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Abstract: The future emotion prediction of users on social media has been attracting increasing
attention from academics. Previous studies on predicting future emotion have focused on the
characteristics of individuals’ emotion changes; however, the role of the individual’s neighbors
has not yet been thoroughly researched. To fill this gap, a surrounding-aware individual emotion
prediction model (SAEP) based on a deep encoder–decoder architecture is proposed to predict
individuals’ future emotions. In particular, two memory-based attention networks are constructed:
The time-evolving attention network and the surrounding attention network to extract the features
of the emotional changes of users and neighbors, respectively. Then, these features are incorporated
into the emotion prediction task. In addition, a novel variant LSTM is introduced as the encoder of
the proposed model, which can effectively extract complex patterns of users’ emotional changes from
irregular time series. Extensive experimental results show that the proposed approach outperforms
five alternative methods. The SAEP approach has improved by approximately 4.21–14.84% micro F1
on a dataset built from Twitter and 7.30–13.41% on a dataset built from Microblog. Further analyses
validate the effectiveness of the proposed time-evolving context and surrounding context, as well as
the factors that may affect the prediction results.

Keywords: emotion prediction; social influence; deep learning; encoder–decoder; social network

1. Introduction

Emotions affect the status of humans physiologically and psychologically. One may
make a quick decision simply because of a particular feeling. Nowadays, more and more
people are used to sharing their emotions and opinions through texts on social networks.
It is interesting to understand how an individual’s emotions are affected by various factors
and predict his future emotion.

Individual emotion prediction aims to determine the future emotional state of a user
from current and previous behavioral cues [1] and has potential applications in various
fields, such as human–computer or human–robot interactions [2], market analysis [3], pub-
lic opinion analysis [4], political decision-making [5], and recommendation systems [6]. In
recent years, several researchers have conducted research on individual emotion prediction
by using texts of users’ posts and comments.

For emotion prediction, most traditional methods use statistical models and machine
learning methods. However, these methods, which are limited to binary classification,
have poor performance and low effects. In recent years, deep learning has addressed the
limitations of traditional approaches, which predict and classify individual emotions by
modeling the time series of users’ emotions. However, existing deep learning models are
relatively simple. Most of them mainly rely on the user’s own emotional development rules,
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while ignoring the neighbors’ effect on the user’s emotion. In fact, the way in which users
share their emotions online affects not only their own emotions [7], but also the emotions
of others with whom they relate [8]. Furthermore, Bond et al. [9] find that strong ties are
instrumental in spreading individual emotions both in the online and practical world.

In addition, users’ posts and comments in adjacent time periods are interrelated,
and it is necessary to consider the relevance and dependence between users’ posts when
predicting their personal emotions. However, users optionally publish their posts and
comments on social networks. Irregular time series data are common in social networks [10].
Thus, it is challenging for the individual emotion prediction task to use the time series data
of user posts and comments.

This study focuses on the problem of individual’s future emotion prediction in the
context of irregular time series. The problem setup is illustrated in Figure 1. Given a social
network in which each vertex (A, B, C, D) represents a user, there is an undirected edge
between two users if they have a social network relationship. The users’ emotion data (from
users’ posts and comments) are classified into three types. It includes the observed data
(green boxes and circles), missing data (red boxes and circles), and goal data (purple boxes
and circles). Every user’s emotion is represented by a six-dimensional vector, composed of
the probability of six basic emotion categories (i.e., happiness, sadness, anger, disgust, fear,
and surprise) proposed by [11]. The goal of this paper is to predict the emotions of users A
and D at timestamp 3. To predict user A’s emotion at timestamp 3, the traditional methods
utilize A’s previous emotion data at timestamps 1 and 2. However, in both timestamps
1 and 2, A’s previous emotion data were missing. Interestingly, neighbors’ (users B and
C) emotion data can provide clues for predicting user A’s emotions. For instance, as the
number of user A’s neighbors with happy emotions increases, the probability that the user
will be happy continues to increase. It turns out that happy users influence other users to
feel happy as well, which means that emotions spread through social networks [12]. These
relationships are refered as the surrounding influence. The first challenge is to capture this
surrounding influence and model the connection between the user’s future emotion and
the surrounding influence.
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Figure 1. Illustration of the surrounding-aware individual emotion prediction problem.

Returning to Figure 1, user D’s emotion also needs to be predicted. In addition to
receiving the surrounding influence, the emotion of user D at timestamp 3 is affected by
D’s emotion at timestamp 1 (due to the absence of the emotion of user D’s emotion at
timestamp 2). These relationships are defined as time-evolving influence. In this study, the
second challenge is extracting the time-evolving influence in irregular emotion time series.

To address the aforementioned challenges in individual emotion prediction, a surrounding-
aware individual emotion prediction model (SAEP) is proposed, which is based on a deep
encoder–decoder architecture, adopts an attention mechanism to combine the surrounding
influence and time-evolving influence into the emotion prediction task. Specifically, SAEP
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constructs two attention networks: A time-evolving attention network and a surrounding
attention network. The time-evolving attention network extracts the time-evolving context
from the user’s emotion time series. The surrounding attention network obtains the
surrounding context from the emotion time series of neighbors. Next, the time-evolving
influence and surrounding influence are integrated to predict the user’s future emotion.
Following are the main contributions of this study:

• Based on a deep encoder–decoder architecture, a surrounding-aware model is pro-
posed to predict individual emotions in social networks, which takes into account
both the influences of time-evolving and social network surrounding. First, the
time-evolving and surrounding attention networks are constructed. Then, two atten-
tion context vectors are incorporated, time-evolving information and surrounding
information, into the emotion prediction task.

• Aiming at the problem of irregular time series data, a variant long short-term memory
(LSTM) network is introduced as the encoder of the proposed model, to extract the
underlying structure in irregular time series data, allowing it to capture individual
emotional changes more precisely. To the best of the authors knowledge, there is a lack
of research on emotion prediction for irregular time series data based on surrounding
influence and deep learning techniques.

• Extensive experiments were conducted to validate the proposed model over several
baseline methods. The experimental results show that the micro F1 of SAEP can reach
60.20% and 63.33% on Twitter and Microblog datasets, respectively.

2. Related Work
2.1. Emotion Classification

Emotion classification aims to classify the sentiment polarity of a given text as positive,
negative, or more fine-grained classes. Early studies on predicting emotion simply classify
individual emotions as positive and negative, or just a score of well-being. With the help of
emotional research, people find that more fine-grained emotions are of great significance in
many fields. Ekman [11] propose six basic emotions, including happiness, sadness, anger,
disgust, fear, and surprise.

In the past, emotion classification research mainly relied on high-quality emotional dic-
tionaries. Keshavarz and Abadeh [13] combine corpora-based and lexicon-based methods
to build adaptive emotion lexicons to improve the performance of emotion classification.
Chekima and Alfred [14] utilize existing emotion analysis resources and tools from English
along with the automated machine translation capability to automatically build a Malay
emotional dictionary.

