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Abstract: Nowadays, reliable medical diagnostics from computed tomography (CT) and X-rays
can be obtained by using a large number of image edge detection methods. One technique with a
high potential to improve the edge detection of images is ant colony optimization (ACO). In order
to increase both the quality and the stability of image edge detection, a vector called pheromone
sensitivity level, PSL, was used within ACO. Each ant in the algorithm has one assigned element from
PSL, representing the ant’s sensibility to the artificial pheromone. A matrix of artificial pheromone
with the edge information of the image is built during the process. Demi-contractions in terms of the
mathematical admissible perturbation are also used in order to obtain feasible results. In order to
enhance the edge results, post-processing with the DeNoise convolutional neural network (DnCNN)
was performed. When compared with Canny edge detection and similar techniques, the sensitive
ACO model was found to obtain overall better results for the tested medical images; it outperformed
the Canny edge detector by 37.76%.

Keywords: medical image edge detection; image processing; fixed point; Krasnoselskij iteration;
admissible perturbation; ant colony optimization

1. Introduction

Today, medicine is interconnected with technology. Human injuries caused by acci-
dents or other similar events can be detected and correctly diagnosed by using tomography
or X-rays. In medical image processing, edge detection has a major role. In order to
obtain accurate medical diagnoses, the best computing models are involved. As swarm
intelligence has a huge impact nowadays in solving complex problems, the current work
uses a particular swarm method, ant colony optimization (ACO) [1], to solve the edge
detection problem.

Learning is one of the most efficient artificial intelligence capabilities; in [2], learning
with PDE-based CNNs and dense nets for the purpose of detecting COVID-19, pneumonia,
and tuberculosis from chest X-ray images was studied. In the same context, automatic
COVID-19 detection from chest X-ray and CT-scan images was proposed [3] within a new
meta-heuristic feature selection using an optimized convolutional neural network [4].

“A meta-heuristic is an iterative master process that guides and modifies the opera-
tions of subordinate heuristics to efficiently produce high-quality solutions” [5]. In general,
the quality of heuristics solutions, including bio-inspired methods such as ACO, is given
by appropriate probabilistic assumptions [6].

One of the most recent works related to medical image edge detection with ant colony
optimization shows the efficiency of a gradient-based ant spread modification to ACO for
retinal blood vessel edge detection [7]. In [8], a new image filtering method is introduced
for the problem of edge extraction for some targets according to the top-down information
based on the image perspective effect; the authors assign scale and orientation, in a hard
manner, in order to enhance a local edge detection.

Ant colony optimization is one of the most successful metaheuristics used within com-
plex combinatorial optimization problems, as, for example, in scheduling, transportation
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and test case prioritization problems [9–12]. Pintea and Pop introduced and showed the
benefits of agent sensitivity, including sensitive robots, in security-related problems [13,14],
such as a denial jamming attack on sensor networks. As a reference, the current work
makes use of the state-of-the-art Canny [15] edge detection technique. Recently, the
Canny operator was used in [16] during a symmetrical difference kernel SAR image edge
detection process.

The current paper introduces a version of ant colony method with a specific feature
called pheromone sensitivity level, PSL, for solving the medical edge detection problem.
The artificial ants are endowed with different levels of artificial pheromone sensitivity; thus,
the agents have different reactions in a dynamic environment. Here, the new algorithm
is applied to the image edge problem and requires a heuristic value computed with two
admissible perturbation operators applied to a demicontractive mapping.

Pintea and Ticala proposed the first related theoretical approach in [17]; a step forward
was made in [18]. It includes more tests for both ant colony versions of medical image edge
detection and a comparison of these techniques; details, including the efficiency of the new
parameters and the use of some demicontractive operators, are presented.

The current work’s content is as follows:

• Sensitive ant colony optimization (SACO) for medical image edge detection is intro-
duced to improve the analysis of CT and X-ray images.

• Image pre-processing is done.
• The use of several demi-contractive operators is employed to check their behavior for

both ACO and SACO.
• Postprocessing, including the use of the DeNoise convolutional neural network

(DnCNN), is done.
• A comparison between ACO, SACO and several state-of-art methods to ensure the

validity of the sensitive approach on a CT and X-ray image dataset is made.

The next section includes the present work’s prerequisites with mathematical support,
the edge detecting problem and the sensitive ant colony optimization (SACO) method. The
numerical tests and bio-inspired methods results follows in Section 3. The comparison
of methods, the operators’ behavior and the representation of medical image results are
discussed in Section 4. Future work and arguments regarding the benefits of ACO and
SACO for medical images conclude the present study.

