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Abstract: In the fault diagnosis of UAVs, extremely imbalanced data distribution and vast differences
in effects of fault modes can drastically affect the application effect of a data-driven fault diagnosis
model under the limitation of computing resources. At present, there is still no credible approach to
determine the cost of the misdiagnosis of different fault modes that accounts for the interference of
data distribution. The performance of the original cost-insensitive flight data-driven fault diagnosis
models also needs to be improved. In response to this requirement, this paper proposes a two-step
ensemble cost-sensitive diagnosis method based on the operation and maintenance data of UAV.
According to the fault criticality from FMECA information, we defined a misdiagnosis hazard value
and calculated the misdiagnosis cost. By using the misdiagnosis cost, a static cost matrix could
be set to modify the diagnosis model and to evaluate the performance of the diagnosis results. A
two-step ensemble cost-sensitive method based on the MetaCost framework was proposed using
stratified bootstrapping, choosing LightGBM as meta-classifiers, and adjusting the ensemble form to
enhance the overall performance of the diagnosis model and reduce the occupation of the computing
resources while optimizing the total misdiagnosis cost. The experimental results based on the
KPG component data of a large fixed-wing UAV show that the proposed cost-sensitive model
can effectively reduce the total cost incurred by misdiagnosis, without putting forward excessive
requirements on the computing equipment under the condition of ensuring a certain overall level of
diagnosis performance.

Keywords: fault diagnosis; cost-sensitive learning; UAV; FMECA; MetaCost

1. Introduction

Unmanned aerial vehicles (UAVs), as a typical complex electromechanical system,
have been widely used in the military and commercial fields but have a high fault rate.
Improving the competence of fault diagnosis and ground maintenance, so as to improve
the functionality and reliability of UAVs has thus become an essential research area [1–3].
With the development of Prognostics Health Management (PHM) technology, abundant
onboard sensors and multisource analysis records have brought about the swift growth
of operation and maintenance data of UAVs [4]. These data-driven methods, thanks to
the growth of data scales, are gradually replacing the traditional Physics of Failure (PoF)
methods [5,6], becoming the mainstream of fault diagnosis.

In recent years, with the rapid development of artificial intelligence technology, data-
driven fault diagnosis based on machine learning models have achieved considerable
progress. However, the actual data of aviation equipment are large-scale, high-dimensional,
multi-class, noise-containing, and imbalanced, which poses grave challenges to generating
an effective classifier. Since the loss caused by different fault modes is unequal, the cost of
misdiagnosis could be great at times. As an extreme example, the Lion Air and Ethiopian
Airlines crashes were caused by misdiagnoses by the Maneuvering Characteristics Aug-
mentation System (MCAS) used in the Boeing 737 Max 8 aircraft [7]. In order to improve
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the capability of the fault diagnosis model, researchers have made some inroads, focusing
in particular on imbalanced data.

Due to the bias of the decision hyperplane in favor of the majority classes [8], the
decent overall classification accuracy (the core indicator used to train a general classifier)
might not be able to effectively diagnose more serious fault modes with lower frequencies
of occurrence. Due to the great number of fault modes that exist and their great differ-
ences in frequency, the collected operation data from UAVs are greatly imbalanced. The
data characteristics of the minority cases are easily outweighed by those of the majority
cases, but the former often contain valuable information [9]. For industrial practitioners,
this imbalanced data greatly reduces the fault detection rate and the effectiveness of a
data-driven method [10]. Data imbalance significantly interferes with the generalization
performance of cost-insensitive learning algorithms, which can cause the more serious
faults to be ignored in fault diagnosis procedures.