The development of machine learning has led to its gradual application to the analysis
of textual emotion. Song et al. [15] use a naive bayes model to classify emotions in text,
which reflects the difference of the number of positive words and negative words in
calculating the weights. Liu et al. [16] provide a method for multiclass emotion classification
based on an improved one-vs-one strategy, and use a support vector machine (SVM) model
to classify emotion. Xie et al. [17] represent a maximum entropy model, which uses the
probabilistic latent semantic analysis to extract emotional features from corpus.

Inspired by the recent success of attention-based neural networks in natural language
processing, various neural network approaches have been proposed for emotion classifi-
cation [18]. Wang et al. [19] propose an attention-based LSTM method to learn an aspect
embedding for each aspect and made aspects participate in computing attention weights.
Wang et al. [20] propose a convolutional recurrent neural network for text classification
for emotion classification, which combines convolutional neural network with recurrent
neural network.

2.2. Emotion Prediction

The traditional analysis of individual emotion focuses on mining individual emotions
at a given time point. In contrast, the present research focuses on predicting individual
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emotions at some time in the future. Recently, the mining of individual emotions has
attracted increasing interest. Individual emotion prediction is a new research direction,
with few related citations.

Statistical methods, such as SVM and deep learning have been popular for emotion
prediction [21]. Many studies have adopted different machine learning algorithms to
predict a user’s emotions at the next moment. Borg and Boldt [22] adopt the linear SVM
algorithm to predict the emotion of an e-mail one step ahead in the thread (based on the
text in the an already sent e-mail), and the results indicate a predictable pattern in e-mail
conversation that enables predicting the emotion of a not-yet-seen e-mail. Adikari et al. [23]
utilize Markov chains and growing self-organizing maps to construct a comprehensive
framework based on the principles of self-structuring artificial intelligence for emotion
modeling. Zhang et al. [24] propose a factor graph-based emotion prediction model
to predict emotions by combining emotion labels correlations, social correlations, and
temporal correlations from dataset.

With the development of deep learning technology, approaches based on time series
prediction have been further developed. Several studies have demonstrated the strength of
deep neural networks in solving time series prediction problems [25,26]. It has also been
applied to emotion-prediction tasks. Majumder et al. [27] propose a method based on re-
current neural networks (RNNs) [28], which employ three gated recurrent units (GRU) [29]
to model three key aspect in the textual dialogue, thereby extracting emotional features
for emotion prediction. Zhang et al. [30] design a variational learning network, which
infers an appropriate emotion label based on both the dialogue context and the learned
latent distribution in continuous semantic space. Lubis et al. [31] propose a hierarchical
neural dialogue system with an emotion encoder to capture the emotional context of the
dialogue. This information is then used in the response generation process to produce
an affect-sensitive response that elicits positive emotion. Liu et al. [32] feed the semantic
vector of each word with its affective vector together into the conditional variational auto-
encoder model, enabling the model to learn the response’s affective distributions, thereby
predict an appropriate emotion for response generation. Li et al. [33] propose a fully
data-driven interactive double states emotion cell model (IDS-ECM), which has two layers.
The first layer extracts the emotional features of the textual dialog, and the second layer
models the change process of users’ emotions during the dialog. Tang et al. [34] propose a
joint framework for emotion prediction and emotion-reason extraction by introducing a
multi-level attention module and bidirectional encoder representation from transformers
(BERT) [35] enhanced encoder. Sun et al. [36] adopt the emotion dictionary to predict
which emotion in the dialogue, and combine reinforcement learning with emotional editing
constraints to generate more meaningful emotional replies. Huang et al. [37] introduce a
novel reinforcement learning network, which keeps track of the gradual emotional changes
from every utterance throughout the dialogue for each utterance’s emotion detection.
Ma et al. [38] represent a hierarchical attention network with residual gated recurrent unit
framework for emotion prediction in conversation. Li et al. [39] propose a fast, compact and
parameter-efficient party-ignorant framework named bidirectional emotional recurrent
unit for conversational emotion prediction, which consists of a generalized neural tensor
block and a two-channel classifier.

Despite the success of these methods, most focus on the information of the user’s
emotion changing process and ignore the influence of neighbors on the user’s future
emotion. In addition, many approaches require data with high continuity and integrity
without the analysis of the common irregular time series of the social network platform.
Therefore, in this paper, a surrounding-aware individual emotion prediction model is
proposed that combines the surrounding influence and time-evolving influence with the
memory-based attention mechanism and considers the irregular emotion time series.
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3. Preliminaries

This section briefly describes key definitions and some notational conventions to
simplify the elaboration of the following sections to help readers better understand the
design ideas of the proposed model.

Notations and Definitions

Emotion Vector: Emotion vector is designed to quantify an individual’s emotion. In
this study, six basic emotion categories [11] are used to express compound emotions. An
individual’s emotional state is represented by using a 6-dimensional vector as follows:

S = {shappy, ssadness, sanger, ssurprise, s f ear, sdisgust}. (1)

where sd denotes the probability of the d-th basic emotion category and it is interme-
diate value within the range [0, 1]. For example, s1 denotes the happiness score of the
emotion vector.

Social Network: A social network represented as an undirected graph G = {V, E},
where V = {v1, v2, . . . , vn} is a collection of users, and E ⊆ V ×V is the set of edges whose
element eij = (vi, vj) indicates that user vi and user vj are friends in the social network.

Emotion Time Series: Emotion time series depicts the process of an individual’s
emotion changes in a period of time. Given a user vi, their emotion time series are defined
as X = {x1, x2, . . . , xT} ∈ RT×|S|, where |S| is the dimension of the emotion vector. For
each time stamp t ∈ {1, 2, . . . , T}, xt represents the emotion vector of user vi at time stamp t.

Masking Series: Masking series marks valid data in emotion time series. A user vi’s
masking series is represented as M = {m1, m2, . . . , mT}, where mt = 0 if the value of xt is
missing; otherwise, mt = 1.

Observed Series: Observed series is composed of the valid values in the emotion time
series. For each user vi, the valid values are extracted from the emotion time series and
concatenated to construct the observed series X

′
= {x′1, x

′
2, . . . , x

′
u}, where u denotes the

number of valid emotion vectors in the emotion time series.
Time Interval Series: Time interval series represents the elapsed time between adja-

cent valid values in the emotion time series. For each user vi, the time interval series is
defined as ∆T = {∆t1, ∆t2, . . . , ∆tu}, where u is the number of valid emotion vectors in the
emotion time series. The time interval ∆tu is calculated as follows:

∆tu =

{
1, u = 1
tu − tu−1, u 6= 1

(2)

where tu represents the timestamp of u-th valid emotion vector.
An example of the emotion time series X, observed series X

′
, masking series M, and

time interval series ∆T is shown in Figure 2.

0.20 X 0.60 0.34 X X 0.29

0.16 X 0.04 0.18 X X 0.12

0.33 X 0.23 0.15 X X 0.26

0.20 0.60 0.34 0.29

0.16 0.04 0.18 0.12

0.33 0.23 0.15 0.26

1 0 1 1 0 0 1

1 2 1 3

Emotion time series 𝑋

Time interval series Δ𝑇

Observed series 𝑋′

Masking series 𝑀

Figure 2. Example of the emotion time series X, observed series X
′
, masking series M, time interval

series ∆T.
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4. Observations

Before describing the proposed model for predicting individual future emotions, a
data-driven method was used to conduct a series of analyses on the trend of individual
emotions in social networks, and validate that the individual emotions are affected by
time-evolving as well as surrounding influences.

