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Abstract: This study investigates replenishment planning in the case of discrete delivery time, where
demand is seasonal. The study is motivated by a case study of a soft drinks company in Germany,
where data concerning demand are obtained for a whole year. The investigation focused on one type
of apple juice that experiences a peak in demand during the summer. The lot-sizing problem reduces
the ordering and the total inventory holding costs using a mixed-integer programming (MIP) model.
Both the lot size and cycle time are variable over the planning horizon. To obtain results faster, a
dynamic programming (DP) model was developed, and run using R software. The model was run
every week to update the plan according to the current inventory size. The DP model was run on a
personal computer 35 times to represent dynamic planning. The CPU time was only a few seconds.
Results showed that initial planning is difficult to follow, especially after week 30, and the service
level was only 92%. Dynamic planning reached a higher service level of 100%. This study is the first
to investigate discrete delivery times, opening the door for further investigations in the future in
other industries.

Keywords: inventory replenishment; mixed-integer programming; dynamic programming; inven-
tory holding costs; soft drinks industry

1. Introduction

Replenishment planning is necessary to balance service levels, inventory ordering
and holding costs. The decision-maker must react to the customer’s dynamic needs,
and at the same time keep the costs as low as possible. Therefore, a trade-off must be
planned. A clear picture of the situation on the ground is necessary to optimize the system.
This planning is widely known in theory and practice. However, sometimes restrictions
enforced by suppliers must be taken into consideration, such as the possible times of
delivery, which has been overlooked in the literature. A simple economic order quantity
formula (EOQ) was developed by Harris in 1913 [1]. However, this formula was too simple
to reflect many practical sittings such as changes in demand and suppliers’ constraints.
For example, a lot of research studies assume a constant demand rate or a deterministic
trend in demand rate. A lot of studies have neglected the lead time or considered it to be
constant [2]. In many studies about the replenishment system, the phrase “lead time” was
not mentioned at all. Other assumptions are the zero-inventory point at the exact time of lot
coming to the warehouse, therefore neglecting safety stock. The capacitated replenishment
system assumes constraints on the minimum size of the lot or a maximum warehouse
capacity, but it assumes no constraints on the delivery dates. In other words, studies
assumed no constraints on the delivery times. Therefore, delivery time was traditionally
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considered a continuous variable. Some of the limitations were on the design of the supply
chain network [3].

Many attempts were made to include more practical situations such as the trend in
demand. Still, however, most of the research depended heavily on many unpractical as-
sumptions. Practitioners are struggling to find studies without non-practical assumptions
and are easy to understand [4]. Most of the research used substantial calculations including
calculus, nonlinear programming, and other mathematical methods [5]. Therefore, practi-
tioners would use the theoretical formulas as a starting point, and then use their experience
to modify the results.

Another point to mention is that the demand here is between suppliers and the
company. The ordering cost is usually large since the distances between different supply
chain parties are long. Therefore, supplying the needed products according to the actual
known demand for short periods is very expensive as it includes too many orders and
therefore results in huge ordering costs. The situation escalates when there are hundreds
or even thousands of different item types, where the demand size for each one of them is
not so large. Research has favoured the JIT principle when firms have tried to meet high
and consistent levels of demand [6]. This is the not case in this paper. Another point is that
in the well-known periodic review system, period order quantity (POQ) is used. However,
the assumption in this method is that there must be a delivery every period, no matter how
much the demand size is (very high or very low). An optimal solution, however, might be
reducing the number of deliveries in the low demand period, and increasing it in the high
demand period. The model in this paper optimally combines the net demand for one or
more periods.

This study is motivated by a case study about a drinks company in Germany for
the manufacturing and distribution of drinks. Several types of drinks are produced or
bought from other companies and then sold to retailers. Unit prices are relatively stable,
but demand is generally larger in the summer. Suppliers cannot produce every product
type every day, and therefore, a certain product type can be supplied on a certain day in
the week, or, for example, two days in the week. This is especially true when the distance
between suppliers and retailers or consolidation warehouses is relatively long to reduce
transportation costs. In other words, there is a constraint on the delivery times which are
discrete and not continuous. Despite the importance of this point, it has been overlooked
in the literature. To the best of the authors’ knowledge, this paper is the first to investigate
discrete possible delivery times. Moreover, little has been published about inventory
replenishment in the soft drinks industry.

Following the introduction, a literature review is given in Section 2, detailing the
progress concerning the problem investigated as shown in previous studies, including
recent contributions. In Section 3, a model is shown including details on how to solve it
using DP. Section 4 details the results and analysis based on real data. Section 5 concludes
this paper and offers recommendations for future research.