To deal with this imbalanced problem, evaluation methods that focus on all classes,
such as total misclassification costs [11], data-level methods, and algorithm-level methods,
have been developed. Resampling, as the key to the data-level methods, tries to rebalance
the data size of classes before model training with over-sampling, under-sampling, and hy-
brid methods. The over-sampling technique synthesizes the number of minority instances
to balance the classes, whereas the under-sampling technique obtains the balanced data dis-
tribution by removing sufficient majority instances. Over-sampling methods, represented
by the Synthetic Minority Over-sampling Technique (SMOTE) [12], make it difficult to fix
the overfitting problem. Comparatively, under-sampling methods can lose information
from partial data. These ineffaceable defects of resampling have encouraged researchers
to pay increasing attention to algorithm-level methods. By adopting different types of
cost-insensitive classification models, some algorithm level methods have been designed
for specific data and problems [13,14], with their weak generalization ability and heavy
manual work with core parameters setting becoming an issue [15]. Recently, cost-sensitive
learning methods have become a popular means to solve the imbalance classification prob-
lem by considering the different misclassification costs of different classes [16,17]. In fault
diagnosis, Peng et al. proposed a cost-sensitive active learning bidirectional gated recurrent
unit (CSALBGRU) to reduce the effect of class imbalance [18]. An error cost function model
was designed to guide the Convolutional Neural Network (CNN) parameters optimization
in the direction of feature classification and was applied to the heavy-duty industrial robot
system diagnosis procedure [19]. By using ensemble learning, Li et al. proposed a Dynamic
Updated Ensemble (DUE) for learning imbalanced data streams with concept drift [20].

These methods evade the cost setting problem due to the difficulty of obtaining the
objective and accurate misclassification cost, which means that the imbalanced problem
is only related to the difference in data distribution. The effect of cost-sensitive methods
still depends on the setting of the cost weight, which is also a difficulty in complex me-
chanical systems with unknown data distribution [15]. In fault diagnosis, the fault effect
difference caused by characteristics of different fault modes cannot be ignored. Setting the
misdiagnosis cost according to FMECA (Failure Mode, Effects and Criticality Analysis) [21]
can eliminate the subjective effect of traditional expert scoring methods [22], and fix the
scalability deficiency caused by training data deviation.

MetaCost framework [23], applicable to arbitrary cost matrices [24], is an ensemble
wrapping technique that generates cost-sensitive classifiers by relabeling original training
data based on minimizing loss function. Kim et al. found that using MetaCost would
achieve the lowest classification cost by comparing multiple classification approaches [25].
With its enhanced robust and sensitivity, Wang and Cheng proposed a MetaCost-based
combined method to process medical data [26]. Based on preferable meta-classifiers
and ensemble patterns, the MetaCost method can improve the diagnosis performance in
accuracy, total misdiagnosis cost, and computational resource occupation, in response to
the actual demand of UAV fault diagnosis.
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For identifying fault modes with more limited computational resources, this paper
discusses a two-step ensemble cost-sensitive diagnosis method based on a static cost
matrix. The contributions of this paper are as follows: (1) according to the fault criticality
from FMECA information, we defined the misdiagnosis hazard value and calculated the
misdiagnosis cost. Using the misdiagnosis cost, a static cost matrix could be set to modify
the diagnosis model and to evaluate the performance of the diagnosis result. (2) A two-step
ensemble cost-sensitive method based on the MetaCost Framework was proposed using
the stratified bootstrapping, choosing the Light Gradient Boosting Machine (LightGBM) as
a meta-classifier, and adjusting the ensemble form, to enhance the overall performance of
the diagnosis model and reduce the strain on computing resources, while optimizing the
total misdiagnosis cost.

The rest of this article is structured as follows: Section 2 provides a detailed description
of the operation and maintenance data of the UAV discussed in this paper, the cost matrix
setting method based on FMECA information, and a two-step ensemble cost-sensitive
method based on the MetaCost framework. The application of and experiments with the
proposed cost matrix setting method and the two-step ensemble cost-sensitive diagnosis
method are described in Section 3. Section 4 presents a comparison of the methods applied
to a KPG component of UAV, and the discussion. Finally, the conclusions are given in
Section 5.

2. Materials and Methods
2.1. Operation and Maintenance Data of UAV

The new generation of UAVs carries numerous sensors for monitoring the operation
status from self-check before takeoff to landing and shutdown. The operation data we
discuss in this article is the flight data of UAVs, which is a collection of time series data
points, including sensor signals and command inputs.

The characteristics of the flight data are as follows [27]:

• Large-scale. A single flight may record tens of thousands of data instances, which can
be limited by a lack of computing memory.

• High-dimensional. Attained from the numerous sensors, the actual flight data of
UAVs have hundreds of attributes, which can lead to the “Curse of Dimensionality”.

• Multi-class. UAVs have many types of complicated fault modes, requiring the effective
multi-class classification technology.

• Imbalanced. The quantity of flight data in different classes has inevitable disparities
in terms of the actual operation.