For individual emotional states, the proposed model considers Ekman’s six emo-
tions [11]. The evolution of individual emotions over time and the influence of neighbors’
emotions are two crucial factors. To determine the relationships between temporal evolu-
tion, surrounding influence, and individual emotions in online social networks, this paper
focuses on the following two aspects:

• The association of individual emotional states in the adjacent times, including the
continuity of the same individual emotions and the transference of different emotions.

• When neighbors share their individual emotions, these individual emotions influence
the other’s individual emotions in social networks.

The Microblog dataset used here represents the posts and emotions of 4474 users from
January to April 2018. (See Section 6.1 for more details on the dataset).

4.1. Time-Evolving Influence Observation

This subsection aims to explore the correlation between the user’s emotional states
at two adjacent times. Tang et al. [40] used a mobile network dataset to quantify the
individual emotional states, and their work showed that there is a strong dependency
between one’s current emotional state and her emotional state in the recent past. However,
their findings were based on emotion polarity analysis. The proposed model focuses on
more fine-grained emotions.

An individual emotional state transition matrix (Figure 3) was obtained by analyzing
the users’ individual emotional changes on the Microblog social network, which confirms
the temporal correlations of the individual emotional states on the Microblog dataset. As
the individual emotional state transition matrix is shown in Figure 3, the element in the
i-th row and j-th column represents the conditional probability that the user’s individual
emotion at time t− 1 is x and that at time t is y.

As shown in Figure 3, when a user feels happy at time t− 1, the probability that he feel
happy at time t is 60%. For some negative emotions, such as sadness and anger, users in the
Microblog social network tend to overcome their negative emotions in the next moment.
This causes the adjustment of users’ subjective psychology. In addition, when users feel
disgusted at time t− 1, they are more likely to stay in the same emotional state at the next
time t, and the probability that users will feel happiness is only 35%.
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Figure 3. Individual emotional state transition matrix.
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Figure 3 illustrates that the users’ future emotions are strongly dependent on their
past emotions. When a user feels happiness, they are more likely to continue to feel
happiness than others. This confirms the temporal inheritance of the emotional states in
social networks.

4.2. Surrounding Influence Observation

With the prevalence of online social networks, users can easily share emotions and
influence each other. This subsection aims to explore the correlation between neighbors’
emotions and their impact on the user’s individual emotion. Specifically, users’ historical
posts on the Microblog social network are mined. Then, their emotions in terms of what
they share are analyzed. Futhermore, given a user v, when the emotion of the user’s
neighbors at time t− 1 is e, the probability that the user’s emotion is e at time t is computed.
The results are shown in Figure 4.
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Figure 4. Correlation between neighbors’ emotions and user’s future emotion.

As illustrated in Figure 4, as the number of happy neighbors increases, so does the
probability that the user will be happy. This means that the user’s emotions are affected by
their neighbors. Moreover, there is an interesting pattern about emotion contagion, where
a user tends to become more negative when a friend or two is in negative emotion (e.g.,
fear, sadness). However, when the number of negative neighbors is more than three, the
probability of the user being negative decreases significantly. This phenomenon is called
“soothing” [41]. When neighbors are depressed, they comfort each other to adjust their
negative emotions.

To briefly summarize, this paper have the following intuitions:

• One’s future individual emotional states are related to their past individual emo-
tional states.

• One’s future individual emotional states are influenced by their neighbor individual
emotional states.

5. Surrounding-Aware Individual Emotion Prediction Model
5.1. Architecture

The proposed model aims to predict individuals’ emotions in the future for a given
social network. Figure 5 shows the basic process of the proposed model. As shown in
Figure 5, the proposed model consists of two main modules: A time-evolving attention
network and a surrounding attention network.
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In a time-evolving attention network, the time-aware LSTM (T-LSTM) is used to
extract the memory representation from the user’s emotion time series, and then use the
current hidden state of the LSTM encoder with the memory representation to generate
the time-evolving context. In the surrounding attention network, a T-LSTM network is
also used to extract the fixed-size memory representations of the neighbors and obtain the
surrounding context by concatenating them with the current hidden state of the LSTM
encoder. Finally, the time-evolving context and the surrounding context are concatenated
to predict the target user’s future individual emotion in the fully connected layer and
softmax layer.

…

… …

… …

…

…

T-LSTM 
Network

T-LSTM
Network

…

…

T-LSTM 
Network

Fully connected layer

…

…
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𝑠𝑜𝑓𝑡𝑚𝑎𝑥

Prediction

A

D

B
C
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data

Target user’s 
data

Social Network

Figure 5. Basic process of SAEP model.

5.2. T-LSTM Network

LSTM [42] was designed to capture long- and short-term dependencies while over-
coming the vanishing gradient problem. However, a standard LSTM network implicitly
assumes that the time intervals between the elements of an input sequence are the same,
which means that LSTM has difficulty in handling irregular time series data with miss-
ing values.

In recent years, to use LSTM network to capture information in irregular series data,
more innovative solutions have been proposed [43]. One method involves imputing data
to make the time intervals between the elements of the input sequence to be regular. Based
on this idea, many studies have estimated missing data by treating imputed values as
trainable variables. However, the limitation of this method lies in the fact that the estimated
missing data are evidently different from reality.

Another method to solve the time irregularity is to adjust the memory unit of LSTM
by using the short-term memory discount. This method of using time gaps to adjust
memory is called T-LSTM [44]. The T-LSTM architecture is presented in Figure 6. Blue
boxes denote networks, and green circles indicate point-wise operators. T-LSTM takes time
series and time intervals as input. The major component of the T-LSTM architecture is
the subspace decomposition applied to the memory of the previous time stamp, which
decomposes the previous memory into long-term and short-term components, and uses
the time interval (∆t) to discount the short-term influences.
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Figure 6. Illustration of the time-aware long-short term memory (T-LSTM) unit.

First, using the memory of the previous moment, the short-term memory is obtained
through the network. Note that this decomposition operation is data-driven, and its
parameters are learned at the same time as the rest of the network parameters by back-
propagation. After the short-term memory cs

t is computed, considering that the effect of
short-term memory is also related to the time gap, a time decay function g(∆t) is used to
calculate the weight and adjust short-term memory to obtain the discounted short-term
memory c̄s

t . Finally, to compose the adjusted previous memory back c∗t−1, the complement
subspace of the long-term memory cL

t−1 is combined with the discounted short-term
memory. The detailed mathematical expressions of the T-LSTM network in Figure 6 are
given by Equations (3)–(8) [44].

cs
t−1 = tanh(Wdct−1 + bd) (3)

c̄s
t = cs

t−1 · g(∆t) (4)

cL
t−1 = ct−1 + cs

t−1 (5)

c∗t−1 = cL
t−1 + c̄s

t−1 (6)

c̄ = tanh(Wcxt + Ucht−1 + bc) (7)

ct = ft · c∗t−1 + it · c̄ (8)

where ht−1 is the previous hidden state. ct and ct−1 represent the current and previous
cell states, respectively. ∆t is the time interval, and g(·) is a heuristic decay function, so
the larger the value of ∆t, the less the effect of short-term memory. Different types of g(·)
can be chosen according to the application requirements. For example, g(∆t) = 1/∆t is
preferred for less time-consuming datasets, and g(∆t) = 1/log(∆t + e) can be selected for
more time-consuming datasets. After the experimental analysis, a better performance of
g(∆t) = 1/∆t is used in the proposed SAEP model.