2. Prerequisites

Math Operators. At first, a short introduction into the mathematical part of the work
is presented; this is, mainly based on Rus [19] who introduced the theory of admissible
perturbations of an operator. The admissible perturbation operator was also studied in [20].

Demicontractive operators. As already stated in our previous work [18], a demicontractive
operator (T) is defined by C, a subset of R (domains and co-domains). For an existing
contraction coefficient (k < 1), each fixed point (p) of the demicontractive operator and all
numbers (x ∈ C) the inequality (1) is true.

‖Tx− p‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2. (1)

For a nonempty set (X) and an admissible mapping, (G : X× X → X), the following
statements are true: for all x ∈ X G(x, x) = x and G(x, y) = x implies y = x [19].

The admissible perturbation of the operator f ( f : X → X) [19] is the admissible
mapping fG : X → X ( fG(x) := G(x, f (x))).

Krasnoselskij operator. The Krasnoselskij algorithm [19], corresponding to an admissible
mapping (G : X× X → X) of an nonlinear operator ( f : X → X), is defined as an iterative
algorithm {xn}n∈N with x0 ∈ X and xn+1 = G(xn, f (xn)), where n ≥ 0.

For further details and examples, see [18,20,21].
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The χ operator. The χ operator χ : R×R −→ [0, 1) is defined as:

χ(x, y) =
x2 · y2

(1 + x2) · (1 + y2)
, (2)

where y : R→ R, y(x) = 2
3 x sin 1

x , if x 6= 0.
Particular Math Functions. The operators further used as f (·) in the considered methods

(see (8)) are as follows:

Sin: f (x) = sin

(
πx
2λ

)
, if 0 ≤ x ≤ λ; (3)

KH: f (x) = (1− λ) · x + λ · 2
3

x sin
1
x

if x 6= 0; (4)

Chi: f (x) = (1− χ(x, y(x))) · x + χ(x, y(x)) · y(x) if x 6= 0; (5)

The functions (3)–(5) are zero in all other possible cases. The λ parameter from
Equations (3) and (4) adjusts the operators used as test functions in [22]. In [23], the authors
used two admissible perturbation operators for computing the heuristic value required
within the ACO algorithm.

In the present article, where admissible perturbations of demicontractive mappings
are utilized as test functions, and the PSL vector is utilized for each ant, a sensitivity to the
artificial pheromone is introduced using a specific coefficient influenced by the image’s
intensity values for the edge detection problem.

The ants have different roles in edge extraction: some agents are explorers and others
are exploiters; these roles are exchanged as the PSL vector updates during processes. The
obtained results for CT and X-ray medical images and the comparison among the results
using the proposed operators are made in Section 4.

3. Problem and Methods
3.1. Medical Image Edge Detection Problem

The problem to solve is the edge detection problem. The current work improves
solutions of particular medical images due to their complex edges based on X-rays and
tomographic images.

Image edge detection involves the detection of discontinuities in brightness while
processing the image in order to find the boundaries of objects.

3.2. Sensitive Ant Colony Optimization Method

The method used is an improved version of Ant Colony Optimization (ACO) [1] called
the Sensitive Ant Colony Optimization (SACO) [24,25]. The ant colony optimization sensitive
approach for medical image edge detection is further presented. There is considered a
colony of K ants engaged in a search within the graph space X , with M1 ×M2 nodes.

SACO as well as ACO use artificial ants to move in a 2D image in order to build the
pheromone matrix; each matrix element represents the edge information for every pixel in
the image.

In general, ACO and its versions builds a solution with the use of artificial ants; these
agents search for the best path in a given space by depositing artificial pheromones [1,23].
These pheromone trails are updated during the search process.

The ACO and SACO general scheme includes an initialization process followed by N
construction steps while creating and updating pheromone matrix, and, finally, performing
the decision process to determine a beneficial solution.
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Ant colony optimization for edge detection

Initialize ACO parameters
Schedule activities

Construct ant solutions
Update pheromone
Edge detection

End scheduled activities

Initialization process: In particular, for image edge detection with ACO and SACO
during the initialization process, the entire ant colony (K ants) places ants randomly on
the image matrix. Each image pixel is considered to be a node in a graph. Each initial
pheromone matrix τ(0) has a constant τinit value. A constant value L defines the number of
moves during the construction process.