2. Literature Review

Supply chain planning in a dynamic environment assuming dynamic demand using
optimization models has been widely investigated in the literature. An example of this is
shown in the study by Chung et al. [7] which proposed a dynamic supply chain design,
and the study by Han et al. [8], which investigated the production-planning problem
for production-time-dependent products. Both suggested a MIP model and a heuristic
algorithm. Mathematical programming in warehouses was also investigated in a study by
Bolanos Zuniga et al. [9]. Some studies concentrated on the literature review of economic
order quantity such as Holmbom and Segerstedt [4] and Schmidt et al. [10]. The first
attempt to include the trend in demand was by Donaldson [11], who used substantial
calculations. At first, he calculated the cycle times, which are different based on time-
dependent demand, and then based on these delivery times, the best lot size was found.
The optimal delivery times were found for a different total number of deliveries on a
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specified horizon. To simplify the solution, Silver [12] developed an approximation “Silver-
Meal” heuristic. Later, Ritchie [13] extended the time horizon of Donaldson so that it no
longer influenced the replenishment times to simplify the calculations. More practical
settings started to appear. For example, Ben-Daya and Raouf [14] developed an inventory
model involving lead time as a decision variable. Later, some studies included the shortage
costs besides the trend in demand in the investigation, such as the study by Teng [15].
However, there were still some limiting assumptions; both the lead time and the initial and
final inventory levels were zero. Moreover, a study by Zhao et al. [16] investigated only
the replenishment policy with linear decreasing demand. Lo et al. [17] investigated the
inventory replenishment policy for a linear trend in demand, where two steps are needed
to examine the classical no-shortage inventory replenishment policy. Yang et al. [18] relaxed
the linear trend when they investigated replenishment with non-linear decreasing demand.
Other studies that came later investigated the increasing demand pattern, such as Astanti
and Luong [19]

Factors other than demand were also investigated. For example, Hayek and Salameh [20]
considered the case of imperfect quality items. The effect of rework on production order
quantity was considered by Taleizadeh et al. [21] and Taleizadeh et al. [22]. Moreover,
Wang et al. [23] investigated the replenishment policy in the case of fuzzy stock cost of
each unit quantity and the order cost of each cycle. Pasandideh et al. [24] investigated the
replenishment system when the supplier’s warehouse has limited capacity and there is an
upper bound on the number of orders in the Vendor Managed Inventory (VMI) System. A
JIT system was considered in a study by Cárdenas-Barrón et al. [25], but assuming constant
demand. Restrictions on delivery due dates were considered in a study by Kangi et al. [26]
in the JIT environment, but the demand rate was assumed to be constant. Duarte et al. [27]
investigated finding the optimal production and inventory policy in a multiproduct bakery
unit, using mixed-integer programming (MIP).

The seasonality effect was investigated at first for products that were in demand for
only a short period. Groebner and Merz [28] concentrated on products such as winter
sporting goods. The same direction was followed by Giri et al. [29] to study an EOQ model
for deteriorating items. Some later studies investigated seasonal demand such as the study
by Gupta et al. [30], where they concentrated on items with fixed selling seasons. The effect
of fluctuations in demand and unit price was investigated in a study by Teng et al. [31],
especially for high-tech products where the unit cost declines significantly over a short
product life cycle while the demand increases. Again, there are some limiting assumptions
such as the zero-lead time and the zero initial inventory level.

However, in many cases, there is a demand for products all year round, but with an
increase in some in certain months. Such a case of seasonal demand, which is the focus
of this paper, is closer to the one mentioned in the study by Chen and Chang [32]. They
developed for the first time a seasonal demand inventory model with variable lead-time
and resource constraints suited to the just in time (JIT) philosophy. They used a MIP model
to solve the problem. However, in the current paper, the control on lead time is limited,
based on practical settings. JIT settings are usually suitable for repetitive production.
However, when there are so many product models, JIT is not appropriate as the same
production line can be used to produce several different products, or the same product
with different sizes, which can be produced every day. Another paper that dealt with
lead time as a decision variable is by Louly et al. [2], which concentrated on a single-level
assembly system. Sana [33] investigated the case when the demand of the goods follows the
Sine function, such as when an item undergoes physical decay or deterioration over time.
Panda et al. [34] investigated the case when demand follows a ramp-type time-dependent
function, with the assumption of zero lead time. Time variable demand was considered in
a study by Omar and Yeo [35] when only one type of raw material is required to fabricate
the finished product. A distribution system with power demand pattern and backorders
was investigated in a study by Abdul-Jalbar et al. [36]. Additionally, the power demand
pattern case with zero lead time was studied by Sicilia et al. [37], Sicilia et al. [38], and
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San-José et al. [39]. Imperfect economic manufacturing models were developed for power
demand patterns in a study by Keshavarzfard et al. [40]. Mattsson [41] investigated the
case of seasonal demand using a simulation with a constant lead time. A simulation was
also used in a study by Wang et al. [42], where the integration of simulation modeling and
the response surface methodology was performed to solve an order planning problem in
the construction supply chain. Banerjee and Sharma [43] considered the case of price and
time-dependent seasonal demand rate. They assumed that inventory, once ordered, can
be used for more than one season. Shih et al. [44] considered fuzzy seasonal demand in a
production inventory model but neglected the effect of lead time. An attempt for many
practical settings was made in a study by Saracoglu et al. [45], where variable demand
was assumed under the constraints of shelf life, budget, and storage capacity, but with a
constant lead time. Fu et al. [46] addressed the joint determination of pricing and ordering
decisions, where a retailer sells seasonal products. However, they neglected the effect
of lead time. Sakulsom and Tharmmaphornphilas [3] investigated the periodic-review
policy with seasonal demand, with known lead time, where there is one warehouse and
N retailers. DE and Mahata [47] investigated an EOQ model under monsoon type fuzzy
demand rate where cycle time is a decision variable, without any consideration for lead
time, and shortages are not allowed. Sakulsom and Tharmmaphornphilas [48] considered
the case when the system has a seasonal demand within a cycle of one week, and generated
heuristics for a periodic-review policy. They considered a one-day demand phase and a
one-day lead time. Meta-heuristics were used by Klement et al. [49] for the lot-sizing and
scheduling problem. Di Nardo et al. [50] proposed a stock dynamic sizing optimization,
where the safety stock is considered to fill up the demand variability, where the lead time
is constant.

