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Abstract: In this article, the impact of Newtonian heating in addition to slip effects was critically
examined on the unsteady magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid near an in-
finitely vertical plate. The functional effects such as the retardation and relaxation of materials can be
estimated for magnetized permeability based on the relative decrease or increase during magnetiza-
tion. From this perspective, a new mathematical model was formulated based on non-slippage and
slippage postulates for the Oldroyd-B fluid with magnetized permeability. The heat transfer induc-
tion was also examined through a non-fractional developed mathematical model for the Oldroyd-B
fluid. The exact solution expressions for non-dimensional equations of velocity and temperature
were explored by employing Laplace integral transformation under slipping boundary conditions
under Newtonian heating. The heat transfer rate was estimated through physical interpretation by
considering the limits on the solutions induced by the Nusselt number. To comprehensively discuss
the dynamics of the considered problem, the physical impacts of different parameters were studied
and reverberations were graphically highlighted and deliberated. Furthermore, in order to validate
the results, two limiting models, namely the Maxwell model and the second grade model, were
used to compare the relevant flow characteristics. Additionally, in order to perform the parametric
analysis, the graphical representation was portrayed for non-slipping and slipping solutions for
velocity and temperature.

Keywords: magnetic effect; heat transfer; Newtonian heating; Laplace transform; porous medium;
thermal radiation; physical aspect via graphs

1. Introduction

For a variety of fluids such as polymer solutions, certain oils, toothpaste, clay and
melts, as well as blood, the specific elastic and viscous features are simultaneously those of
non-Newtonian fluids. A wide range of scientists and researchers are fascinated due to
its invaluable characteristics and a wide application in modern technologies and different
fields of life. Non-Newtonian fluids generally differ in the three categories: namely those
of rate, differential and integral types. Substantially, the precise apprehension is that all
the characteristics of such fluids cannot be expressed through one unique model; this
is impossible because non-Newtonian fluids have a shear rate and shear stress that are
non-linearly associated with each other. The ordinary Navier–Stokes equation cannot
express the different rheological features and dynamics of such fluids, e.g., their retarda-
tion, stress differences, Weissenberg effects, relaxation, elongation, micro-structure, shear
thickening/thinning, memory effects, re-coil, and yield stress. To conveniently handle
the involved nonlinear additional term and to anticipate the rheological characteristics
of non-Newtonian fluids, a large variety of different models have been proposed such
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as Jeffery’s model [1], the Maxwell model [2], the Burgers’ viscoelastic model [3], second
grade fluid model [4], Sisko’s model [5] and the Oldroyd-B model [6]. In recent years, the
Oldroyd-B fluid, among the many rate types of fluids, has gained a unique status because
the classical Newtonian fluid and the Maxwell fluid are special cases of the Oldroyd-B
fluid. The Oldroyd-B model exhibits the relaxation and retardation mechanisms and it is
a very simple model which appropriately expresses the elastic and viscous behaviors of
the fluid because the Oldroyd-B fluid has potential which also includes the flow history.
The velocity field and stress field for the Oldroyd-B fluid were analytically examined
for a constantly moving plate by Fetecau et al. [7]. Fetecau et al. [8] also extended the
same investigation to explore transient channel transport for the Oldroyd-B model which
settled due to the instinctive motions of the plate. Gul et al. [9] investigated the thin film
motion for the transient MHD Oldroyd-B model over an oscillating belt. Tiwana et al. [10]
studied the influence of ramped boundary velocity, ramped wall heating and a permeable
medium on the convective transport of transient MHD Oldroyd-B fluid. Recently, the
Littlewood-Paley theory was used by Wan [11] to scrutinize the universal well-posed
particularities of Oldroyed-B fluid two-dimensional flow under initial conditions. The
transient motion of the Oldroyd-B fluid with the existence of influential cohesion forces
and its flow induced by the translational movement of the surface were inspected by
Shakeel et al. [12]. Tahir et al. [13] investigated the solution in series form to inspect the
fractional behavior of an Oldroyd-B fluid flow for two revolving cylinders. The same
investigation was extended by Wang et al. [14], who applied an integral transform method
to express the derived results’ modified Bessel function. Elhanafy et al. [15] used the
numerical solution of the Oldroyd-B model to determine the blood’s movement across
the abdominal aortic section. The finite difference method was applied inside a straight
cloture with expanding boundaries to manipulate the heat transfer and MHD motion in
an Oldroyd-B model by Ali et al. [16]. It is well-accepted fact that heat transfer from a
high to low temperature wall occurs through the certain movement of a fluid—such a
mechanism is called "heat convection" (advection). This is of great importance as fluid
motion occurs on the basis of natural or forced convection [17–22]. Solangi et al. [23] dis-
cussed the heat transfer characteristics of large concentrations. The key point highlighted
in this work is that the heat and mass behavior of the fluid are controlled by the particle’s
size. Shafiq et al. [24] conducted a stimulating study for MHD convective flow with
the parametric analysis of the proposed problem for thermophoretic, Blackian motion,
buoyancy forces, Newtonian heating and magnetic field for concentration and temperature.
Two solutions which have numerical stability were used to examine the dual results of the
governing partial differential equation investigated by Hamid et al. [25]. Abdelmalek et
al. [26] used the control volume finite element scheme, also known as hybrid technique,
for the curved circular shape heater in addition to nanoparticles for heat transmission.
The thermo-diffusion effects on the time-dependent free convective fluid flow of applying
surface modification technology were determined by Kashif [27]. Further relevant studies
regarding heat and mass have been studied in detail by: heat transfer approaches via
analytical [28–35], numerical [36–41], with the application of fractional operators [42–45]
and multi-dimensional [46–51] types.