For SACO in particular, each PSL vector component is initialized with 1, starting as
the original ACO (see Figure 1).

Figure 1. Symbolic illustration of the sensitive ant model showing the ants’ probability variation
within the unit interval from the ACO probability when PSL = 1 to a random walk probability when
PSL = 0.

Construction phase: at the n-th construction step, a randomly chosen ant will move
from node i to j according to the transition probability in (6) for L steps.

pn
ij =

(
τ
(n−1)
ij

)α(
ηij
)β

∑j∈Ωi

(
τ
(n−1)
ij

)α(
ηij
)β

, if j ∈ Ωi, (6)

where τI J is the pheromone value on (i, j); ηI J the heuristic value connecting nodes i and j
the same for all n construction steps; α and β are the weighting factors for the pheromone
and the heuristic; and Ωi includes the neighborhood nodes of node i.

The overall eight-connectivity neighborhood for each pixel Ii,j within the local con-
figuration at the Ii,j pixel, cIi,j, for computing the variation value Vc(Ii,j) defined by (8) is
illustrated in [18].

Here, we propose the computation of ηi,j according to the local statistic of the pixel
(i, j) (Equation (7)).

ηi,j =
1
Z
·Vc(Ii,j), (7)

where Z =
M1
∑

i=1

M2
∑

j=1
Vc(Ii,j) is a normalization factor, Ii,j is the intensity value of the image

pixel (i, j); and the function Vc(Ii,j) processes the “clique” cIi,j [22].
The Vc(Ii,j) value at pixel Ii,j is influenced by the image’s intensity values for cIi,j, and

its value is [22]:

Vc(Ii,j) = f
(∣∣Ii−2,j−1 − Ii+2,j+1

∣∣+ ∣∣Ii−2,j+1 − Ii+2,j−1
∣∣

+
∣∣Ii−1,j−2 − Ii+1,j+2

∣∣+ ∣∣Ii−1,j−1 − Ii+1,j+1
∣∣

+
∣∣Ii−1,j − Ii+1,j

∣∣+ ∣∣Ii−1,j+1 − Ii+1,j−1
∣∣

+
∣∣Ii−1,j+2 − Ii+1,j−2

∣∣+ ∣∣Ii,j−1 − Ii,j+1
∣∣).

(8)

In order to validate an edge within the solution, a decision is made for each image
pixel by applying a threshold T (see [26]) to the final pheromone matrix τ(N).
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The artificial pheromone matrix values are updated both locally and globally.
Locally update the pheromone matrix τ. The local pheromone matrix update is made after

each ant moves within each construction step [22].

Local update: τ
(n)
ij = τn−1

ij · (1− ρ) + ρ · ∆ij. (9)

Notations: ρ is the pheromone evaporation rate, and ∆ij is the artificial pheromone laid on
edge (ij).

Globally update the best tour’s PSL vector and pheromone matrix τ. The global up-
date occurs after all ants finish all construction steps. Now, the PSL vector recording the
pheromone sensitivity level for each ant is also updated according to a specified linear for-
mula based on [24,25]; for this particular problem, the Equation (10) PSL update influenced
by the image’s intensity values is used.

PSL = ((1− ρ) ∗ PSL + ρ ∗ ∆ij ∗ v(Iij)) ∗ ∆ij + PSL ∗ |1− ∆ij|. (10)

Furthermore, the best tour is a user defined criterion; it can be the best tour found in
the current construction step, or the best tour from the start of the ACO algorithm, or a
combination of these two.

For ACO, global update of the pheromone matrix [1] is performed as in Equation (11).

Global update ACO: τ(n) = (1− ψ) · τ(n−1) + ψ · τ(0), (11)

where ψ is the pheromone decay rate.
For SACO, the global update is based on its sensitivity feature (Equation (12)).

Global update SACO: τ(n) = max
k=1:K

PSL(k) · τ(n−1). (12)

The problem solution is obtained after reaching a stopping criteria, such as, for
example, a maximal number of iterations.

4. Experiments and Discussions

The numerical experiments were carried out using Matlab on an AMD Rysen 5
2500U, 2GHz. The software is a version of the image edge detection using Ant Colony
Optimization version 1.2.0.0. from MATLAB Central File Exchange [27]. The MATLAB
implementation [28] of the Canny edge detection algorithm is based on [15].The software
makes use of two thresholds in order to detect strong and weak edges; the weak edges are
provided in the solution only if they are connected to the strongest ones: “a high threshold
for low edge sensitivity and a low threshold for high edge sensitivity”, as is specified in
the software documentation [28]. In order to convert a gray-scale input image to a binary
image, thresholding is used.