The objective of this study is to propose a new novel way to plan the replenishment
process between the supplier and the warehouse of any company that has a seasonal
demand with a reasonable forecasting accuracy of the end product’s demand. The con-
centration here is on the situation that is overlooked in the literature, where suppliers
can only release shipments on a certain day of the week. Order sizes can differ from
one replenishment to another in response to the change in demand. The time between
two successive replenishments can also be variable. Both the quantity and time between
replenishments are the main decision variables, with the objective of reducing the total
costs of the system. This is accomplished with the consideration of a predetermined service
level (probability of finding the product whenever needed). To perform this, two models
are used. The first one is the MIP model which describes the specific details of the problem.
The second one is to obtain results faster.

3. Methodology

Figure 1 shows the general scheme of the study steps. This section starts with defining
the unique characteristics of the problem. Then, other steps are discussed later in more
detail. The assumptions are very close to the real situation on the ground. The DP model
reaches the optimal solution much faster than MIP. The last step shows that the plan must
be updated every week depending on the available information about demand and current
inventory size. After this step, the discussion of the results is presented.

The basic calculations of EOQ, which assume that the demand is stable all the year, are
insufficient to take into consideration the trend in demand. In this study, the consideration
is for the end products. It is worth mentioning that material requirements planning (MRP) is
developed specifically to help manufacturers manage dependent demand inventory, while
in this study, the concentration is on independent demand (finished products). Dependent
demand is such as the needed number of chair legs, depending on the forecasted number
of chairs. The natures of demand for both types are different, and planning time horizon
for independent demand is usually longer. The dependent demand is lumpy and occurs
once every several weeks. However, independent demand is continuous and can occur
every day. The reader might refer to Krajewski et al. [51] for more information about MRP
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and its basic possible lot sizing rules, such as fixed order quantity (FQQ), periodic order
quantity (POQ), and lot-for-lot (L4L). There are, however, other types of MRP, such as fixed
period requirements (FPR), least unit cost (LUC), least total cost (LTC), and part-period
balancing (PPB). Optimality can be found in MRP by the Wagner–Whitin Algorithm (WW).
However, WW replaces EOQ for the case of lumpy demand (dependent demand), and it
usually assumes that demand is known without any variability [52]. The MRP lot sizing
rules, however, can be useful for replenishment planning of materials or semi-finished
products needed to produce the drinks.
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Figure 2 shows the first-tier suppliers and customers of the company. There are two
stages of supplying drinks: from suppliers or factory to the warehouse, and from the
warehouse to small retailers. The company has its own factory beside the warehouse,
where drinks can be produced in the factory or bought from suppliers. Different rules
of replenishment can be applied between the company and the retailers. This study
focuses on the replenishment system from suppliers to the warehouse. Different items
can have different calculations. In the literature, economic production quantity (EPQ) was
investigated differently, because the assumption was that the production process of the
lot needs several days. Usually, a production lot can be produced in few hours in the day.
That means that products coming to the warehouse arrive on the same day. Therefore,
the economic order quantity and economic production quantity can be investigated in the
same way, but with different considerations for lead time.
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Suppliers are informed about the demand before the items are delivered to the ware-
house. These suppliers can be very distant from the retailers and therefore, this warehouse
can play the role of a consolidation center to reduce transportation costs. Bigger trucks
can be used from the suppliers to the warehouse, and then smaller trucks can be assigned
from the warehouse to each customers’ area. This supply chain can use the make-to-stock
method. The demand rate during a short period can be relatively stable. However, different
seasons can have different consumption rates. Therefore, accurate forecasting is necessary.
The deviations of the demand are not only in the average demand rate but also in the
standard deviation of it. The lot size should be able to adjust the safety stock.