To effectively study the dynamics of fluid flow problems, the no-slip and slip condi-
tions were generally assumed at the boundary. In the case of the no-slip conditions, it is
supposed that there is no relative movement of the fluid at the boundary, i.e., the fluid and
the boundary are stationary and the speed of the flow is zero. Physically, between the sur-
face of the fluid and the boundary, the adherence phenomenon is more dominant than the
cohesive phenomenon. The no-slip condition has great applications in different practical
use, regardless of a few coupled compulsions, because the complexity of flow dynamics
are reduced in the case of no-slip conditions. However, some smooth surfaces exist where
cohesion forces show dominance and in this case, a relative movement in the fluid was
observed before the fluid moved from the boundary. For such a type of surfaces, accurate
results in the case of no-slip conditions cannot produce fluid flow properties. For example,
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the analysis of blood transportation through arteries cannot be studied using no-slip condi-
tions [52]. Navier presented a new technique to effectively handle such problems by using
slip conditions [53]. The slip condition is strongly applicable in different areas of daily life,
for example, industrial lubricants, soil degradation by erosion, medical fields—especially
cleaning the artificial heart valves, by applying protrusion, different biological fluids and
various type of nanofluids in porous media [54]. Related investigations on the subject of
slip conditions are discussed in [55].

The objective of this study was to analyze the impact of Newtonian heating in addition
to slip effects by critically examining the unsteady MHD flow of an Oldroyd-B fluid near
an infinitely vertical plate. Furthermore, the functional effects such as the retardation and
relaxation of materials can be estimated for magnetized permeability based on relative
decrease or increase during magnetization. Exact solution expressions for non-dimensional
equations of velocity and temperature were explored by employing Laplace integral trans-
formation under slipping boundary conditions under Newtonian heating. Moreover, the
heat transfer rate was estimated through physical interpretation by considering the limits
on the solutions induced by the Nusselt number. The physical impacts of different param-
eters were studied and the reverberations were graphically highlighted and deliberated.
Furthermore, two limiting models, namely the Maxwell model and second grade model,
were used to compare the relevant flow characteristics in order to validate the results.
Finally, in order to perform the parametric analysis, the graphical representation was
portrayed for non-slipping and slipping solutions for velocity and temperature.

2. Mathematical Model

Consider the unsteady magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid
near an infinitely long plate with heat transfer under Newtonian heating. Suppose that
the external magnetic forces act along the normal direction of the movement of the fluid
and that the fluid is also electrically conducted. The impact of the thermal radiation is
parallel to the plate but is assumed to be insignificant—the opposite is true in the horizontal
direction. Velocity is considered at any point that does not only depend upon the radial
distance in the proposed problem but also on the horizontal direction, i.e., the x distance.
Thus, the flow in this problem is a two-dimensional flow. First of all, it is presumed that a
system with no movement is a system under rest conditions. After a short interval of time,
the fluid starts to move due to mixed convection, and the fluid flows along the plate as
illustrated in Figure 1.