• Noisy. The mission condition of UAV is so complicated that serious noise interference
exists, such as the interruption of transmission or electromagnetic interference.

Other characteristics of UAV flight data include their time-sequential nature, the fact
that they are recorded at fixed intervals, their inconsistent value range and accuracy, and
discontinuity (outliers and frame loss). These characteristics were very important for
research focusing on signal feature extraction (e.g., bearing vibration data analysis) but did
not have a significant impact on our method selection.

The maintenance data we discuss in the present paper includes BIT (Build-in Test)
records and FMECA information of UAVs. The new generation BIT system of UAVs, based
on an expert system, PoF model, and fuzzy logic, etc., could automatically monitor most of
the sensor signals or signal combinations that can cause a fault, by alerting one to or even
interrupting operation instructions once the signals exceed the preset limit. Zheng utilized
BIT records to label the flight data of UAVs, automatically [27]. Failure modes, effects,
and criticality analysis (FMECA), a widely used methodology among the safety, reliability,
and risk engineers, provide valuable information for the improvement of the safety and
reliability of the process and system [28,29]. Quantitative criticality analysis (CA) could
obtain the criticality value Ri (to prevent confusion with the cost of misclassification) of
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fault mode Fi based on the probability of fault and consequences, calculated using the
following equation:

Ri = αi · βi · λi · t (1)

where αi, βi, λi, and t represents the fault mode ratio taken from historical database; the
conditional probability of fault effect leading to identified severity classification; the basic
fault rate prediction based on a specific model; and the mission phase duration, respec-
tively [30]. As an inductive process with a “bottom-up” approach, Criticality Analysis (CA),
which is meant to provide information for risk management decisions, is performed in the
design and operation stages of UAV. Using this information to modify the fault diagnosis
model based on flight data can effectively fuse the design knowledge and operation data
together.

2.2. Cost Matrix Setting Based on FMECA Information

At present, the effort of imbalanced data classification is focused on the imbalance of
data distribution, which fails to take full account of the essential differences between differ-
ent classes of objects—for example, different fault modes. Considering that the training
data used for the model cannot represent all conditions of UAV exhaustively, we chose the
fault criticality value reflecting the essential difference of fault modes (from FMECA) to set
the cost matrix, in order to avoid the overfitting issue led by data distribution.

For the multi-class fault diagnosis, the misdiagnosis cost cij represents the classi-
fier misdiagnoses’ actual fault mode Fj, as predicted by fault mode Fi, which yields the
misdiagnosis cost matrix, as shown in Table 1, which is similar to the confusion matrix.

Table 1. n-fault modes’ misclassification cost matrix.

Actual Fault Mode

F1 F2 · · · Fn

Predicted
Fault
Mode

F1 c11 c12 · · · c1n
F2 c21 c22 · · · c2n
...

...
...

. . .
...

Fn cn1 cn2 · · · cnn

For the actual fault mode Fj and predicted fault mode Fi, we defined the misdiagnose
distance of fault criticality as

dij = Ri − Rj (2)

When the actual fault mode Fj is more harmful than predicted fault mode Fi, the value
of dij is positive, but negative in the opposite case. Based on the misdiagnosed distance,
we defined a hazard value of misdiagnosis as the following equation:

hij =


S · dij

∑
i

Ri
dij ≥ 0

−mS · dij
∑
i

Ri
dij < 0

(3)

where ∑
i

Ri indicates the sum of hazard values of all fault modes of the target equipment; S

represents a scaling factor to improve computing convenience (in the present paper, this
is represented by S = 100); m represents a correction coefficient between 0 and 1, for the
negative value of misdiagnose distance, showing that the cost as a result of the misdiagnosis
of a more serious fault compared to a minor one would be greater than the opposite. Since
there is no reference to determine the value of m, we temporarily took m= 0.5 to realize
the correction function and, thus, to avoid the excessive or insufficient effects.
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It can be intuitively found that there is a positive correlation between the misdiagnosis
cost cij and the misdiagnosis hazard value hij, simplifying this to a linear mapping as the
following:

cij = khij + b (4)

In order to simplify the computing process, the factors k and b can be taken as 1 and 0,
respectively.

According to the above process, the misdiagnosis cost between a pair of fault modes
based on FMECA information could be calculated and then used to build the misdiagnosis
cost matrix.