Because of the long distance and because of the different types and sizes of drinks,
suppliers prefer to send goods every few days (for example one week) instead of every day.
The supplier cannot produce every item type and size every day. Moreover, the demand
for a certain type and size might not be big. Therefore, some suppliers might prefer to send
a big truck every week (if needed). That means that there is a constraint not only on the
capacity of the truck (and hence on the lot size), but also a constraint on the delivery times.
Each supplier does not need to send each different type and size every week. However, at
least some of them might be in a certain week. Such items are consolidated and sent to the
warehouse in one truck to reduce transportation costs. Because the drinks’ company needs
to send the order in the previous week before the actual delivery and because the delivery
date might be fixed on a certain day (for example, Tuesday), the actual lead time might be
more than one week. However, there is a minimum lead time (MLT). For example, if the
order by the company is sent to the supplier on Wednesday, it might not be delivered on
the direct until next Tuesday. There is, however, a source of uncertainty, where sometimes
the delivery is one or two days late and it might not arrive until Thursday. In this case, the
lot size should cover the demand for 9 days instead of 7 days. In this paper, however, the
assumption is that such a delay is only a small percent and the safety stock is enough to
handle it. The lot will cover the demand for the period after the arrival of the shipment.

Because of the variability of the demand, accurate forecasting must be considered,
and a dynamic approach is needed to recalculate the replenishment times and quantities.
Therefore, three questions arise:

1. Should delivery be made in the next week?
2. If yes, how many weeks of demand should it cover (cycle time), and what about the

next cycle times?
3. Based on the optimal cycle time, what are the optimal lot size and safety stocks?

These questions should be answered the previous week before the next delivery date.
The planning horizon is, however, larger than one week (it can be one year). That means
that there is a primary plan based on the integer programming model, and this plan is
re-evaluated every week based on the actual size of the inventory we have now. Therefore,
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the plan might indicate no delivery in a certain week, and then the new plan indicates
delivery in that week.

The currently available inventory size (P0) is the size of the inventory at the end of the
current week. That means that the current week’s demand is known or predicted with a
high level of accuracy. The planning horizon starts the next week. That means that week 1
is the next week. If P0 is expected not to cover the demand for at least the next week, an
order must be triggered immediately. The following assumptions are made:

• The demand rate from one week to another can be different.
• Delivery times are discrete based on suppliers’ constraints on them.
• Every different product type can be studied independently. This assumption is reason-

able because there are so many different item types, and the size of each one compared
to the whole demand is not so high. Another factor is that delivery is carried out
usually on a certain day in the week, and it is expected that many other items are
needed in that week. Therefore, there is no need to assign a vehicle only for one
item type.

• Lot size can be any size lower than the maximum allowable one
• The initial inventory size at the end of the current week can be estimated with a good

degree of accuracy
• The MLT should be less or equal to the minimum cycle time (MCT). For example, if

MCT is one week, MLT can be one week or less.

The constraint that delivery must be carried out at the beginning of the planning
horizon is released in this paper. Another difference is that the decision about next week’s
delivery depends on a plan for the next several weeks (planning horizon), and not only the
next week.

Model formulation
Notations:

• OF: Objective Function;
• T: total number of weeks in the planning horizon;
• S: Ordering cost;
• H: yearly inventory holding cost by a stock keeping unit;
• Iij: cycle inventory holding cost during weeks from i to j;
• Ew: initial inventory holding costs for the weeks from 1 to w, if the demand of these

weeks is covered by initial inventory (before the first replenishment). It is set to zero if
a replenishment occurs during these weeks;

• dw: average expected demand for the week w;
• Dij: demand during weeks from i to j;
• sdw expected standard deviation of the demand for the week w;
• σij expected standard deviation of the demand for the weeks from i to j;
• V: maximum possible lot size as indicated by the supplier;
• Pi: inventory size at the beginning of the week i (the end of week i-1);
• P0: The initial available inventory size at the end of the current week.;
• M: a very large number;
• C: inventory holding costs of the initial inventory at the first period before the first

replenishment;
• TC: total costs;
• Lw: the standard deviation of the demand of the weeks covered by one lot and ending

with the week w. Its meaning is different for the initial period indicating the residual
inventory divided by z;

• O: total number of orders (decision variable);
• Qij: lot size (delivered quantity) to cover the demand from the week i to week j, taking

into account the adjustments of the safety stock based on demand variability (decision
variable);

• SSij: safety stock for the weeks from i to j (decision variable);
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• xij =

{
1, i f demand f rom week i to week j is covered by one replenishment

0, otherwise

• yw =

{
1, i f demand f rom week 1 to week w is covered by the initial inventory

0, otherwise

• Kw =

{
1, i f the f irst delivery occurs at week w + 1

0, otherwise
Model

minOF = SO +
T

∑
i=1

T

∑
j=i

Iijxij + C + H
T

∑
i=1

T

∑
j=i

(j− i) + 1
52

SSij + M
T

∑
w=1

yw (1)

Subject To:

O =
T

∑
i=1

T

∑
j=i

xij (2)

O ≥ 1 (3)