Figure 1. Geometry of the considered model.
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The configured flow equations for an Oldroyd-B fluid model are given by [56,57]

∇.V = 0, (1)

∇.T + ρg + J ×M = ρ

[
(V.∇)V +

∂V
∂t

]
. (2)

where V, J, T, M, ρ, ρg and t are the parameters used in the above equations to denote
the velocity field, electric density, Cauchy stress tensor, total magnetic field (having both
induced and imposed forces), fluid density, body force and time, respectively. The relation
between the Cauchy stress and extra stress tensor is represented by T and S, respectively,
for the Oldroyd-B fluid formulated as

S = pI + T, (3)(
S + λ1

∂S
∂t

)
= µ

(
1 + λ2

∂

∂t

)
A1, (4)

A1 = (∇V)T + (∇V), (5)

where λ1, p, I, µ, λ2, −pI, D
Dt and A1 denote the relaxation time, pressure, identity tensor,

dynamic viscosity, retardation time, tensor’s indeterminate part, convective time derivative
and Rivlin–Ericksen tensor, respectively. Furthermore, the Maxwell equations for the
electric and magnetic fields are written in the following form:

∆.M = 0, ∆× E = −∂M
∂t

, ∆×M = µm J, J ×M = −σM2
0V. (6)

where J represents the electric field, M is denotes the magnetic field, σ represents the
fluid’s electrical conductivity and µm denotes the magnetic permeability. Furthermore,
M = M0 + M1, in which M0 and M1 denote the imposed and induced magnetic fields, but
the induced magnetic field is not considered herein. In the present work, the velocity field
is considered in the following form:

V = V(y, t) = w(y, t)i and S = S(y, t). (7)

where i and w represent the unit vector in the x direction and the x component of velocity
V, respectively. By substituting Equations (3)–(7) into Equation (2) and after simplification
via the application of the Rosseland approximation and Boussinesq’s approximation, we
obtained the principal governing equation for the MHD Oldroyd-B fluid in addition to the
initial/boundary conditions which are given as [58,59]

(
1 + λ1

∂

∂t

)
∂w(y, t)

∂t
= υ

(
1 + λ2

∂

∂t

)
∂2w(y, t)

∂y2 + gβ

(
1 + λ1

∂

∂t

)
(T(y, t)− T∞)

−
(

1 + λ1
∂

∂t

)
σM2

0
ρ

w(y, t), (8)

Cp
∂T(y, t)

∂t
=

k
ρ

∂2T(y, t)
∂y2 , (9)

(
1 + λ1

∂

∂t

)
S = µ

∂w(y, t)
∂y

, (10)

with the initial and boundary conditions:
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T(y, 0) = T∞, w(y, 0) = 0,
∂w(y, 0)

∂y
= 0,

∂w(y, 0)
∂t

= 0, y ≥ 0, (11)

w(0, t)− γ
∂w(0, t)

∂y
= u0 f (t),

∂T(0, t)
∂y

= −h
k

T(0, t), t ≥ 0, (12)

w(y, t)→ 0, T(y, t)→ ∞ as y→ ∞. (13)

To non-dimensionalize the governing partial differential equation, the following set of
variables was introduced:

t∗ =
υh2

k2 t, y∗ =
h
k

y, w∗ =
w
u0

, θ =
T − T∞

T∞
, u2

0 =
υ2h2

k2 , Gr =
gβυT∞

u3
0

,

M =
k2σM2

0
h2µ

, λ∗1 =
υh2

k2 λ1, λ∗2 =
υh2

k2 λ2, Pr =
υCp

k
, γ∗ =

h
k

γ, S∗ =
k
h

S
u0µ

, (14)

The partial differential equations in dimensionless form, after removing the asterisk ∗
notation, are written as(

1 + λ1
∂

∂t

)
∂w(y, t)

∂t
=

(
1 + λ2

∂

∂t

)
∂2w(y, t)

∂y2 +

(
1 + λ1

∂

∂t

)
Grθ −

(
1 + λ1

∂

∂t

)
Mw(y, t), (15)

∂θ(y, t)
∂t

=
1

Pr
∂2θ(y, t)

∂y2 , (16)