5.3. Time-Evolving Attention Network

An important factor that should be considered for individual emotion prediction is the
time-evolving influence, that is, how a user’s historical behaviors and individual emotional
states can be related to the individual future emotional states. To capture this temporal
correlation of users’ emotional states, a memory-based attention network is constructed in
the proposed model, called time-evolving attention network.

Given a user vi, their emotion time series X is used to extract the observed series X
′

and time interval series ∆T. In the encoding phase, the goal is to use a T-LSTM network
to capture information in an irregular time series. A T-LSTM network is used to encode
the information of the user’s individual emotional change trend in the form of a T-LSTM
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hidden state, which takes the observed series X
′

and time interval series ∆T as input data.
The iterative process is expressed by Equation (9).

hu, cu = T − LSTM(x
′
u, ∆tu, hu−1, cu−1) (9)

where cu and hu respectively are cell adjusted state and hidden state.
Many approaches capture contextual information in a time series. The most popular

method is based on the encoder–decoder architecture consisting of two RNNs and an
attention mechanism that aligns the target to the source tokens [45]. The attention mecha-
nism used in these methods calculates the attention context by analyzing the encoder and
decoder at each step. However, such calculations are expensive. Britz et al. [46] present
a memory-based attention approach, and they demonstrate the efficiency of their model
in experiments. In this paper, a memory-based attention approach is used to efficiently
compute the time-evolving context.

During encoding, a fixed-size memory representation C ∈ RZ×D is computed, where
Z is a hyperparameter that indicates the number of time-evolving context vectors in the
SAEP model, and D is the dimensionality of the cell states. A score vector αu ∈ RZ is
predicted at each encoding time step u, and the memory representation C in Equation (10)
as a linear combination of the encoder states weighted by a score vector αu.

Cz =
|U|

∑
u=0

αuzhu (10)

αuz = so f tmax(huWα ◦ lu) (11)

where Wα is a parameter matrix in RZ×D. lu represents position encoding, which ensures
that the context information learned is different. More specifically, because Ci is not
necessarily different from Cj 6=i, the predictions of the context vectors may be symmetric. To
enable the model to learn different context information, the position encodings enforce the
first few context vectors C1, C2, . . . to focus on the start of the series, and the last few context
vectors . . . , CZ−1, CZ to focus on the end of the series. To obtain the position encoding lu,
it is necessary to compute a constant matrix L. Mathematically, each element of L can be
expressed as shown in Equation (12).

Lzu = (1− z
Z
)(1− u

U
) +

z
Z

u
U

(12)

where z ∈ {1, 2, . . . , Z} denotes the context vector index, and U is the maximum series
length across all emotion time series.

In the proposed SAEP model, a standard LSTM network is used as the decoder, which
can employ memory representations to reconstruct the original emotion time series. Similar
to the encoding phase, a score vector β ∈ RZ is computed at each decoding step. Then, the
time-evolving context vector a is finally obtained by using Equation (13), which is a linear
combination of memory representations weighted by a score vector β (Equation (14)).

a =
Z

∑
z=0

βzCz (13)

β = so f tmax(h∗Wβ) (14)

where h∗ denotes the current hidden state of the decoder, and Wβ represents the learned
parameter matrix. To obtain the current hidden state of the decoder h∗t and the current cell
state c∗t , with the previous hidden state h∗t−1, the previous cell state c∗t−1, and earlier output
x∗t−1 as the input data for the decoder, h∗t is calculated using Equation (15).

h∗t , c∗t = LSTM(x∗t−1, h∗t−1, c∗t−1) (15)
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Algorithm 1 outlines the calculation process for the time-evolving context. First,
in the encoding stage, the encoder processes the observed series to obtain the current
encoder hidden state hu. Then, a fixed-size memory representation C is obtained, which is
a linear combination of the encoder states hu weighted by the score vector α. Finally, in the
decoding phase, the memory representation C is weighted by the score vector β to obtain
the time-evolving context a.

Algorithm 1 Time-evolving context vector calculation

Input: Observed series X
′
, Time interval series ∆T, Number of time-evolving context

vector Z, Dimensionality of the cell states D
Output: Time-evolving context a

1: //Encoding phase
2: Obtain encoder hidden state hu according to Equation (9).
3: Compute position encoding matrix L by Equation (12);
4: Compute score vector α according to Equation (11).
5: for z from 1 to Z do
6: Compute fixed-size memory representation Cz by using Equation (10).
7: end for
8: //Decoding phase
9: Obtain decoder hidden state h∗ by using Equation (15).

10: Calculate score vector β according to Equation (14).
11: Compute time-evolving context a by using Equation (13);

5.4. Surrounding Attention Network

Another important factor is the influence of the social network environment, that
is, how neighbor individual emotional states influence each other. In this section, the
surrounding attention network, a memory-based attention network similar to the time-
evolving attention network, is used to explore the influence of neighboring individual
emotional states.

Given a specific user vi, the emotion time series set of their neighbors v̂ = {v̂(1), v̂(2),
. . . , v̂(n)} is denoted by X̂ = {X̂(1), X̂(2), . . . , X̂(n)}. Then, the collection of neighbors’

observed series X̂
′
= {X̂′(1), X̂

′
(2), . . . , X̂

′
(n)}, and the set of time interval series of neighbors

∆̂T = {∆̂T(1), ∆̂T(2), . . . , ∆̂T(n)} are obtained. For each neighbor v̂(n), a T-LSTM network

encodes their individual emotion time series with the observed series X̂
′
(n) and the time

interval series ∆̂T(n) as the input data, and obtains the set of encoder’s hidden states
ĥ = {ĥ(1), ĥ(2), . . . , ĥ(n)} by the means of following Equation (16).

ĥu(n), ĉu(n) = T − LSTM(x̂
′
u(n), ∆̂tu(n), ĥu−1(n), ĉu−1(n)) (16)

where ĥu(n) and ĉu(n) are the hidden state and cell-adjusted state of user v̂n, respectively.
It is important that all parameters in the surrounding attention network are shared by
all neighbors.

In the encoding step, the set of neighbors’ memory representations Ĉ = {Ĉ(1), Ĉ(2),
. . . , Ĉ(n)} is updated, the element Ĉ(n) ∈ RZ×D is a fixed-size memory representation of
the neighbor v̂(n), where Z is the number of time-evolving context vectors, and D is the
size of the cell states. First, a score vector α̂(n) is obtained by predicting the Z scores at each
encoding step. The memory representation Ĉ(n) in Equation (17) is then calculated as a
weighted sum over a score vector α̂u(n) (Equation (18)).