Iij = 0.5
(j− i) + 1

52
H

j

∑
w=i

dw ∀i = 1 to T and ∀j = i to T (4)

b

∑
i=1

xib ≤
T

∑
j=b+1

x(b+1)j ∀b = 1, . . . , T − 1 (5)

D1w + zσ1w − P0 ≤ M
w

∑
i=1

T

∑
j=i

xij ∀w = 1 to T (6)

D1w + zσ1w − P0 ≤ Myw ∀w = 1 to T (7)

w

∑
i=1

T

∑
j=i

xij ≤ Myw ∀w = 1 to T (8)

Yw + yw = 1 ∀w = 1 to T (9)

Ew = 0.5
w
52

H
w

∑
i=1

diYw +
w
52

H

(
P0 −

w

∑
i=1

di

)
Yw (10)

Ew ≤ C (11)

Qijxij ≤ V ∀i = 1 to T and ∀j = i to T (12)

Dij =
j

∑
w=i

dw ∀i = 2 to T and ∀j = i to T (13)

σij =

√√√√ j

∑
w=i

sdw2 ∀i = 1 to T and ∀j = i to T (14)

TC = SO +
T

∑
i=1

T

∑
j=i

Iijxij + C + H
T

∑
i=1

T

∑
j=i

(j− i) + 1
52

SSij (15)

Qij ≥
(

j

∑
w=i

dw + zσij

)
xij − zLi−1 ∀ 2 ≤ i ≤ T, i ≤ j ≤ T (16)

Q1j ≥
[

j

∑
w=1

dw + zσ1j − P0

]
x1j ∀ 1 ≤ j ≤ T (17)
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Lw =
1
z

(
P0 −

w

∑
i=1

di

)
Kw +

w

∑
i=1

σiwxiw ∀w = 1 to T (18)

Kw = Yw −Yw+1 ∀w = 1 to T − 1 (19)

SSij =

P0 +
i

∑
i′=1

j

∑
j′=i′

Qi′ j′ −
j

∑
w=1

dw

xij ∀i = 1 to T and ∀j = i to T (20)

xij , Yi, yi, Kw = 0 or 1 , Qij is integer ∀i = 1 to T and ∀j = i to T (21)

Week 1 is the next week, and week zero is the current week. The objective function
in Equation (1) contains the total costs of ordering costs plus inventory holding costs.
Inventory holding costs include those at the first period before the first delivery (C) and
also the inventory holding costs for safety stock. C contains both the average cycle inventory
and safety stock inventory of the first period. The last term containing yw is added to the
objective function to enforce the model to set yw to be zero for the first period. This is
because Equation (7) only guarantees a value of 1 for yw if the demand of a certain week
is covered using a new delivery. Equation (2) is to define the optimal number of orders.
Equation (3) is to prohibit the OF to be zero. Equation (4) is to define the inventory holding
costs from week i to week j depending on the center of area method. This is only based on
the average demand. However, later on, the safety stock holding costs are also considered.
The number of weeks in the year is 52. The average size of inventory is the total demand
covered by one replenishment lot divided by 2. Equation (5) is to guarantee that every
week is covered by only one replenishment. Equation (6) guarantees that the first term in
Equation (5) to be more than 0. This is because Equation (6) enforces xij value to be 1 if the
demand plus safety stock for a certain week is more than the available initial inventory. In
other words, a new replenishment is needed. Equation (6) is needed only for the first few
weeks, then it is redundant for the later weeks. The value z is related to service level. For a
95% service level, z = 1.645. Equation (7) is to set yw to be zero if there is enough inventory
to cover the demand during the first few weeks (from week 1 to week w). In this case, all
the variables xij starting in any week from 1 to w can be zero. To enforce the variables xij
to be zeros, Equation (8) is used. The model will set them to be zero because it is better
to reduce the inventory holding costs, and that means that the model will try to delay
the first replenishment to the last possible week without stock-out. On the other hand, if
the left-hand side of Equation (7) is positive, yw must be 1, meaning that a replenishment
must be conducted. yw and Yw are indicator variables. An indicator variable is a binary
variable (0 or 1) that indicates a certain state in a model. The use of M (large number) is
a well-known practice in MIP. It is usually used to enforce two integer variables to have
a relationship between them. For example, in Equation (8) if the summation of the xij is
greater than one, then yw must be one. The reader might refer to some practical uses of
M in the chapter AIMMS [53], which shows uses such as fixed costs, either-or constraints,
and conditional constraints. Equation (9) is to define Yw which has the opposite value of
yw. If yw is 1, Yw must be zero. It is needed for formulation purposes.