2.3. Two-Step Ensemble Method Based on MetaCost Framework
2.3.1. MetaCost Framework

MetaCost is an ensemble framework used to convert cost-insensitive classifiers into
cost-sensitive classifiers. The basic idea of MetaCost is to train multiple meta-classifiers
organized by bagging first, then calculate the expected cost according to the prediction
probability and misclassification cost matrix based on Bayesian theory, relabel training set
based on the expected cost, and finally train an ensemble modified classifier on relabeled
training data [23]. The key work of MetaCost is as follows:

Given a solid cost matrix, an instance should be classified into a class that generates
the minimum expected cost. The expected cost of classifying an instance x into class Ci can
be expressed as the following:

E(Ci|x) = ∑
j

P(Cj
∣∣x) · cij (5)

where P(Cj
∣∣x) is the probability of class Cj, which is the actual class of instance x.

Then we relabeled the instance x based on the expected cost ranking of all classes as
the following:

Labelx = argminE(Ci|x) (6)

Subsequently, we retrained the classifier to the relabeled training set in the end. The
core advantage of the MetaCost framework is its suitability for almost all kinds of data sets,
thanks to the ensemble approach.

Aiming at the fault diagnosis task, the MetaCost-based cost-sensitive model can be
improved in (1) the generation of training subsets for meta-classifiers; (2) the selection of
meta-classifiers; and (3) the organizational form of meta-classifiers.

2.3.2. LightGBM

A fact that cannot be ignored is that the recorder on UAVs can generally store more
than 20 flight data points per second, which made us pay more attention to the performance
of the diagnostic model for processing large-scale data. Microsoft proposed the LightGBM
(Light Gradient Boosting Machine), an exceedingly fast gradient boosting framework, to
improve the model training speed when processing large-scale data [31]. In fault diagnosis,
LightGBM has been used in diagnosing shipboard medium-voltage DC power system
faults [32], rotating machinery faults [33], and classic bearing faults [34].

As an improved method of GBDT, LightGBM employs Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB), known as the histogram-based
algorithm, to reduce the cost of calculating the gain, to speed up training, and to occupy less
memory usage [35]. It was verified on UAV test flight data that the lightning LightGBM-
based diagnosis model could attain a decent performance without occupying excessive
computational resources [27]. As an ensemble learning model, the LightGBM still has the
great potential to be employed as a meta-classifier in complicated ensemble frameworks.
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2.3.3. MC–LGB: A Two-Step Ensemble Cost-Sensitive Model

In order to optimize the total misclassification cost, the original MetaCost framework
has the defects of a decline in excessive accuracy and an increased modeling time. Based
on the characteristics of the operation and maintenance data of UAVs, we attempted a
modification of the original framework by changing the sampling method, improving the
performance of the meta-classifier, and adjusting the organization form so as to enhance the
overall performance of the diagnosis model and reduce the required computing resources
while decreasing the total misdiagnosis cost.

Generating subsets for training meta-classifiers through sampling is an important
part of constructing diverse meta-classifiers, which is realized by employing the bootstrap
resampling in the original MetaCost framework. The sample size of different fault modes
varies greatly in the actual UAV flight data, meaning that instances of specific fault modes
might not be included in the subsets generated by the bootstrap method, resulting in
parts of meta-classifiers lacking the ability to diagnose all existing fault modes. Therefore,
stratified bootstrapping was used by us to construct the subsets, to ensure the diversity of
the meta-classifiers, and to enhance the stability of the diagnosis model.

In order to achieve the expected performance, an important aspect of optimizing the
ensemble learning model is improving the capacity of the meta-classifier. According to the
characteristics of UAV fault diagnosis, the chosen meta-classifier needs to be lightweight
enough to be integrated, while exhibiting a relatively classy diagnosis ability to avoid
overfitting. In addition, the independency and diversity of the meta-classifiers are also
essential in the MetaCost framework. After constructing varied subsets, different features
can also be selected to obtain the diverse meta-classifiers. LightGBM, as an ensemble
learning method with a decent classification performance and ultrafast training speed
on actual UAV data, perfectly meets the meta-classifier requirements in the MetaCost
framework. With the EFB technology, LightGBM can construct multiple decision trees
under the same subset, which further enhances the diversity and independency of the meta-
classifiers under the premise of stratified sampling beforehand. In addition, employing
LightGBM-based models, constructed by boosting, would perhaps increase the sensitivity
of the MetaCost model organized by bagging form, for processing large-scale data. In
an effort to improve the global diagnostic performance while meeting the cost-sensitive
function, selecting LightGBM as the meta-classifier solves the modeling speed issue with
MetaCost efficiently, adapting to the limitations in computational resources. In addition,
the MetaCost model with LightGBM as a meta-classifier has decent robustness in handling
the grievous Gaussian noise interference [36].