Ĉz(n) =
|U|

∑
u=0

α̂zu(n) ĥu(n) (17)
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α̂zu(n) = so f tmax(ĥu(n)Wα̂ ◦ lu) (18)

where Wα̂ ∈ RZ denotes a parameter matrix, and lu is a vector of position encodings that
can make the learning attention context different. lu was calculated using Equation (12).
Note that in the surrounding attention network, Wα̂ is shared by all neighbors.

The decoding phase of the surrounding attention network is aimed at obtaining the
surrounding context vector â. There are slight differences from the calculation of time-
evolving context vector in the Section 5.3, the memory representations of the neighbors are
used as input, rather than the fixed-size memory representation of a single user. Therefore,
the neighbors’ memory representations Ĉ = {Ĉ(1), Ĉ(2), . . . , Ĉ(n)} are concatenated, called
surrounding memory representation C̃.

To compute the surrounding context vector â, a score vector β̂ ∈ RZ is predicted at
each decoding step similarly. The surrounding context vector, â (Equation (19)) is a linear
combination of the rows in the surrounding memory representation C̃ weighted by using a
Score vector β̂ in Equation (20).

â =
Z

∑
z=0

C̃z β̂z (19)

β̂ = so f tmax(ĥ∗Wβ̂) (20)

where ĥ∗ is the current hidden state of the decoder, and Ŵβ is a learned parameter matrix.
Similarly, the decoder current hidden state ĥ∗t and the current cell state ĉ∗t are computed by
using Equation (21) and taking the previous hidden state ĥ∗t−1, the previous cell state ĉ∗t−1,
and earlier output x̂∗t−1 as input data:

ĥ∗t , ĉ∗t = LSTM(x̂∗t−1, ĥ∗t−1, ĉ∗t−1) (21)

Algorithm 2 shows the calculation process for the surrounding context. Initially, for
each neighbor v̂(n), the fixed-size memory representation Ĉ(n) is computed. Subsequently,
the memory representations of all the neighbors are concatenated to obtain the surrounding
memory representation C̃. Then, the surrounding memory representation C̃ is weighted by
the score vector β̂ to obtain the surrounding context â.

Algorithm 2 Surrounding context vector calculation

Input: The set of observation series {X̂′(1), X̂
′
(2), . . . , X̂

′
(n)}, The set of time interval series

{∆̂T(1), ∆̂T(2), . . . , ∆̂T(n)}, Number of time-evolving context vector Z, Dimensionality of
the cell states D
Output: Surrounding context vector â

1: //Encoding phase
2: for each neighbor v̂(n) do
3: Obtain encoder hidden state ĥu(n) according to Equation (16);
4: Compute position encoding matrix L by using Equation (12);
5: Compute score vector α̂ according to Equation (18);
6: for z from 1 to Z do
7: Compute fixed-size memory representation Ĉz(n) by Equation (17);
8: end for
9: end for

10: Concatenate the neighbors’ memory and obtain surrounding memory representation
C̃;

11: //Decoding phase
12: Obtain decoder hidden state ĥ∗ by using Equation (21);
13: Calculate score vector β̂ according to Equation (20);
14: Compute surrounding context vector â by using Equation (19);
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The typical attention mechanism used in previous approaches generates a new atten-
tion context at each decoding step. In this model, instead of accessing the encoder state at
each encoder step, the SAEP model only need to obtain the pre-computed fixed-size mem-
ory representation during encoding, which leads to a smaller computational complexity.

5.5. Learning and Prediction

The goal of the present work is to use information from online social networks and
time-evolving data to predict future individual emotions. Therefore, the surrounding con-
text vector â and the time-evolving context vector a are concatenated. Then, concatenation
O is sent to the full connection layer and pass through softmax. The implementation can
be expressed by Equations (22) and (23), respectively:

O = [â, a] (22)

o∗ = so f tmax(OWo) (23)

where Wo denotes the weight matrix of the fully connected layer. The output o∗ of the
softmax layer is the probability distribution of the final individual emotion category, where
the individual emotion category with the highest probability is considered as the individual
emotion prediction label. Consequently, the total loss L is expressed as follows:

L =
N

∑
n=1

[
D

∑
d=1

(od(n) − o∗d(n))2 ×m(n)] (24)

where N denotes the number of users in the network, and D is the dimensionality of the
emotion vector. od(n) and o∗d(n) are the predicted and actual emotion vector elements,
respectively. m(n) represents the elements of the masking series.

In the model training phase, SAEP model keeps track of the latest hidden state and
all outputs. The last hidden state of the network as the first hidden state of the decoder.
A hybrid input strategy is used to feed the data into the feed encoder to speed up the
convergence of the model and reduce overfitting. In particular, for some emotion vectors,
the actual emotion vector is used as the next input data, if not missing data; otherwise,
the decoder’s estimate will be used as the next input data. For the missing emotion
vector, the proposed model directly considers the estimated value of the decoder as an
alternative value.

Well-trained models can be used to predict individual emotions. Similar to the learning
stage, the user’s original individual emotion time series and the neighboring individual
emotion time series are processed into the encoder, and obtain the surrounding memory
representation and the individual memory representation. In the decoding stage, when
an element is not missing, the original individual emotion vector is given; otherwise, the
estimated vector is given in order to use as much information as possible from the original
emotion time series.

Algorithm 3 summarizes the training and prediction algorithms for SAEP.
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Algorithm 3 Training and prediction algorithm for SAEP
Input: Social network G = (V, E), The set of emotion time series X = {X1, X2, . . . , Xn},
Number of time-evolving context vector Z, Dimensionality of the cell states D, The number
of samples in each batch, The number of epoch
Output:Emotion label

1: Initializing the network structure parameters;
2: for for numbers of training epochs do
3: for numbers of iteration times do
4: draw a mini-batch of sequences X and their corresponding neighbors’ context

sequence sets X̂;
5: //forward pass to encoder network
6: Compute surrounding context vector â;
7: Compute time-evolving context vector a;
8: Concatenate surrounding context and time-evolving context by using

Equation (22);
9: Predict emotion by using Equation (23);

10: Compute the loss function L according to Equation (24).
11: //backward pass
12: Compute gradients;
13: Update parameters;
14: end for
15: end for
16: for user vi in G do
17: Compute surrounding context vector â;
18: Compute time-evolving context vector a;
19: Concatenate surrounding context and time-evolving context by using Equation (22);
20: Predict emotion by using Equation (23);
21: end for

6. Experiments
6.1. Dataset Description

Experiments on two real-world social network datasets (i.e., Twitter (https://archive.
org/details/twitter-iran, accessed on 10 October 2021) and Microblog) were conducted to
evaluate the performance of the proposed model. All the datasets and codes are publicly
available online (https://github.com/Geoyk96/SAEP, accessed on 10 October 2021). The
statistics of the two datasets are shown in Table 1 ( |V| and |E| indicate the number of
vertices and edges in graph G = (V, E), while PN is the total number of ordinal posts and
RN is the total number of reposts).