Equation (10) is to define initial inventory holding costs, where the first term is for
average cycle inventory and the second one is for the safety stock. On average, safety stock
lasts until the end of this period. Therefore, it is not multiplied by 0.5 as the cycle inventory.
Such an initial safety stock is not a decision variable as the normal safety stock because
it is affected by P0, meaning that it is usually higher than needed. Therefore, the first Qij
must be reduced. Ew has a value greater than zero if Yw is greater than zero, meaning that
the first replenishment comes after the week w. If Ew is zero, then all the E1, E2, . . . Ew−1
must also be zero. We need, however, to include only the inventory holding costs Ew in the
objective function since it contains the holding costs for the weeks from 1 to w. Therefore,
Equation (11) is to find the maximum of the E1, E2, . . . Ew−1, Ew (if they are >0), which is
Ew. In other words, C equals the maximum Ew greater than zero. Ew+1 in this case must
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be zero. The existence of C in the minimization objective function prohibits it to be more
than Ew.

Equation (12) is used to guarantee not to exceed the suppliers’ maximum volume.
The lot size (Qij) will be defined in Equations (16) and (17). Equation (13) is to find the
total demand covered by the lot. Equation (14) is to define the standard deviation of the
demand from week i to week j. Equation (15) is to find the total costs, which are the same
as the objective function but without the term containing the yw variable. This constraint
does not affect the results, but it shows the total costs. Equations (16) and (17) are to
define the lot sizes, which are the total average demand for the period covered by the lot,
plus the adjustment of the safety stock levels depending on the differences of standard
deviations. This adjustment can be positive or negative based on the increase or decrease in
the standard deviations. The equal or greater than “>=” is used instead of “=” because the
value of Qij must be an integer. Equation (17) is necessary in case the first week is covered
by a new replenishment. The parameter Li−1 is the standard deviation of the demand
in the lot before week i. For example, if x25 = 1, then L5 > 0 is the standard deviation of
demand during the weeks from 2 to 5. In this case, L2, L3, and L4 must be zeros. To model
that, Equations (18) and (19) are used. In Equation (18), the first term is for the first period
before the first delivery to find the residual inventory just before the first delivery. It is
multiplied by 1/z to cancel the multiplication by z in Equation (16). In other words, for
the first delivery, the lot size is the demand plus safety stock minus the residual inventory
at the end of the initial period. That means that Lw in this particular case has a different
meaning which is the residual inventory at the end of the initial period divided by z. Kw is
a binary variable and is defined in Equation (19). It has the value of 1 only if the week w
is the one before the first delivery. For example, if Y1 and Y2 = 0 (first delivery occurs at
week 1), then Kw = 0. If Y1 = 1 and Y2 = 1 (first delivery is after week 2), then K1 = 0 too.
Only if Y1 =1 and Y2 = 0 (first delivery is in week 2), K1 = 1. Equation (20) is to define the
safety stock sizes, which are the lot sizes plus initial inventory, minus the average total
demand until the last week j. Safety stock is only positive if xij is positive, otherwise, it is
zero. The final Equation (21) is just the non-negativity constraints.

However, Equation (20) is nonlinear because it multiples two variables, namely, Qij
and xij. To simplify the model and make it linear, the following equations are used instead
of Equation (20):

SSij =

(
P0xij + Bij − xij

j

∑
w=1

dw

)
∀i = 1 to T and ∀j = i to T (22)

Bij ≥
i

∑
i′=1

j

∑
j′=i′

Qi′ j′ −M
(
1− xij

)
∀i = 1 to T and ∀j = i to T (23)

Bij ≤ Mxij ∀i = 1 to T and ∀j = i to T (24)

Bij ≥ 0 ∀i = 1 to T and ∀j = i to T (25)

Bij can be zero if xij is zero, or it takes the value of all the lot quantities so far until
week j. The term (M (1 − xij)) in Equation (23) is used to enforce the model to assign a
positive value for the Bij when xij is 1. On the other hand, Equation (24) is used to enforce
the model to assign a zero value for the Bij when xij = 0. Bij cannot be negative as shown
by Equation (25). Pw is needed to be found every week. So every week, there must be a
review. The difference between this system and the period review system is that there is no
need to trigger orders every week.

MIP is useful to show the logic and constraints of the study. However, MIP is usually
slow, especially if the size of the model is big and the planning horizon is long. To get
results faster, dynamic programming (DP) can be utilized. R software was used to model
DP. Algorithm 1 shows the heart of the model. To find the whole programming source code,
the reader might check the following Supplementary Materials link: (https://git.io/JKmho

https://git.io/JKmho
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(accessed on 24 November 2021)). Initial definitions of matrices and variables must be
carried out at first before obtaining the code shown. T is the number of weeks. wi_o [o, j] is
to find the weeks of delivery if the number of orders is o and the last considered week is
j − 1. OF_o [o, j] is to find the value of the objective function also if the number of orders is
o and the last considered week is j − 1. It is set initially to be infinity, except when there is
only one lot for the period until the week j − 1. S is the ordering costs. The matrix f [i, j] is
to find the total inventory holding costs if there is a delivery covering the demand from
week i to week j.