Referring to the idea of the D-MetaCost algorithm proposed by Deng [37], a particular
proportion of the cost-insensitive meta-classifiers before data relabeling can be integrated
with the cost-sensitive meta-classifiers in the end, for offsetting some of the accuracy losses
obtained after retraining. After the first ensemble, a proportion of the cost-insensitive
meta-classifiers are selected based on the classification accuracy evaluation, to participate
in the final ensemble.

Thanks to the above improvements, this paper proposes a two-step ensemble cost-
sensitive diagnosis model based on the MetaCost framework (MC–LGB), for a UAV fault
diagnosis based on operation and maintenance data. The basic workflow of the proposed
model is shown in Figure 1. The MC–LGB model is divided into three stages to realize
the cost-sensitive classification function: 1st ensemble stage, intermediate stage, and 2nd
ensemble stage. (1) After the stratified bootstrapping, m subsets from the original training
set are generated and m corresponding cost-insensitive LightGBM models are trained,
respectively, in the 1st ensemble stage. Each LightGBM of them is integrated by n decision
trees. (2) In the intermediate stage, the performance evaluation procedure of the trained
meta-classifiers is performed. Among the m meta-classifiers, p cost-insensitive LightGBMs
with the best accuracy are selected to participate in the final ensemble. At the same time,
based on the basic algorithm of the MetaCost framework, MC–LGB calculates the expected
cost according to the cost matrix, and relabels the original training set. (3) Similar to the
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1st stage, m subsets from the relabeled training set are generated and m corresponding
cost-sensitive C-LightGBM models are trained, respectively. Together with the selected
cost-insensitive LightGBMs, the newly trained cost-sensitive meta-classifiers are organized
in the 2nd ensemble stage.

Figure 1. The basic workflow of the proposed two-step ensemble cost-sensitive diagnosis model (MC–LGB).

According to the workflow shown above, the main hyperparameters affecting the
performance of the proposed model include the size of the subsets after the stratified
bootstrapping, the hyperparameters of the generated LightGBM-based meta-classifier
(such as depth limit), the proportion of selected cost-insensitive classifiers in the meta-
classifier selection step, and the number of generated meta-classifiers.

3. Application and Experiments
3.1. Application Description

The operation and maintenance data are from a KPG component in the integrated
navigation system of a TYW-001, a large fixed-wing UAV from BHUAS. The endurance
of the TYW-001 is over 40 h with a ceiling of 8000 m, a take-off weight of 1500 kg, and an
external payload of 370 kg. Apart from the fire control system and redundant backups,
the flight data of the TYW-001 has a total of 457 variables, including sensor monitoring
and operation input. The main functions of the KPG component include solving the
orientation of the aircraft relative to the ground station; solving the information of the
aircraft deviating from the predetermined course and the predetermined glide slope during
microwave landing; solving the information of the aircraft deviating from the course and
the glide slope during instrument landing; and providing the distance information of the
runway entrance by the pointing beacon input and output signal power division, signal
reception and transmission, etc.

According to the spike testing of the target KPG component, 32 relevant data fea-
tures can be obtained from onboard sensors, existing 5 fault modes, and 1 normal state.
Table 2 shows the distribution and corresponding criticality values of these states in our
spike testing.
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Table 2. The distribution and criticality of the different states of the KPG component.

Fault Mode Number of Cases Criticality

Normal 1759 0
F1 480 3.46
F2 407 3.31
F3 283 15.672
F4 113 23.508
F5 157 1.86

3.2. Experimental Setup

In order to determine whether the proposed two-step ensemble cost-sensitive diag-
nosis model (MC–LGB) can effectively play a role in the imbalanced KPG fault diagnosis
compared with the diagnosis models employed on the entire UAV (the baseline GBDT
and FCNN; the superb XGBoost; the extremely fast LightGBM; and the balanced modified
CNN) [27], our experiment analyzed the performance of the proposed MC–LGB model in
its overall diagnosis ability, total misdiagnosis cost optimization, and computing resource
occupation. The performance of these classifiers was compared through the following
metrics: accuracy, precision, recall, F1-score, MCC, AUC, and training time.