(
1 + λ1

∂

∂t

)
S =

∂w(y, t)
∂y

. (17)

and the corresponding set of initial and boundary conditions are stated as

w(y, χ0) = 0, θ(y, χ0) = 0, wt(y, χ0) = 0, wy(y, χ0) = 0, (18)

w(χ0, t)− γ
∂w(χ0, t)

∂y
= f (t),

∂θ(χ0, t)
∂y

= −(1 + θ(χ0, t)), (19)

w(y, t)→ 0, θ(y, t)→ 0, as y→ ∞, t ≥ 0, χ0 = 0. (20)

3. Solution of the Problem
3.1. Exact Solution of Heat Profile

To obtain the solution by employing the Laplace integral transformation on Equation (16)
by applying the conditions, we have:

∂2θ̄(y, s)
∂y2 − sPrθ̄(y, s) = 0. (21)

The solution for Equation (21) is obtained and written as:

θ̄(y, s) = c1ey
√

Prs + c2e−y
√

Prs. (22)

To determine the constants c1 and c2 involved in using the stated conditions for the
applied temperatures, we have:

θ̄(y, s) =
e−y
√

Prs

s
(√

Prs− 1
) , (23)
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θ̄(y, s) = − ξe−q
√

s

s
(√

s + ξ
) . (24)

The inverse Laplace integral transformation employed herein to obtain the required
solution of Equation (24) is written as

θ(y, t) = −
[

e−ξqeξ2ter f c
(

ξ
√

t +
q

2
√

t

)
+ er f c

(
q

2
√

t

)]
. (25)

Nusselt Number

To estimate the heat transfer rate, the Nusselt number is calculated as

Nu = −∂θ(y, t)
∂y

|y=0,

= − ∂

∂y
L−1{θ̄(y, s)

}
|y=0,

= −L−1
{

∂θ̄(y, s)
∂y

|y=0

}
,

= L−1

{ √
Prs

s(
√

Prs− 1)

}
,

= L−1
{

1√
s(
√

s + ξ)

}
,

= eξ2ter f c(ξ
√

t). (26)

where ξ = − 1√
Pr

and q = y
√

Pr.

3.2. Exact Solution of Velocity Profile

To obtain the solution by employing the Laplace integral transformation on Equation (15)
by applying conditions, we have:

sw̄(y, s) + λ1s2w̄(y, s) = (1 + λ2s)
∂2w̄(y, s)

∂y2 + (1 + λ1s)Gr θ̄(y, s)− (1 + λ1s)Mw̄(y, s). (27)

by using the Equation (23) for the value θ̄(y, s), Equation (27) has solution in the form:

w̄(y, s) = c3e
y

√
λ1s2+as+M

1+λ2s + c4e
−y

√
λ1s2+as+M

1+λ2s −
(

Gr(1 + λ1s)e−y
√

Prs

s(
√

Prs− 1)(Prs(1 + λ2s)− (λ1s2 + as + M)

)
. (28)

After substituting the values of the constants c3 and c4 in Equation (28), velocity
expressions are written as

w̄(y, s) =
F(s)e

−y

√
λ1s2+as+M

1+λ2s

1 + γ
√

λ1s2+as+M
1+λ2s

−
(

Gr(1 + λ1s)e−y
√

Prs

s(
√

Prs− 1)(Prs(1 + λ2s)− (λ1s2 + as + M)

)
×

 (1 + γ
√

Prs)e
−y

√
λ1s2+as+M

1+λ2s

1 + γ
√

λ1s2+as+M
1+λ2s

− e−y
√

Prs

. (29)

where a = 1 + λ1M.
Equation (29) can be rearranged in another form as
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w̄(y, s) = F(s)Ā0(y, s)− ξGr
a1

1
(
√

s + ξ)

[
a5

s
+

a6

s + m1
+

a7

s + n1

]
[Ā0(y, s) + w̄4(y, s)− w̄5(y, s)], (30)

w̄(y, s) = F(s)Ā0(y, s)− ξGr
a1

[a5w̄1(y, s) + a6w̄2(y, s) + a7w̄3(y, s)][Ā0(y, s) + w̄4(y, s)− w̄5(y, s)], (31)

where:

Ā0(y, s) =e
−y

√
λ1s2+as+M

1+λ2s .
1

1 + γ
√

λ1s2+as+M
1+λ2s

,

=

[
∞

∑
α=0

(−y)α

α!