The logic of the model depends on finding the best costs for a certain number of lots,
then increasing the number of lots, and repeat the calculations. The MIP model is NP-hard.
In many cases, researchers use heuristics and meta-heuristics to achieve good but not
optimal solutions. However, in this study, DP was used to achieve optimal solution in a
very short period of time, because the nature of the problem allows DP to be used. The
idea of DP model is not to try all the possible combinations of the feasible solution space,
and this is to save time. So, in an intermediate step, if we know the optimal solution for
a period of time (from week 1 to week j − 1), then in the next step, if we need to find the
optimal lot allocation for the same period, there is no need to repeat the solution since the
model “memorizes” the best solution found before. In this case, the time needed to find the
final solution is minimized [54]. Some previous studies used the same idea such as Emde
and Boysen [55] and Alnahhal and Noche [56]. In the MIP model, the initial period before
the first delivery is simultaneously included in the model. However, in the DM model, this
period was investigated at first, and the residual inventory at the end of it, is found to be
the initial inventory for the next period. This means that in the DP model, the first delivery
is performed in the first week, and the inventory holding cost of the first period is added to
the total costs. Week numbers are shifted by the number of weeks of this period.

Algorithm 1. DP main part using R Software.

# Dynamic Programming
for (j in 2: (T + 1))
{

wi_o [1, j] = 1
OF_o [1, j] = f [1, j − 1] + S

}

for (o in 2: T)
{

for (j in 2: (T + 1))
OF_o [o, j] = 100,000,000

for (j in (o + 1): (T + 1))
{

for (i in o: (j − 1))
{

if(OF_o [o − 1, i]+f [i, j − 1]+S < OF_o [o, j])
{

wi_o [o, j] = i
OF_o [o, j] = OF_o [o − 1, i] +f [i, j − 1] + S

}
}

}
}

4. Results and Analysis

The real situation of daily demand for one of the apple juices is shown in Figure 3,
which shows the weekly demand, and the forecasting results are represented by the
trend line. Demand in the summer is generally higher than demand in the winter. The
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demand in the last two weeks was extremely low because of the end of the year holidays.
Therefore, these two weeks were omitted from the calculations. The forecasting model can
be as follows:

Weekly demand = 230.6 + 11.7 Week − 0.22 Week2
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Figure 3. Weekly demand of apple juice with forecasting.

The forecasting model performance is not very high. However, it is better than
assuming the demand is stable. In reality, there were 17 deliveries in the year, where
each lot is from 500 to 1500 boxes. Assume the following data H = 5$, S = 125$, P0 = 752,
V = 1500, and the detailed demand data is in Table 1.

Table 1. Demand information of the apple juice of the drinks’ company in a year.

Week Actual Demand Expected Demand Standard Deviation Week Actual Demand Expected Demand Standard Deviation

1 302 242 57 26 537 389 64
2 162 253 57 27 225 390 53
3 375 264 57 28 588 389 53
4 180 274 56 29 192 389 53
5 395 284 50 30 446 388 59
6 215 293 50 31 466 386 59
7 294 302 50 32 583 384 59
8 186 311 50 33 347 382 46
9 353 319 50 34 556 379 44
10 387 326 50 35 222 376 44
11 284 334 45 36 413 372 44
12 403 340 45 37 230 368 36
13 352 347 45 38 450 364 36
14 162 352 56 39 186 359 36
15 342 358 56 40 351 353 36
16 413 363 56 41 340 348 36
17 690 368 56 42 304 341 35
18 278 372 56 43 226 335 35
19 527 375 49 44 452 327 35
20 239 379 49 45 230 320 39
21 313 382 49 46 269 312 39
22 269 384 49 47 247 304 46
23 343 386 54 48 429 295 46
24 457 388 64 49 291 285 67
25 351 389 64 50 342 276 67

DP Model was used to find the results in Table 2. The table shows that there should
be 18 lots during the year in weeks 3, 6, 9, 12, 15, 18, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42,
45, 48. The initial inventory is enough to cover the demand for the first two weeks. After
satisfying the demand, 257 units are expected to be available at the beginning of the third
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week. This number of units is not the actual one that will be known later after two weeks.
During the first two weeks, the inventory holding costs are 97. Table 2 shows that the safety
stock values are considerably larger when the variability is larger. For example, SS35 is
larger than SS68. By looking at Table 1, the first few weeks have larger standard deviation
values than the later ones. The Qij values are different from the summation of the demand
in the weeks from i to j. Moreover, the results are just the initial plan. Later on, based on
the actually inventory size, the plan is updated. For example, in Table 2, the number of
orders is 18. Later on, the results will show that the number of orders will be 21.

Table 2. Initial results.