Data set. A dataset of medical images, free of copyright, was used for these experi-
ments: Brain CT (could be provided by request from the authors), Hand X-ray [29], (reduced
resolution from 225× 225 to 128× 128) and Head CT [30]. Several details are included in
the Github page (Representation of results available at https://github.com/cristina-ticala/
Sensitive_ACO; accessed on October 2021).

Filtering. In order to filter the medical images, the De-Noise convolutional neural
network (DnCNN) was used in the present study, as well as in our previous related
work [18]. The Image Processing Toolbox and Deep Learning Toolbox from Matlab [31]
were used.

Parameters. Most of the parametric numbers are from [22]. In our previous work [18],
we tested several parameters; in the present study, we used the best of them.

Image-related parameters: The image dimension influences and gives ACO and SACO a
number of artificial ants K = b

√
M1×M2c, where b and c are the left and right rounded

https://github.com/cristina-ticala/Sensitive_ACO
https://github.com/cristina-ticala/Sensitive_ACO
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values to the nearest integers less than or equal to x; e.g., for a 128× 128 image resolution,
the number of ants is considered 128.

Iterations related parameters: In [18] just 30,000 iterations for L = 100 steps were
considered; here, we tested a smaller (1200 iterations for L = 4 steps) and a higher number
of steps L = 1000 (300,000 iterations). An ant makes 300 moves at each step; e.g., for
128 ants (e.g. image resolution: 128 × 128), 38,400 moves are made during each step.
Therefore, for L = 4, it is a total of 153,600 moves, 3,840,000 moves for L = 100 and a total
of 38,400,000 ants’ moves for L = 1000 steps.

Connectivity-related parameters: The connectivity neighborhood parameter Σ = 8 is
based on the ants’ movement range (Equation (6)).

Pheromone trail parameters: the value of each matrix component τinit = 0.0001; the
weighting factors of pheromone information α = 1 and of heuristic information β = 0.1
(Equation (6)); the evaporation rate, ρ, is 0.1 (Equation (9)) and the value of the pheromone
decay coefficient ψ is 0.001 (Equation (12)).

Other parameters: The adjusting factor λ of the functions (Equations (3)–(5)) is 10. The
tolerance parameter (ε = 0.1) is used in the decision process. The stopping criterion is
given by the maximal number of steps (L) set by the user.

Comparison: Beside the Canny algorithm, the Roberts, the Sobel and Prewitt edge
algorithms were also used for comparison; the last two methods compute the horizontal
and the vertical gradient of an image by using two orthogonal filter kernels, and after
filtering, they compute the gradient magnitude and apply a threshold in order to find
the regions of the image corresponding to the edges. Furthermore, the Roberts algorithm
detects image edges at angles of 45 degrees and/ or 135 degrees from horizontal [32].

Table 1. The best number of correctly identified number of pixels, standardized using the overall
average and standard deviation for all considered medical images, with every considered operator
on all considered algorithms results for sensitive (SACO) and original ACO with DnCNN.

Head CT Brain CT Hand X-ray
ACO SACO ACO SACO ACO SACO

1200 iterations
Sin 0.2694 0.4137 −0.1265 0.0111 0.0346 0.0547
KH −0.3379 −0.2406 −0.1366 0.0648 −0.6616 −0.5778
Chi −0.3261 −0.3127 −0.1550 −0.1533 −0.7975 −0.6549

30,000 iterations
Sin 0.4875 0.4154 −0.0862 0.0815 0.0312 0.0547
KH −0.2842 −0.2355 −0.0342 0.0614 −0.6214 −0.5627
Chi −0.3798 −0.3127 −0.2372 −0.1500 −0.7036 −0.6549

300,000 iterations
Sin 0.4322 0.4154 −0.0980 0.0765 −0.0124 0.0547
KH −0.2691 −0.2355 −0.1080 0.0614 −0.6080 −0.5627
Chi −0.3882 −0.3127 −0.2221 −0.1500 −0.7841 −0.6549

Table 2. The best number of the correctly identified number of pixels, standardized using the overall
average and standard deviation for all considered medical images, with every considered operator
on all considered algorithms results for Canny edge detection [15], as well as the Prewitt, Sobel, and
Roberts methods [32].