• Twitter: This dataset sample from 1 November 2015 to 5 March 2016, in which the
entire time period has been divided into several time slices in day. For each time slice,
the last post from the user within that time (the user’s emotion is influenced by the
neighbor and the time-evolving) is saved. In this dataset, the emotion time series size
of each user was 125× 6. Because users’ post time is irregular, it causes the emotion
time series to be missing. The missing data rate of this dataset was 46.70%.

• Microblog: The Microblog API is used to randomly download a dataset from Mi-
croblog, from 23 January 2018 to 28 April 2018. The same method is used as the Twitter
dataset to preprocess and split the Microblog dataset. In this dataset, the emotion time
series size of each user was 96× 6. The missing data rate of this dataset was 32.64%.

https://archive.org/details/twitter-iran
https://archive.org/details/twitter-iran
https://github.com/Geoyk96/SAEP
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Table 1. Summary of Twitter and Microblog datasets.

Datasets |V | |E| PN RN

Twitter 5136 27,142 451,029 705,018

Microblog 5068 12,036 66,480 158,240

6.2. Data Preparation

The basic of this research was to measure emotions. Faced with massive posts, manual
tagging is powerless. Instead, tags for automatic post labeling were used, which is a
common method in previous studies [47,48]. First, WordNet (http://wordnet.princeton.
edu/, accessed on 1 May 2021) and HowNet (http://www.keenage.com/, accessed on 1
May 2021) dictionaries were used to obtain an average of more than 200 synonyms for each
basic emotion category and manually verified them.

For the Twitter dataset, a pre-trained RNN [18] was adopted to extract the emotion
vectors from the user posts. For each post, the appearances of each emotion synonym
category in the texts are computed. If the most frequent emotion corresponds to the emotion
vector of the post, then the emotion vector is regarded as the ground truth. Otherwise, it
was verified manually. Each post will be reviewed by three different volunteers to eliminate
personal bias; then, all the volunteers are required to have a discussion to reach an agreed
conclusion. The emotion distribution of this dataset is shown in Figure 7a.

For the Microblog dataset, similar to the Twitter dataset, a pre-trained LSTM [49] was
utilized to extract the emotion vectors from users’ posts. The emotion distribution of this
dataset is shown in Figure 7b.
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Figure 7. Percent of per emotion category on two datasets. (a) Twitter; (b) Microblog.

6.3. Baseline Methods

• Conditional Random Field (CRF) [47]: It is a graphical model based on conditional
random field. The model predicts emotions by combining social correlations with
emotional features.

• LSTM [50]: An RNN model with a LSTM cell is trained to predict users’ emotions,
which impute the missing data with mean values in emotion time series.

• GRU-D [51]: GRU-D is a novel deep learning model based on GRU. It takes two
missing data patterns, masking and time intervals, to extract long-range temporal
missing patterns in the time series and capture the informative missing data. GRU-D
utilizes long-term temporal dependencies to achieve a better prediction performance.

• Stacked Auto-Encoder (SAE) [52]: SAE is a famous deep learning model, which uses
auto encoders as the basic components of deep network. It predicts emotions by
learning temporal correlations in the emotion time series.

• Temporal Convolutional Network (TCN) [53]: TCN is a forecasting framework based
on convolutional neural network. TCN constructs stacked residual blocks based on
dilated causal convolutional networks to capture the temporal dependencies of the
emotion time series.

http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://www.keenage.com/
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6.4. Hyperparameter Settings

This section discusses the hyperparameter settings. The proposed model uses a 1-layer
32-unit T-LSTM encoder and a 1-layer 32 unit LSTM decoder. The memory size, Z, is 32.
The model is optimized using an Adam optimizer with a learning rate of 1× 10−3 in the
encoder and 5× 10−3 in the decoder. The batch size was set to 256 and the dropout rate
was set to 0.9.

6.5. Evaluation Measures

Multiple criteria are used to evaluate SAEP model, including accuracy (Acc) and micro
F1 (Micro_F1) [54], which are widely used for evaluating emotion prediction [12,40,55].
Accuracy describes how many of the predicted specific emotion examples were correct.
Micro F1 can still make a reasonable evaluation of the classifier in the case of unbalanced
samples, which is defined as follows.

Precisionmicro =
∑
|S|
d=1 TPd

∑
|S|
i=1 TPi + ∑

|S|
d=1 FPd

(25)

Recallmicro =
∑
|S|
d=1 TPd

∑
|S|
d=1 TPd + ∑

|S|
d=1 FNd

(26)

Micro_F1 = 2 · Precisionmicro · Recallmicro
Precisionmicro + Recallmicro

(27)

where Precisionmicro is micro precision, and Recallmicro is micro recall. TPd is the number
of emotions correctly predicted as d-th emotion. FPd indicates the number of emotions
not labeled as d-th emotion but predicted as d-th emotion. FNd represents the number of
emotions incorrectly predicted as d-th emotion. |S| is the dimension of the emotion vector.

6.6. Performance Comparison

To illustrate the effectiveness of the SAEP model, the performance of the proposed
model is compared with that of serval other models, presented in Section 6.3. Table 2 and
Figure 8 show the comparative results of different approaches when predicting emotions,
and the overall performances of the different approaches on the two datasets are shown in
Figure 9. The results for the two datasets show that SAEP model is more competitive.

Table 2 and Figure 9 demonstrate that, although CRF considers some correlation
features (the influence between users and neighbors), this method failed to extract the
underlying structure in irregular time series data. LSTM can capture the temporal rela-
tionships of users’ emotional changes, but LSTM fails to handle irregular time series data,
and replacing missing data with average values harms prediction performance. GRU-D
designs a recurrent architecture that uses time intervals and masking information to update
the missing data. However, it ignores the importance of global temporal background con-
textual information. SAE is a good approach for predicting emotion, which considers the
temporal correlations of emotion changes inherently, but it lacks the modeling of neighbors’
influence. TCN is a kind of convolutional network for time series data, which is with
less computation consuming, better ability in capturing individual emotion time-evolving
regularities, and higher adaptability for non-linear data. However, it also lacks the model-
ing of surrounding-influence in social networks. The best comprehensive performance of
the SAEP model on two datasets indicates that combining social and temporal contextual
information is helpful for predicting users’ future emotions.

As shown in Figure 9, the proposed model significantly outperforms all the baseline
methods by achieving the highest micro F1 on the two datasets. The SAEP model improves
by 4.21–14.84% and 7.30–13.41% on Twitter and Microblog in terms of micro F1, respectively.
The first reason for the better performance of the SAEP model is that the T-LSTM network is
employed as the encoder to process irregular time series data, which can better capture the
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time dependence of emotional states. Second, the proposed model considers the influence
of neighbors’ on users’ emotions, which can assist in exploring the changes in emotions
between users’ interactions.

Table 2. Performance comparison of emotion prediction of SAEP with five baseline approaches on
two datasets.

