exhibited in Figure 1b. After calculations, the
cell parameters of ScBO3 were obtained: a = b = 4.776 Å and c = 15.405 Å. When doped with
the Yb3+ ion, the cell parameters and crystal structure apparently do not adjust compared
with undoped ScBO3 crystal [36]. Here, the buoyancy method was applied for measuring
crystal density, and the result was 3.787 g/cm3, which corresponded with the theoretical
density of 3.812 g/cm3.
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2.2. Crystal Growth

ScBO3 crystals are usually grown utilizing the Czochralski method due to the congru-
ent characteristics of this crystal [37]. However, difficulties, such as the intense volatilization
of B2O3, not only lead to segregation of the composition, but also give rise to instability
in growth, which greatly affects the optical quality of the crystals [37]. Here, a 10.0 at.%
Yb3+-doped ScBO3 single crystal with a 20-mm-diameter was successfully grown using an
argon atmosphere in an iridium crucible. The starting materials, Yb2O3, Sc2O3, and H3BO3,
were weighed according to the chemical formula Yb0.1Sc0.9BO3. Generally, an additional
3wt% H3BO3 was put in the raw ingredients during the batching process, which was used
to compensate for B2O3 volatilization during crystal growth and polycrystalline material
preparation. The equation for the chemical reaction is as follows:

0.1Yb2O3 + 0.9Sc2O3 + 2H3BO3 → 2Yb0.1Sc0.9BO3 + 3H2O (1)

A mullite brick with an appropriate thickness was used in the furnace to create a
large temperature gradient to avoid constitutional supercooling and reduce volatilization.
First, the seed was a platinum wire to obtain polycrystal with plenty of cracks, as shown
in Figure 2a. To diminish the cracking, the seed was cut from the bulk polycrystal along
c-axis. Meanwhile, a micro-convex solid–liquid interface was achieved by optimizing the
temperature field and rotation speed, thereby balancing the natural convection and forced
convection during the growth process. Although some subsidiary white matter took shape
owing to the volatilization, the samples for laser experiments (as presented in the inset of
Figure 2b) could be extracted from this optical-quality crystal (Figure 2b). Polycrystalline
material was used as the standard to measure and calculate the density of elemental Yb3+

in this crystal. The effective distribution coefficient of Yb3+ was ascertained as 0.95.
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2.3. Thermal Characteristics, Laser Damage Threshold and Mechanical Characteristics

Laser performance and crystal growth are usually affected by thermal expansion,
specific heat, and so on [38]. Laser crystals are liable to break during the growth process,
usually owing to obvious anisotropic thermal expansion, low thermal conductivity, and
low specific heat. Meanwhile, the crystal may have a significant thermal effect during the
laser experiment process due to a large temperature gradient.

The specific heat capacity was measured and then calculated using a thermal analyzer
and software produced by Perkin-Elmer Co., Waltham, MA, USA. The specific heat (Cp) of
Yb3+:ScBO3 increased with temperature, and the median was 0.73 J·g−1·K−1 at 330 K, as
shown in Figure 3a [36,39]. Because of a large specific heat, compared with Yb3+:YCOB
(0.75 J·g−1·K−1) and Yb3+:YVO4 (0.62 J·g−1·K−1), Yb3+:ScBO3 will not be extremely in-
fluenced by the heat caused during the laser emission action and a very large damage
threshold can be forecast.
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A laser flash apparatus was used to take stock of the thermal diffusivity; the findings
are shown in Figure 3b, which shows a plot of the thermal diffusivity (λij) of Yb3+:ScBO3 at
temperatures ranging from 303.15 K to 774.15 K.

In view of the following equation, the thermal conductivity (k) was determined:

k = λijρCp (2)

when the temperature increased at above temperatures range, the a-axis thermal conductiv-
ity increased from 3.61 W·m−1·K−1 to 3.86 W·m−1·k−1, and the c-axis thermal conductivity
also increased from 2.98 W·m−1·K−1 to 3.36 W·m−1·K−1 (as presented in Figure 3c). Owing
to the tendency of the thermal conductivity to rise with rising temperature, this crystal can
be utilized in generating medium lasers.