Head CT Brain CT X-ray

Canny −1.4166 −1.4803 −1.2857
Prewitt −2.4567 −2.6865 −2.7721
Sobel −2.4751 −2.5926 −2.7486

Roberts −3.0606 −2.8878 −2.9130
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Running time. The average running time was around 4500 seconds for both ACO and
SACO with the presented parameters on the utilized computer.

Table 1 shows the best, maximal results of the number of correctly identified pixels
standardized using the overall average, Avg = 2107.030303, and standard deviation,
StdDev = 563.50, for all considered medical images, and operators on the sensitive ant
colony method (SACO) and ACO denoised with DnCNN. Table 2 shows the Canny [15],
Prewitt, Sobel and Roberts methods results and Table 3 illustrates the original ACO and
SACO results before post-processing with DnCNN.

Table 3. The best number of correctly identified number of pixels, standardized using the overall
average and standard deviation for all considered medical images, with every considered operator
on all considered algorithms; results for sensitive (SACO) and original ACO methods.

Head CT Brain CT Hand X-ray
ACO SACO ACO SACO ACO SACO

1200 iterations
Sin 1.5863 1.5729 0.7123 0.9187 1.0512 0.9153
KH 0.6871 0.8029 0.6905 0.9371 0.1637 0.1637
Chi 0.8281 0.6335 0.5714 0.6184 −0.0476 0.0799

30,000 iterations
Sin 1.5981 1.5746 0.8801 0.9690 0.9187 0.9153
KH 0.8096 0.8046 0.8499 0.9354 0.1553 0.1755
Chi 0.5949 0.6351 0.5596 0.6200 0.0262 0.0799

300,000 iterations
Sin 1.5528 1.5746 0.7777 0.9656 0.9338 0.9153
KH 0.7928 0.8046 0.7777 0.9371 0.1855 0.1755
Chi 0.6569 0.6335 0.5781 0.6200 −0.0443 0.0799

The best solutions obtained for the considered medical images (Head CT, Brain CT and
Hand X-ray) while comparing ACO and SACO for 300,000 iterations and the considered
demicontractive operators are included in Figure 2; in the last image, the original medical
images are overlapped with the best solutions.

Analysis. The values are already standardized based on the denoised ACO and SACO,
Canny, Prewitt, Sobel, and Roberts results; therefore, the difference between SACO and
ACO is significant from an analytic perspective.

• An operator comparison analysis based on Figure 3 uses the difference of SACO vs. ACO
values; for the Sin-operator, the difference has a majority of negative values, with ACO
obtaining better values than SACO for the considered operators (44.45%); for the other
two operators, χ-operator (Chi) and KH-operator, 77.78% shows SACO performing
better than ACO on the 9 considered cases of medical images;

• Medical image analysis. For each medical image, including head CTs, brain CTs and
hand X-rays, Figure 3 identifies operators’ behavior on the difference between SACO
and AC0. The lowest SACO performance, 44.44%, was obtained for the head CT
medical images; its highest performance was 100% for the brain CT images, while for
the hand X-rays, a 55.56% performance value was obtained. The percentage is based
on the number of considered medical images.
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Figure 2. Successive illustrations of the best solutions obtained after 300,000 iterations with Ant
colony optimization (ACO) and Sensitive ACO (SACO) post-processed with the Denoise Convolutional
Neural Network (DnCNN) and the overlapped best solutions’ edges over the original medical images
for (a) Brain CT; (b) Head CT and (c) Hand X-ray.

Figure 3. Head CT, Brain CT and Hand X-ray results based on the difference between SACO and
ACO standardized values, before (up) and after post-processing with the DeNoise convolutional
neural network (DnCNN) (down).

Stability & quality of the solutions. The quality of the partial solution is influenced by
the amount of modified pheromone of the ants’ trail.

The stability of the global solution is influenced by used parameters. The included
PSL parameter hopefully influenced the global solution for the better.



Appl. Sci. 2021, 11, 11303 9 of 11

The global solution is found after the entire ant colony, based on the existing pheromone
information, is guided to more promising regions in the search space.

The pheromone sensitivity factor balances the exploring and exploiting activities; its
value is a number from [0, 1]. An ant ignores information when PSL = 0 and has the
maximum pheromone sensitivity when PSL = 1.

• An exploring search is made by independent ants with a low PSL value.
• An exploiting search is made by sensitive ants to pheromone traces, the intensively

exploitative ants with a high PSL value.