Dataset Method
Accuracy

Anger Disgust Fear Happiness Sadness Surprise

Twitter

CRF 79.52 81.25 88.42 72.41 78.28 71.63
LSTM 80.31 87.75 94.72 74.65 89.17 27.60

GRU-D 75.92 88.90 93.28 67.52 89.33 74.35
SAE 72.09 88.58 92.96 55.42 88.67 67.10
TCN 78.76 81.42 89.09 72.69 85.14 66.00
SAEP 81.49 83.54 94.49 77.77 89.56 76.44

Microblog

CRF 80.33 81.94 79.36 71.52 82.27 69.38
LSTM 77.59 87.03 79.68 67.96 82.78 58.83

GRU-D 76.87 84.87 82.02 67.78 85.00 57.92
SAE 77.47 87.47 81.76 67.78 84.62 58.19
TCN 80.91 81.74 80.11 76.32 87.10 64.31
SAEP 91.31 83.48 91.81 89.23 90.29 87.35
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Figure 8. Comparison of the accuracy of different emotion categories with different methods (a) Anger
(b) Disgust (c) Fear (d) Happiness (e) Sadness (f) Surprise.
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6.7. Ablation Analysis

This subsection aims to illustrate the effectiveness of different parts of the proposed
model. The SAEP model considers multiple factors that influence users’ emotions in social
networks: time-evolving influence and surrounding influence. Moreover, the T-LSTM
network is introduced as the encoder of the proposed model to handle irregular emotion
time series. Here, this subsection investigated the time-evolving influence, surrounding
influence, and T-LSTM encoder to help improve the prediction performance. The contri-
butions of each key component are tested by removing it from the proposed model and
comparing their performances. Some variants of the proposed model are listed:

• SAEP: This is the proposed complete model. The parameter settings for this model
are described in Section 6.4.

• SAEP-s: This model removes the surrounding attention network.
• SAEP-s-t: This variant removes both surrounding and time-evolving attention net-

works in the proposed model, meaning it is an RNN with a LSTM cell.
• SAEP-TLSTM: This model employs the standard LSTM as the encoder instead of

T-LSTM. The remaining settings for this model are the same as for SAEP model.
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Figure 9. Emotion prediction results “micro F1” on two datasets. (a) Twitter; (b) Microblog.

The experimental results for the different variants are summarized in Table 3. Figure 10
further compares the experimental results with the corresponding micro F1. Table 3
illustrates that for most emotion categories, the prediction performance will be lower when
each of the three key components is removed.

Previous studies have revealed that social information plays a crucial role in image-
based emotion prediction tasks [47,48]. The experimental results further verify that the
surrounding influence can also help improve the performance of text-based tasks, especially
on the Microblog dataset. Table 3 indicates that the performance of SAEP model is better
than that of SAEP-s on two datasets, which indicates that the surrounding attention network
can effectively model the surrounding influence. SAEP-s outperforms SAEP-s-t model in
terms of micro F1 on the two datasets. This is because the time-evolving attention network
can capture the complex patterns of emotions that evolve over time.

In addition, the performance of SAEP-TLSTM is not as good as that of the proposed
complete model SAEP, which illustrates the decrease in the micro F1 when using the
standard LSTM network as the encoder of the SAEP model. Evidently, T-LSTM as the
encoder can effectively process irregular time series data, and in this way, the model
performance is improved significantly. It is easily concluded that by using T-LSTM network
to process irregular time series data and fusing time-evolving and surrounding influences,
the SAEP model achieves the best prediction performance. Figure 10 suggests that the
overall performances of the proposed complete model (SAEP) are better than that of
the variants.
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Table 3. Ablation analysis on two datasets.

Dataset Method
Accuracy

Anger Disgust Fear Happiness Sadness Surprise

Twitter

SAEP-s 80.45 79.6 94.23 75.89 54.96 65.34
SAEP-s-t 79.84 80.46 94.11 72.2 58.93 71.57

SAEP-TLSTM 74.42 82.86 93.66 73.67 82.99 64.97
SAEP 81.49 83.54 94.49 77.77 89.56 76.44

Microblog

SAEP-s 74.85 69.66 88.43 81.58 83.82 65.22
SAEP-s-t 83.2 68.26 85.62 69.16 85.46 61.15

SAEP-TLSTM 78.21 67.54 86.94 80.62 87.33 48.84
SAEP 91.31 83.48 91.81 89.23 90.29 87.35
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Figure 10. Ablation analysis results “micro F1” on two datasets. (a) Twitter; (b) Microblog.

6.8. Parameter Analysis

To achieve the optimal prediction performance of the SAEP model, this subsection ex-
plored how different hyperparameters affect the performance of the proposed model. These
include cell size D and memory size Z, which are hyperparameters related to model tuning.
Extensive experiments were conducted by adjusting only the relevant hyperparameters to
achieve the best performance while keeping the other hyperparameters unchanged.

6.8.1. Effect of Cell Size for Prediction Accuracy

The impact of D is explored, which is an important hyperparameter on the prediction
performance of SAEP. Figure 11 shows the effect of D on model prediction performance
on two datasets. In Figure 11, the prediction performance changes as the hyperparameter
varies. It should be noted that in Figure 11, if the cell size D is too small or too large, the
prediction micro F1 of SAEP tends to worsen. This indicates that selecting a proper cell
size D is crucial for model performance.

6.8.2. Effect of Memory Size for Predict Accuracy

This subsection aims to evaluate the influence of memory size Z. This study examines
the trade-off between computational time and representational power. A large Z allows
the model to calculate complex source representations, whereas Z = 1 limits the source
representation to a single vector. The influence of Z on the prediction performance is
shown in Figure 12. It can be seen that within a certain range, the performance of the
proposed model improves.
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Figure 11. Model parameter analysis (cell size D).
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Figure 12. Model parameter analysis (Memory size Z).

6.8.3. Effect of Memory Size for Learning Procedure

Here, an experiment was conducted to observe the effect of varying values of the
hyperparameter Z on the learning process. Figure 13a,b show the learning curves. It can
be seen that the proposed model has a faster convergence while memory size Z increases
on both datasets. Specifically, notice that Z = 1 fails to fit the data distribution. When the
Z value increases, the SAEP model representation ability is enhanced, which significantly
speeds up the inference process.
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Figure 13. Comparison concerning varying memory size Z for the training loss curve on two datasets.
(a) Twitter; (b) Microblog.

6.9. Visualization

Finally, the emotion prediction results of different methods are visualized. Figure 14
shows the comparison of the seven methods on Microblog dataset. Figure 14a depicts
the true emotions of users in Microblog social network in the future. Figure 14b repre-
sents the visualization result obtained by the proposed model. Figure 14c–g shows the
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results of the other five approaches. In terms of the micro F1 of emotion prediction, SAEP,
CRF, LSTM, GRU-D, SAE, TCN reached 63.33%, 52.75%, 49.92%, 50.74%, 54.50%, and
56.03%, respectively.