All the experiments were performed using an Intel Core i7-10700F 2.90 GHz ma-
chine with 16 GB RAM and NVIDIA GeForce GTX 3070. The codes of methods were
implemented in the R-studio 1.3 and Python 3.7, with Keras 2.3.1; Scikit-learn 0.22.2.post1;
Tensorflow 2.1.0; Lightgbm 2.3.1; and Xgboost 1.0.2. The hyperparameters related to the
proposed model were optimized by Grid Search and manual adjustment, with the main
hyperparameters of the control group being shown in Table 3. All models were evaluated
in a 10-fold cross-validation.

Table 3. The setting of the main hyperparameters of the control group in the experiment.

Classifier Num.
Leaves Max. Depth Subsample Random

State
Learning

Rate

XGBoost 64 7 0.9 42 0.001
LightGBM 56 6 0.9 42 0.001

Classifier Optimizer Activation
Function 1

Activation
Function 2 Iterations Learning

Rate

CNN Adam RReLU Softmax 15 0.001

4. Results and Discussion

The aim of the experiment is to evaluate the effectiveness of the two-step ensemble cost-
sensitive classifier, MC–LGB, in a multi-class UAV fault diagnosis with imbalanced data.

Adapting to the method of the cost-matrix setting, with the fault criticality given
in Section 2.2, the misdiagnosis cost matrix (Table 4) for cost-sensitive classification was
computed first by the fault criticality values of the different states of the KPG component.

Table 4. The misdiagnosed cost matrix of the different states of the KPG component.

Actual State

Normal F1 F2 F3 F4 F5

Predicted
State

Normal 0 3.62 3.46 16.39 24.58 1.95
F1 3.46 0 0.15 12.77 20.97 1.60
F2 3.31 0.16 0 12.93 21.12 1.45
F3 15.67 12.21 12.36 0 8.19 13.81
F4 23.51 20.05 20.20 7.84 0 21.65
F5 1.86 1.67 1.52 14.44 22.64 0
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The calculated misdiagnosis cost matrix above was used to construct the proposed
two-step cost-sensitive ensemble diagnosis model (MC–LGB). The details of each metric of
the proposed method compared with that of the control group of diagnosis models and
verified by actual UAV fault data, are shown in Table 5.

Table 5. Accuracy, precision, recall, F1-score, MCC, AUC, and training time of classifiers on the KPG dataset.

Classifier Accuracy Precision Recall F1-Score AUC Total Cost Training Time (s)

GBDT 0.8437506 0.84375410 0.655405843 0.70726071 0.84783751 1747.55741 4.0573371
XGBoost 0.8584342 0.83591799 0.67201018 0.72292679 0.85433047 1733.41393 6.0064519

LightGBM 0.8406285 0.86094413 0.65656522 0.71646056 0.84902602 1767.96444 1.7005878
FCNN 0.8375030 0.79448272 0.64286232 0.68237482 0.79586347 1792.10667 6.3989562
CNN 0.8390625 0.84398075 0.65459342 0.70687547 0.80700821 1712.54131 9.9070521

MC–LGB 0.8208274 0.84215531 0.65531832 0.70772384 0.84405759 1591.51146 6.2960547

In terms of accuracy and precision (with the exception of the FCNN model’s precision,
which was below 0.8), all methods achieved a score that was greater than 0.82. Figure 2a–d
show the comparison between the traditional classification performance metrics on the
KPG dataset. It can be seen that XGBoost is the model with the strongest overall diagnostic
ability on the KPG dataset (it has the highest accuracy, recall, and F1-score), with negligible
disparities among the classifiers. Surprisingly, LightGBM, with insufficient diagnosis ability
on the entire UAV, exhibited an excellent performance on the KPG dataset, especially in
terms of precision. On these metrics, the proposed MC–LGB model showed no significant
loss, which proves that our effort to enhance the overall diagnosis ability of the MetaCost
framework was effective.