(
λ1s2 + as + M

1 + λ2s

) α
2
] ∞

∑
β=0

(−1)β(γ)β

(
λ1s2 + as + M

1 + λ2s

) β
2

,

By applying the discrete convolution known as the Cauchy product, each of which
have m terms with two truncated series, yields:

Ā0(y, s) =
m

∑
α=0

m

∑
β=0

(−y)α(−1)m−β(γ)m−β

α!

(
λ1s2 + as + M

1 + λ2s

)m+ α
2−

β
2

,

=
m

∑
α=0

m

∑
β=0

∞

∑
η=0

∞

∑
l=0

∞

∑
k=0

(−y)α(−1)m−β(γ)m−β(c)m−η+ α
2−

β
2 (b)η−l(d)l(λ2)

kΓ(l + k)Γ(η + 1)
(α!)(η!)(l!)(k!)Γ(l)Γ(η − l + 1)

.

Γ(m + α
2 −

β
2 + 1)

Γ(m + α
2 −

β
2 − η + 1)

.
1

sl−η−k ,

A0(y, t) =
m

∑
α=0

m

∑
β=0

∞

∑
η=0

∞

∑
l=0

∞

∑
k=0

(−y)α(−1)m−β(γ)m−β(c)m−η+ α
2−

β
2 (b)η−l(d)l(λ2)

kΓ(l + k)Γ(η + 1)
(α!)(η!)(l!)(k!)Γ(l)Γ(η − l + 1)

.

Γ(m + α
2 −

β
2 + 1)

Γ(m + α
2 −

β
2 − η + 1)

.
tl−η−k−1

Γ(l − η − k)
,

a0 = a− λ1

λ2
, b =

λ1

λ2
, c =

a0

λ2
, d = M− a0

λ2
,

a1 = Prλ2 − λ1, a2 =
Pr− a

a1
, a3 =

M
a1

, a4 =

√
a3 +

a2
2

4
,

m1 = a2 − a4, n1 = a2 + a4, ξ = − 1√
Pr

, a5 =
1

m1n1
,

a6 =
λ1m1 − 1

m1(n1 −m1)
, a7 =

λ1n1 − 1
n1(m1 − n1)

,

L−1(w̄1(y, s)) = w1(y, t) = ( f ∗ f1)(t),

L−1(w̄1(y, s)) = w2(y, t) = ( f ∗ f2)(t),

L−1(w̄1(y, s)) = w3(y, t) = ( f ∗ f3)(t),

L−1(w̄4(y, s)) = w4(y, t) = ( f4 ∗ A0)(t),

L−1(e−q
√

s) = w5(y, t) =
q

2
√

πt3
e−

1
4t q2

as q = y
√

Pr,
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f (t) = L−1
(

1√
s + ξ

)
=

1√
πt
− ξeξ2ter f c(ξ

√
t), f1(t) = L−1

(
1
s

)
= 1,

f2(t) = L−1
(

1
s + m1

)
= e−m1t, f3(t) = L−1

(
1

s + n1

)
= e−n1t,

f4(t) = L−1
(

γ
√

Pr
√

s
)
= − γ

√
Pr

2
√

πt
3
2

(32)

Finally, the solution which requires employing the inverse Laplace transformation for
the momentum equation with the convolution product on Equation (31) has the following
form:

w(y, t) = f (t) ∗ A− a5

a1
ξGr(w1 ∗ A)− a6

a1
ξGr(w2 ∗ A)− a7

a1
ξGr(w3 ∗ A)

− a5

a1
ξGr(w1 ∗ w4)−

a6

a1
ξGr(w2 ∗ w4)−

a7

a1
ξGr(w3 ∗ w4)

+
a5

a1
ξGr(w1 ∗ w5) +

a6

a1
ξGr(w2 ∗ w5) +

a7

a1
ξGr(w3 ∗ w5). (33)

We recover the Maxwell model by considering time retardation parameter of value
zero, i.e., λ2 = 0, as acquired by Ghalib et al. [59]. Furthermore, the velocity field solution
for the second grade fluid is traced out by considering λ1 = 0 in Equation (33), as derived
by Aziz et al. [34], which validates our current results with the previous literature.