Figure 14b intuitively illustrates that the emotions predicted by the SAEP model
are more in line with the real situation. Differences occur in the prediction performance
between these baseline methods and the proposed model, and these differences can be
explained from two aspects. First, SAEP not only considers the changing trend of the
user’s emotions, but also considers the influence of the emotions of the user’s neighbors on
the user. Second, the proposed model introduces a T-LSTM network to handle irregular
emotion time series, which can effectively extract the underlying structure in the irregular
emotion time series. In addition, Figure 14a indicates that neighboring users have a greater
probability of similar emotions. This can be explained by the emotional influence of
the neighbors.

(a) (b)

(c) (d) (e)

(f) (g)

Anger Disgust Fear Happiness Sadness Surprise

Figure 14. Visualization of emotion prediction with different methods on Microblog (a) Original
(b) SAEP (c) CRF (d) LSTM (e) GRU-D (f) SAE (g) TCN.
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7. Conclusions

The widespread use of social media has facilitated people’s communication as well as
the emotion propagation in social networks greatly, and is therefore bringing the enormous
impacts on social psychological cognition and group behaviors than ever before. This issue
of emotion prediction on social media has become a new concerning hot point in social
media analytics.

This paper aims to predict individuals’ future emotions and a surrounding-aware
individual emotion prediction model-based deep encoder–decoder architecture is proposed
for individual future emotion prediction by considering the influence of time-evolving
and individual’s neighbors. Based on individual emotion time series, the time-evolving
attention network extracts the memory representation of an individual to obtain the time-
evolving context to better capture the individual emotional change rule and emotional
preference. The surrounding attention network obtains the surrounding context from the
set of neighbors’ emotion time series to better learn the influence of neighbors’ emotions.

Experiments on two datasets (from two social networks) demonstrate that the SAEP
model achieves good results and outperforms several baseline methods for emotion pre-
diction. In addition, this paper validated the effectiveness of the proposed time-evolving
influence and surrounding influence by means of ablation experiments, which proves the
importance of surrounding influence and time-evolving influence in predicting individuals’
future emotions. Futhermore, research findings in ablation experiments indicated that
T-LSTM network as the basic component of SAEP model to encode an irregular time series
have significant impacts on the model performance. Moreover, to explore the influence
of different hyperparameters on the model performance and minimize system load, pa-
rameter analysis experiments are conducted. The emotion prediction results of different
methods on Microblog are visualized to intuitively understand the effectiveness of the
SAEP model.

In the future, more effective patterns in social networks to predict individual emotions
will be explored, such as changes in user relationships and user interactions. Simultaneously, a
new neural network technology will be used to enhance performance. Furthermore, whether
the method can be applied in other heterogeneous networks needs to be further explored.

Author Contributions: Y.W.: Conceptualization, Methodology, Software, Writing-original draft,
Visualization, Investigation. Y.D.: Conceptualization, Supervision, Project administration, Funding
acquisition. J.H.: Validation, Formal analysis. X.L.: Conceptualization, Project administration.
X.C.: Data curation, Resources. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by the National Natural Science Foundation. (Grant Nos.
61872298, 61802316, and 61902324), and the Sichuan Regional Innovation Cooperation Project (Grant
No. 2021YFQ008).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shahriar, S.; Kim, Y. Audio-Visual Emotion Forecasting: Characterizing and Predicting Future Emotion Using Deep Learning. In

Proceedings of the 2019 14th IEEE International Conference on Automatic Face Gesture Recognition, Lille, France, 14–18 May 2019;
pp. 1–7. [CrossRef]

2. Yamane, H.; Mori, Y.; Harada, T. Humor meets morality: Joke generation based on moral judgement. Inf. Process. Manag. 2021,
58, 102520. [CrossRef]

3. Ge, Y.; Qiu, J.; Liu, Z.; Gu, W.; Xu, L. Beyond negative and positive: Exploring the effects of emotions in social media during the
stock market crash. Inf. Process. Manag. 2020, 57, 102218. [CrossRef]

http://doi.org/10.1109/FG.2019.8756599
http://dx.doi.org/10.1016/j.ipm.2021.102520
http://dx.doi.org/10.1016/j.ipm.2020.102218


Appl. Sci. 2021, 11, 11111 23 of 24

4. Du, Y.; Zhou, Q.; Luo, J.; Li, X.; Hu, J. Detection of key figures in social networks by combining harmonic modularity with
community structure-regulated network embedding. Inf. Sci. 2021, 570, 722–743. [CrossRef]

5. Gong, C.; Du, Y.; Li, X.; Chen, X.; Li, X.; Wang, Y.; Zhou, Q. Structural hole-based approach to control public opinion in a social
network. Eng. Appl. Artif. Intell. 2020, 93, 103690. [CrossRef]

6. Li, Y.; Wang, S.; Pan, Q.; Peng, H.; Yang, T.; Cambria, E. Learning binary codes with neural collaborative filtering for efficient
recommendation systems. Knowl.-Based Syst. 2019, 172, 64–75. [CrossRef]

7. Lomanowska, A.M.; Guitton, M.J. Online intimacy and well-being in the digital age. Internet Interv. 2016, 4, 138–144. [CrossRef]
8. Hill, A.L.; Rand, D.G.; Nowak, M.A.; Christakis, N.A. Emotions as infectious diseases in a large social network: The SISa model.

Proc. R. Soc. B 2010, 277, 3827–3835. [CrossRef]
9. Bond, R.M.; Fariss, C.J.; Jones, J.J.; Kramer, A.D.I.; Marlow, C.; Settle, J.E.; Fowler, J.H. A 61-million-person experiment in social

influence and political mobilization. Nature 2012, 489, 295–298. [CrossRef]
10. Neil, D.; Pfeiffer, M.; Liu, S.C. Phased LSTM: Accelerating Recurrent Network Training for Long or Event-Based Sequences. In

Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December
2016; pp. 3889–3897.

11. Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [CrossRef]
12. Yang, Y.; Jia, J.; Wu, B.; Tang, J. Social Role-Aware Emotion Contagion in Image Social Networks. In Proceedings of the 30th

AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 65–71.
13. Keshavarz, H.; Abadeh, M.S. ALGA: Adaptive lexicon learning using genetic algorithm for sentiment analysis of microblogs.

Knowl.-Based Syst. 2017, 122, 1–16. [CrossRef]
14. Chekima, K.; Alfred, R. Non-English Sentiment Dictionary Construction. Adv. Sci. Lett. 2018, 24, 1416–1420. [CrossRef]
15. Song, J.; Kim, K.; Lee, B.; Kim, S.; Youn, H. A novel classification approach based on Naive Bayes for Twitter sentiment analysis.

KSII Trans. Internet Inf. Syst. 2017, 11, 2996–3011. [CrossRef]
16. Liu, Y.; Bi, J.W.; Fan, Z.P. A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and

the support vector machine (SVM) algorithm. Inf. Sci. 2017, 394-395, 38–52. [CrossRef]
17. Xie, X.; Ge, S.; Hu, F.; Xie, M.; Jiang, N. An Improved Algorithm for Sentiment Analysis Based on Maximum Entropy. Soft

Comput. 2019, 23, 599–611. [CrossRef]
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