Figure 2. (a) Accuracy of classifiers on the KPG dataset; (b) precision of classifiers on the KPG dataset; (c) recall of classifiers
on the KPG dataset; and (d) F1-Score of classifiers on the KPG dataset.
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To some extent, the AUC result exhibits the responsiveness of each diagnosis model
to imbalanced data, which can be visualized from the Receiver Operating Characteristic
(ROC) curves in Figure 3a,b. This explains that the proposed MC–LGB model can pay
attention to all operation states without showing preference for any fault mode and keep
up with the best XGBoost model.

Figure 3. (a) ROC curves of classifiers on the KPG dataset and (b) AUC of classifiers on the KPG dataset.

For the training time of the models, shown in Figure 4a, the proposed MC–LGB model
does not exceed other models in the occupation of computing resources by employing the
lighting LightGBM as meta-classifiers, which greatly improves the diagnosis availability of
the MetaCost-based model.

Figure 4. (a) Training time of classifiers on the KPG dataset and (b) total cost of classifiers on the KPG dataset.

Due to the serious imbalance of the UAV operation data and the differences among
fault modes, we paid more attention to the total misdiagnosis cost, which reflects the
adverse effect of model biasing in some classes. Figure 4b shows the total cost of the
classifiers on the KPG dataset. In the present study, we demonstrated that the proposed
MC–LGB model can significantly reduce the total misdiagnosis cost from over 1700 to 1592,
even at a similar accuracy level. By preferentially improving the diagnosis ability of high
criticality fault modes, the diagnosis model can reduce the cost of inevitable misdiagnoses,
under the limitation of existing classification abilities.

In brief, the proposed two-step ensemble cost-sensitive method (MC–LGB) effectively
complements the shortcomings of the original MetaCost framework. The MC–LGB model



Appl. Sci. 2021, 11, 11116 11 of 13

can play an essential role in the future when dealing with a demand for more complex
UAV fault diagnosis.

5. Conclusions

In order to improve data-driven fault diagnosis models within the limited computing
resources, a two-step ensemble cost-sensitive diagnosis method based on the operation and
maintenance data of UAV is proposed. Focusing on the overall utility of UAV diagnosis
and maintenance, we managed to reduce the overall misdiagnosis cost of the diagnosis
model as the core target, setting the misdiagnosis cost matrix by the fault criticality of
FMECA, to guide the correction of the data-driven diagnosis model. Based on our two-step
ensemble cost-sensitive method (MC–LGB), the capability of the diagnosis model can be
enhanced significantly to support the ground maintenance decisions.

The experimental results based on the KPG component data of a large fixed-wing
UAV show that the proposed cost-sensitive model can effectively reduce the total cost
caused by misdiagnosis, without putting forward excessive requirements for computing
equipment under the condition of ensuring a certain overall diagnosis performance. More
specifically, compared with the other fault diagnosis models applied to the TYW-001 UAV,
it is demonstrated that the proposed MC–LGB model can significantly reduce the total
misdiagnosis cost from over 1700 to 1592, with an accuracy loss of only 3%. Focusing on
the computing resources occupancy, the MC–LGB model also reached the average level of
training time, in spite of the two-step ensemble processing.

In essence, our method improves the utility of UAV diagnosis and maintenance by
restrainedly sacrificing the global accuracy of fault diagnosis. It would inevitably follow
that more “non-serious faults” can be misdiagnosed, as other faults or a normal state, with
this method. Once the judgment of fault influence is incorrect, it can produce the fault loss
more than expected so it is necessary to emphasize the reliability of the used fault criticality
values in a cost matrix setting.

It is feasible for the proposed two-step cost-sensitive model applying to actual UAV
fault diagnosis. In future work, adding the ground maintenance cost and mission delay
cost, caused by the misdiagnosis to the cost matrix, would be a practicable and valuable
direction to explore. Since the reliable fault criticality values can be difficult to obtain in
some scenarios, using the Risk Priority Number (RPN) instead of the fault criticality can
also set the misdiagnosis cost matrix using our method, which requires further research on
the exact RPN calculation. For the requirements of real-time fault diagnosis on UAVs in the
future, the cost-sensitive diagnosis model based on the MetaCost framework cannot yet
handle the data stream. Developing the cost-sensitive flight data stream mining method
can be an interesting approach for fault diagnosis and the health management of UAVs.
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