Result Value

TC 5150

C 97.0

O 18

xij = 1 x35, x68, x911, x1214, x1517, x1820, x2122, x2324, x2526, x2728, x2930, x3132, x3335,
x3638, x3941, x4244, x4547, x4850

Qij

Q35 = 720, Q68 = 893, Q911 = 975, Q1214 = 1040, Q1517 = 1110, Q1820 = 1113,
Q2122 = 733, Q2324 = 798, Q2526 = 789, Q2728 = 753, Q2930 = 784, Q3132 = 777,
Q3335 = 1127, Q3638 = 1088, Q3941 = 1052, Q4244 = 1000, Q4547 = 954,
Q4850 = 911

SSij

SS35 = 155, SS68 = 142, SS911 = 138, SS1214 = 139, SS1517 = 160, SS1820 = 147,
SS2122 = 114, SS2324 = 138, SS2526 = 149, SS2728 = 123, SS2930 = 130,
SS3132 = 137, SS3335 = 127, SS3638 = 111, SS3941 = 103, SS4244 = 100,
SS4547 = 118, SS4850 = 173

Residual initial
inventory 257

According to this initial plan, the size of the inventory depending on the actual
consumption will be as in Figure 4. Four weeks have negative values indicating shortage.
To fix such a problem, two possible ways are available. The first method is that the service
level can be increased to 99% or more. However, the second method which is the dynamic
replenishment policy is better. It depends on the last information of the inventory size. For
example, after the first week, the initial inventory P0 will be 450. Then, after the second
week, the P0 value will be 288. Therefore, the plan is evaluated to obtain a new lot size.
Instead of 720, the updated plan contains a lot size of 689 units in week 3. Figure 5 shows
the inventory size for the dynamic replenishment policy (the next week is week 35), where
every week the plan will be updated. The shortage is zero now.
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Figure 6 shows the lot size according to the dynamic plan and assumes that no further
information is known for the demand in the next year. The lots assignment is changed with
time, with the most apparent changes occurring after week 30 where lot sizes are lower
than usual, and in smaller cycle times, to respond to the sudden increase in the demand. In
this study, it was assumed that there is no restriction on the lower size of the lot. Further
research can investigate this point. The average lot size was found to be 808, and the
number of orders is 21 instead of the 18 in the original plan. Therefore, the ordering cost is
2625. Further changes are expected for the rest of the year. The total cost of the dynamic
plan is 5394.2, which is more than the original cost of 5150. That is an increase of about 5%.
However, there is no shortage in the dynamic plan. Such a shortage should be included in
the calculations of the costs of the initial plan.
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The results of the paper show that the responsive dynamic plan is better than the
static plan. The service rate was found to be 100% in the case study instead of 92% for the
static plan. DP model is faster than the MIP model. However, MIP is useful to describe
and model the system. Then, a comparison is made between the results of the two models
on a small case. Results are identical. Repeating the model 35 times was not a problem
regarding the CPU time. Results are obtained in few seconds. The fixed calculations are
for the next week, where the primary question was focused on whether we need a new
delivery or not in the next week, and if so, what size lot we would need. Later decisions are
obtained after obtaining the information about the actual demand. However, the calculated
lot sizes of the future weeks can be useful, especially when the initial forecast is sent to
suppliers about the needed deliveries in the next month for example. Assuming that the
demand is constant as in the traditional models does not work at all in the current case
study. Large safety stocks are needed in this case, and a lot of shortages are expected.

Since the model in this study is the first one that considers the discrete nature of
delivery, there are no previous similar studies to compare with. Therefore, only a partial
comparison can be made. For example, the effectiveness of DP to solve MIP problems was
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found in some studies such as Alnahhal and Noche [54,56]. Moreover, many studies found
that variable quantity size and period between deliveries give the optimal solution [57],
which was exactly found in this study. Dynamic planning was also found more effective
in a study by Schneckenreither et al. [58], in which dynamic order release is planned.
However, these studies did not investigate the same problem as this study with the same
characteristics and objectives.

5. Conclusions

This study focuses on replenishment planning for the case study of a drinks’ company
with seasonal demand. Delivery cannot be carried out at any time. It is usually undertaken
on a certain delivery day in the week. The model in this paper is the first one that takes
into consideration the seasonal demand with discrete possible delivery times. The total
costs of the system should be minimized depending on the forecasted demand. At first,
an MIP model is formulated. Then, to obtain results faster, a DP model is used using R
Software, which is free and easy to use. The results are promising since they clearly show
the importance of dynamic planning to enhance the service level. The results, which were
obtained in few seconds in a personal computer, show that the optimal quantities and
the time between deliveries are different over time, and dependent on demand pattern.
Dynamic planning, in which the plan is updated every week, was found to be superior
to the static planning in which the service level was found to be lower than that of the
dynamic planning. Some assumptions are made; however, they are not restrictive, since
they are realistic to some extent. The study assumes that each different type of item can
be studied independently. However, in case there are only a few types of items, future
research is needed to combine the decisions about these items. The size of the lot was
assumed to be flexible. However, if the suppliers provide only certain sizes, more research
is needed. Moreover, the current size of inventory of the current week is actually at the end
of the week. Therefore, a very accurate forecast is needed for the current week’s demand.
The problem arises when the lead time is more than one week, or when such a forecast is
not so accurate. This point can be further investigated in the future. Managers can use the
proposed model and its code provided in the previously mentioned link to plan delivery
times and quantities to reduce the total costs of the system.

Supplementary Materials: The DP source code is available online at https://git.io/JKmho (accessed
on 24 November 2021).
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