The αij of one crystal, which is a meristic second-order tensor, represents the thermal
expansion coefficient [40]. Since Yb3+:ScBO3 appertain a trigonal system, on account of the
principle of Neumann, the thermal expansion coefficient tensor is exhibited to be: α11 0 0

0 α22 0
0 0 α33

 (3)

According to the crystal structure, Yb3+:ScBO3 has two thermal expansion coefficients,
α11 and α33, which are independent. The measurements of the thermal expansion tensor
of this crystal were utilized a thermal mechanical analyzer (Diamond TMA). Moreover,
the thermal expansion curves of Yb3+:ScBO3, plotted versus temperature, are presented in
Figure 3d. The two aforementioned thermal expansions remained virtually linear. Then,
the thermal expansion coefficients along these two axes were separately determined to be
1.05× 10−6 K−1 for α11 and 10.24× 10−6 K−1 for α33. The considerable anisotropy in terms
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of thermal expansion may lead to cracking during the crystal growth process. The density
at diverse temperatures for Yb3+:ScBO3 was determined utilized the following formula:

ρ =
m

abc
=

m
a0b0c0

1(
1 + ∆a

a0

)(
1 + ∆b

b0

)(
1 + ∆c

c0

) =
ρ0(

1 + ∆a
a0

)(
1 + ∆b

b0

)(
1 + ∆c

c0

) (4)

where theoretical density ρ0 is 3.812 g/cm3. The data were fitted to a linear formula, as
shown in the result: ρ = (−5 × 10−5)T + 3.83.

To measure the laser damage threshold, a Q-switched pulsed laser with an emission
wavelength of 1064 nm was utilized. Then, the damage threshold of the Yb3+:ScBO3 crystal
was 509 MW/cm2. The threshold value of Yb3+:ScBO3 was almost half that of Yb3+:YVO4
and Yb3+:YAG.

For the purpose of acquiring the hardness of the sample, a digital microhardness tester
was utilized. The hardness was determined using the following equation:

Hv = 1.8544 P/d2 (5)

where Hv is the Vickers hardness, d is trace length along the diagonal, and P is the load.
The Vickers hardness of the as-grown crystal along the a, b, and c axes was tested to be
7.05, 6.85, and 10.67 GPa, respectively. The hardness along the a and b axes was anisotropic
with comparable values. The Yb3+:ScBO3 crystal had modest hardness, which was smaller
than that of YAG (12.7 GPa) [41] and bigger than that of YVO4 (4.8 GPa) [42]. Thus, the
Yb3+:ScBO3 crystal may be incised efficiently.

2.4. Spectroscopic Characteristics

A spectrophotometer, with a spectral sharpness of separation of 0.2 nm, was used to
determine the room temperature (RT) absorption spectra. The cutting orientation of the
sample was along the a axis. An Edinburgh Instruments FLS920 fluorescence spectrometer
was utilized to determine both the room and cryogenic (79 K) fluorescence properties, and
the thickness of the sample was 0.5 mm. The absorption spectra and RT fluorescence of
Yb3+:ScBO3 are presented in Figure 4a. The main absorption peak was at 964.8 nm. Its
full-width at half maximal (FWHM) was determined to be 19.86 nm, and the absorption
cross-section was determined to be 0.13 × 10−20 cm2. Diode laser sources are appropriate
for the wide absorption bandwidth. At 79 K, the zero-photon line was at 964.8 nm, as
exhibited in Figure 4a. Figure 4b exhibits the energy levels of the Yb3+ ions in the ScBO3
crystal [43].
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The cross-section of the RT emission was determined using the following
formula [32,44]:

σem(λ) =
λ4 I(λ)

8πcn2τrad
∫

I(λ)dλ
(6)

where I (λ) represents the emission intensity, n represents the refractive index, and τrad
represents the radiative lifetime. As exhibited in Figure 4a, the strongest emission peak
(λpeak) was at 1021 nm. Meanwhile, the corresponding emission cross-section (σem) was de-
termined to be 0.12 × 10−20 cm2, which was significantly larger than that of Yb3+:YAG [45]
and Yb3+:YGG [46,47].