In time, the process modifies ants’ pheromone sensitivity (PSL). In the current work,
the PSL is globally modified (increased or decreased) by the search space topology [17].

SACO advantages. By adding the PSL vector, the present algorithm offers the stability
of its solutions; for the considered examples, after around 300 iterations, SACO generated
edges which almost overlapped over the original images. As a plus, the image edge results
are much more compact and close to the original when compared with the ACO results.

SACO disadvantages. As the number of parameters increases, the user should properly
configure their values. This could take more time and resources, but the improved results
are worth the effort.

Figure 4 shows the improvements of SACO-DnCNN compared to the Canny, Prewitt,
Sobel and Roberts edge detection techniques [32]. The best SACO-DnCNN results, using χ,
outperform the Canny Edge detector results by 37.76%; the Prewitt, Sobel and Roberts [32]
methods were significantly outperformed by over 159%, 157% and 224%.

Figure 4. Comparison of the best SACO-DnCNN, Canny, Prewitt, Sobel, and Roberts methods on the
Head CT, Brain CT and Hand X-ray medical images.

Future work will use images with higher resolutions, and hopefully the impact of
sensitivity will improve the problem solutions.

Future work will also include implementing specific ACO and SACO features to solve
publicly available medical datasets, including COVID- and SARS-Cov-2-related data sets.
Furthermore, sensitivity for different artificial intelligence models could be involved within
different domains, e.g., data mining [33] and similar.

Other improvements could utilize fuzzy techniques and multiple ant colonies for
ACO, as in [34], which could be used to enhance the solutions for image edge detection.

Further work could make use of image segmentation with edge detection in order to
obtain a more thorough edge [35]. As prerequisites for the development of knowledge-
based applications, ontologies for the segmentation of radiological images [36] were pro-
posed by the authors.

Other metaheuristics, mostly bio-inspired ones [37], could be further enhanced with
sensitivity features in order to improve the results of complex problems. Human-in-the-
loop [38] could also enhance the problem results.

5. Conclusions

Medical image edge detection is nowadays a must in the context of pandemics and
other illness and injuries. As classical algorithms have less performance within image
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edge detection, metaheuristics are used for feasible solutions. The current paper shows
the efficiency of bio-inspired algorithms, in particular of the ant-based technique, with an
emphasis on the sensitive version of Ant Colony Optimization (ACO).

Sensitivity plays a crucial role in the exploration and exploitation of ants’ solutions
within the environment; the sensitivity level starts with the maximum level of sensitivity,
one, per the ACO level of sensitivity, and during the processes, the ant’s level of sensi-
tivity changes. they become less or more sensitive to the environment based on the PSL
probability, which is influenced by ants behavior and image intensity.

Nevertheless, the demicontractive operators shows their utility in edge detection
problems; an analysis of the results with the presented operators shows how the results
vary based on the operators’ features.

The edges obtained with each considered operator were overlapped over the original
images. The majority of edges were superposed, following the CT and X-ray original
bone lines.
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Experimental evidence for the human in the algorithmic loop: A case study on Ant Colony Optimization. Appl. Intell. 2019, 49,
2401–2414. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-01854-6_42
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.3390/sym11040557
http://dx.doi.org/10.1007/978-3-319-26860-6_7
http://dx.doi.org/10.3390/math8061040
http://dx.doi.org/10.3390/sym13050885
http://dx.doi.org/10.37193/CMI.2020.01.12
http://dx.doi.org/10.1007/978-3-540-77566-9_48
http://dx.doi.org/10.1109/TSMC.1979.4310076
https://www.mathworks.com/help/images/ref/edge.html
https://www.iconspedia.com/
https://www.iconspedia.com/
http://www.libpng.org/pub/png/pngvrml/ct2.9-128x128.png
https://www.mathworks.com/help/images/ref/denoiseimage.html
https://www.mathworks.com/help/images/ref/denoiseimage.html
http://dx.doi.org/10.3390/math8050684
http://dx.doi.org/10.1007/978-3-319-62524-9_8
http://dx.doi.org/10.1109/JBHI.2017.2653179
http://www.ncbi.nlm.nih.gov/pubmed/28092585
http://dx.doi.org/10.1007/s10489-018-1361-5

	Introduction
	Prerequisites
	Problem and Methods
	Medical Image Edge Detection Problem
	Sensitive Ant Colony Optimization Method

	Experiments and Discussions
	Conclusions
	References