After testing and fitting, it was determined that the fluorescence lifetime at room
temperature was 5.25 ms [48], as shown in Figure 5. Both the exponential and linear
fitted decay curves provided the single exponential trend, as shown in Figure 5 [49].
Table S1 lists the passive Q-switching performance and corresponding spectral and thermal
characteristics of commonly used Yb3+-doped crystals, such as Yb3+:YAG, Yb3+:YGG,
Yb3+:KGW, Yb3+:YCOB, and Yb3+:GdCOB. Among them, the Yb3+:ScBO3 crystal possesses
the smallest emission cross-section, the longest fluorescence lifetime, and a moderate
fluorescence linewidth, indicating its excellent potential for achieving pulsed lasers with
moderate, or even high, pulse energy.
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2.5. Continuous Laser Performance

The effective gain cross-section (σg) of Yb3+:ScBO3 was determined using the following
formula before the lasing experiments, as presented in Figure 6:

σg(λ) = βσem(λ)− (1− β)σabs(λ) (7)

where β is the proportion of the active ions excited to the upper level. The least value of
βmin(1021 nm) is determined using the following formula:

βmin(1021 nm) =
σabs(1021 nm)

σabs(1021 nm) + σem(1021 nm)
= 0.1 (8)
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The positive part of σg is presented in Figure 6 as different values of β. When
β = 0.75, the positive extent, which resembles Yb3+:YAG (950–1080 nm) [50], Yb3+:CYB
(960–1100 nm), and Yb3+:CaGB (960–1100 nm), was 970–1100 nm [47,51]. The excellent
characteristics of these crystal are suitable for tunable and femtosecond lasers. When
β = 0.75, Yb3+:ScBO3 could, in theory, back a pulse continuation of 65 fs. The correlation
between the gain bandwidth (∆ν) and the shortest pulse duration (tFWHM) was used to
determine the pulse continuation [52]:

tFWHM · ∆ν = 0.315 (9)

The experimental configuration is depicted in Figure 7 and a plane–concave cavity,
which was 42 mm in length, was applied for CW laser generation. The emission wavelength
of the pump source was 976 nm and the crystal was cut along the a axis, uncoated, and
burnished. Furthermore, the input coupler had a high reflectance, from 1000 to 1100 nm,
and a transmittance of over 99.5% at 950–990 nm. The transmittance from 1000–1100 nm of
the output coupler was 5%.
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Figure 7. The experimental setup of continuous laser. (Source: [34], © 2015 Optica Publishing Group,
Washington, DC, USA).

A CW laser has been demonstrated and the corresponding laser performance is
exhibited in Figure 8. It indicates that the threshold was 2.38 W. Under a 4.9-W pump
power, the output power rose to 167 mW, and the slope efficiency was 9% at a wavelength
of 1.063 µm. The light-to-light conversion efficiencies, calculated from the data above, are
4% and 9%, respectively. The laser performance can be greatly enhanced by utilizing a
higher transmission of the output couplers, mode matching, coating conditions, etc.
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2.6. Q-Switching Laser Performance

As mentioned earlier, the Yb3+-doped ScBO3 crystal has an excellent energy storage
capacity, which is favorable for Q-switching pulse generation with moderate or even high
output energy. Meanwhile, the passive Q-switching properties were characterized when
utilizing the polished and uncoated Yb3+:ScBO3 laser crystal and black phosphorous (BP)
as the saturable absorber [33]. This crystal sample was incised along the a axis and enclosed
in a water-cooled Cu block at 2 ◦C. A plane–concave cavity was applied, which was the
same as that of the CW laser configuration described earlier.

The CW laser could be discovered without the BP optical switcher, as shown in
Figure 8. When BP was inserted into the cavity, the pulsed laser was generated with the
threshold of 3.3 W, the slope efficiency of 5%, and the highest average output power was
43 mW, as illustrated in Figure 9a. The obvious threshold diversity between the pulsed
lasers and CW was observed by means of the small emission cross-section of the crystal.
In the meantime, the threshold was increased owing to the reflection loss, which was
attributed to the coating-less wafer.
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Figure 9. (a) Pump power versus average pulsed output power, (b) pump power as a function of
repetition frequency and pulse width, respectively, and (c) single pulse. Inset: pulsed train [33].

The pump power versus the repetition frequency and pulse width are shown in
Figure 9b. Under a pump power of 3.4 W, the pulse width was 1393 ns and the repetition
frequency was 20 kHz. When the absorption pump power was 4.15 W, the pulse width
was 495.5 ns, and the repetition frequency was 30.6 kHz. With the increasing power of the
pump, the trends of the pulse width and repetition frequency were opposite. The above
phenomenon is a characteristic of passive Q-switching lasers [53,54]. Under an average
output power of 43 mW, the maximal pulse energy was 1.4 µJ, which was notably higher
than the acquired pulse energy in the BP-modulated Yb3+:CYA crystal. The energy storage
capacity was also notably better than that of Yb3+:CYA [55,56], because of the smaller
emission cross-section and longer fluorescence lifetime. The inset of Figure 9c shows a
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characteristic pulsed train with a repetition frequency of 29 kHz. The narrowest pulse width
was determined to be 495.5 ns, as shown in Figure 9c. The beam size for the BP sample was
determined to be 181.9 µm, based on the ABCD matrix [57]. In the meantime, the beam
properties, with a size of 225.5 µm and a M2 factor of 1.2, were evaluated using a CCD
(CinCam COMS-1201). Therefore, stable passive Q-switching was achieved, indicating that
moderate- and high-energy pulses can be achieved in this gain medium, under both active
and passive Q-switching regimes.

Moreover, self-Q-switching operation was also demonstrated in Yb3+:ScBO3 crystal
under the same diode pump configuration, but with a plane–plane cavity configuration.
Here, a laser sample with dimensions of 2 × 3 × 3 mm3 and the output couplers with
transmittances of 1% and 3% were utilized. Figure 10 shows the relevant characteris-
tics of the output beam, including the output power versus the absorbed pump power
(Figure 10a), the laser spectra (Figure 10b), and the beam profile (inset of Figure 10b). As
the transmittance of the output coupler increased from 1% to 3%, the threshold of the
absorption pump power increased from 0.81 W to 1.26 W, the maximal output power
increased from 312 mW to 332 mW, and the corresponding slope efficiency increased from
27.9% to 39.8%. The slope efficiency and output power were improved compared with
the study on the Q-switching process modulated by BP [33], because both the laser crystal
and cavity design were optimized. The laser spectra of the output lasers are exhibited
in Figure 10b. The center wavelength is 1063.9 nm and the laser profile was detected by
CCD (CinCam COMS-1201), which is shown in the inset of Figure 10b and is close to the
fundamental transverse electromagnetic mode (TEM00).
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As presented in Figure 11, the temporal characteristics of self-Q-switching pulses,
which are the pump power versus the repetition frequency and pulse width, were de-
termined with an oscillator combined with a silicon detector. Because the pump power
improved from 0.81 to 2 W, the pulse width was shortened from 1674 to 541.8 ns; however,
when using the 1% output coupler, the repetition frequency presented the opposite trend.
In the meantime, the absorbed pump power improved from 1.26 to 2 W and the pulse
width reduced from 1329 to 731.1 ns when using the transmittance of the 3% output coupler.
Here, the repetition frequency also revealed the opposite trend. These trends are typical in
passive Q-switching lasers [53,54].
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Figure 11. Absorption pump power versus repetition frequency and pulse width: (a) output coupler
transmittance of 1%; (b) output coupler transmittance of 3%; (c) single pulse and pulse train with the
output coupler transmittance of 1%; and (d) single pulse and pulse train with the output coupler
transmittance of 3%.

As shown in Figure 11a,b, because the absorption pump power increased, the repeti-
tion frequency and the pulse width curves flattened. For the 1% and 3% output couplers,
the shortest pulse widths were 541.8 ns and 731.1 ns, and the maximal repetition frequen-
cies were 46.1 kHz and 38.8 kHz, respectively. The single pulses with minimum pulse
widths, mentioned earlier, are shown in Figure 11c,d, and the relevant pulse trains are
shown in the insets. The pulse energy can be calculated from the values of the output
power and the repetition frequency. If combined with the pulse width, the peak power can
also be obtained. When using the 1% output coupler, the maximal peak power was 9.8 W
and the maximal pulse energy was determined to be 5.3 µJ. The maximal peak power was
10.2 W, and the maximal pulse energy was 7.3 µJ as using the 3% transmittance output
coupler.

The nonlinear optical characteristics of the Yb3+:ScBO3 crystal were determined using
a Z-scan test. Figure 12 shows the transmittance versus input energy intensity of the crystal
when the Yb3+:ScBO3 crystal was at a wavelength of 1064 nm. The data were fitted utilizing
the equation below [58]:

T = A exp
[
−δα

1 + I/Is

]
(10)

where A represents the normalized parameter, δα represents the saturable absorption, I
represents the incident intensity, and Is represents the saturation intensity. Furthermore,
transmittance and intensity have a nonlinear relationship. Through fitting, the modulation
depth of the Yb3+:ScBO3 sample was 17.77%. In addition, the absolute modulation depth
was 10.2% and the saturation intensity was 4.1 × 108 W/m2 at 1064 nm.
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As previously reported, the Yb3+:ScBO3 crystal was expected to have strong inver-
sion population accumulation owing to its large excited-state lifetime and small emission
cross-section [34]. Hence, the self-Q-switching process in the Yb3+:ScBO3 crystal can be
attributed to the ground-state reabsorption, which is the saturable nature of the reabsorp-
tion loss at the lower level, 2F7/2 [59–61]. All the results contribute to an understanding
of the self-Q-switching in gain mediums with strong reabsorption effects, and aid in the
development of the highly compact pulsed laser systems.

3. Conclusions

The growth, structure, physical characteristics, and laser performance of Yb3+:ScBO3
crystal with an excellent energy storage capacity are comprehensively reviewed, for both
CW and passive Q-switching laser characteristics. After partially overcoming difficulties,
such as the intense volatilization of B2O3, a bulk crystal was triumphantly grown using
the Czochralski technique. However, the optical quality is still required to be improved
since there are lots of inclusions, as presented above, although the Czochralski method has
been proved to be feasible. The thermal properties of the Yb3+:ScBO3 crystal, consisting
og thermal conductivity and specific heat and so on, were characterized. In addition, the
Yb3+:ScBO3 crystal was found to possess a small emission cross-section of 0.12 × 10−20 cm2

and a long fluorescence lifetime of 5.2 ms, which is beneficial for generating moderate
and high-energy pulsed lasers. A CW laser, with a maximal output power of 167 mW
and a slope efficiency of 9% under the wavelength of 1.063 µm, was first obtained in
the Yb3+:ScBO3 crystal, utilizing a plane–concave cavity configuration. Then, a passive
Q-switching laser in this crystal was achieved utilizing BP as the optical modulator, with a
minimum pulse width of 495.5 ns and a maximal pulse energy of 1.4 µJ. The consequences
show the feasibility of Yb3+:ScBO3 crystal achieving pulsed lasers with moderate or high
energy. Finally, the self-Q-switching and nonlinear optical characteristics of this crystal
were evaluated and the mechanism was attributed to ground state re-absorption. The
preferable spectroscopic characteristics and preliminary laser performances indicate that the
as-grown Yb3+:ScBO3 crystal would be a high-potential laser gain medium in establishing
compact pulsed laser systems with moderate or even high energy output. Future research
will be dedicated to the optimization of the crystal growth in the aspects of establishing
the thermal field with small gradient and searching for the optimal growth parameters,
including pulling and rotation rates, etc. In the meantime, the actively Q-switched pulsed
lasers with high energy output are also expected in the Yb3+:ScBO3 crystal.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112210879/s1, Table S1. Passively Q-switching performance and corresponding spectral
and thermal properties in commonly used Yb3+-doped crystals.
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