4. Results and Discussion

In the present work, the flow of the Oldroyd-B fluid was investigated, and the exact
expressions of the analytical solutions to non-dimensional equations of temperature and
velocity were explored by the application of the Laplace integral transformation with the
slipping boundary conditions under Newtonian heating. For many reasons, these exact
analytical solutions for dimensionless velocity and temperature are very important. For
instance, in order to explore the accuracies of many computed approximate solutions by
using numerical techniques, for complex flow phenomena and these solutions in various
fields of applied sciences and engineering which have great importance, exact analytical
results are mandatory. Thus, closed-form solutions are essential to describe the non-
Newtonian fluids’ behavior. Many graphs have been portrayed to examine the effects of
various physical parameters λ1, M, Pr, Gr and λ2. The graphical demonstration for the
temperature profile and velocity field were generated to correspond to several connected
parameters by using the Mathcad software. For the velocity field solution, all diagrams are
plotted corresponding to the slip and no-slip boundary conditions for the Oldroyd-B fluid
model.

In Figure 2, the effects of the Prandtl number for the temperature profile are displayed.
It can be easily deduced from these graphs that the temperature profile decreases in function
of the increasing Pr. Generally, the thickness of the thermal outline layer rapidly decreases
as the values of Pr linearly increase due to the deceleration of this temperature curve.

In Figures 3–7, the graphs for the velocity field for the slip and no-slip boundary
conditions are portrayed for the function f (t) = eat by taking the values a = 0.25 and
t = 1.5 for all diagrams. Moreover, Figures 8–12 illustrate the graphical behavior of the
velocity field for the slip and no-slip boundary conditions for the function f (t) = sint.

In Figures 3 and 8, the effects of the Prandtl number Pr on the velocity field under
slip conditions and the corresponding velocity profile under no-slip conditions are shown.
It can be noted in these graphs that both the velocity under slip conditions as well as the
velocity under no-slip conditions decline with the advancement of the Prandtl number.

In Figures 4 and 9, the graphs for the velocity field under slip conditions and the
corresponding velocity profile under no-slip conditions are illustrated for the related role
of viscosity and the buoyancy forces in the movement of the fluid are depicted. It can be
observed that the velocity profile escalated in function of the enhancement of the values
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of Gr for both cases. When the positive values of Gr are considered, this causes the fluid
temperature to increase, i.e., by turning into free convection currents in the movement of
the fluid region. A strong buoyancy force is produced in the flowing region relative to the
increasing values of Gr. Due to this strong buoyancy force, all the viscous forces become
powerless, leaving one to appreciate the fluid velocity.

In Figures 5 and 10, the impacts of the magnetic field M on the velocity field under slip
conditions and the corresponding velocity profile under no-slip conditions are illustrated.
It can be easily perceived from these graphs that both the velocity under slip conditions as
well as the velocity under no-slip conditions decelerate in function of the increase in the
strength of the magnetic field. Resistive type forces are termed Lorentz forces and these
are generated due to the imposition of a magnetic field. These forces behave similarly
to dragging forces which suppress the forces that help the fluid flow. Consequently,
retardation in the fluid flow ultimately causes the deceleration in the motion of the fluid
and in due course the fluid comes to a halt.

In Figures 6 and 11, the graphs for the velocity under slip conditions and the cor-
responding velocity profile under no-slip conditions are demonstrated to analyze the
relaxation parameter λ1. Viscous forces become weaker as the values of λ1 increase. Thus,
it can be seen from the graphs that for both cases, the velocity profile accelerates in function
of the large values of λ1.

In Figures 7 and 12, the influence of the retardation parameter λ2 on the velocity field
under slip conditions and in relation to the velocity profile under no-slip conditions are
represented. The retardation parameter and velocity share are inversely related. It can be
easily seen that both the velocity under slip conditions as well as the velocity under no-slip
conditions decelerate in function of the increase in the values of λ2.

From all graphs, it can be noted that similar curve trends are observed for fluid flow
under slip conditions and under no-slip conditions. Furthermore, it was analyzed that for
both functions f (t) = eat and f (t) = sint, the velocity field presents the same curve pattern
for all involved system parameters.

Figure 2. Temperature profile using different Pr values, when t = 0.9 and t = 1.5.



Appl. Sci. 2021, 11, 11477 10 of 16

Figure 3. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different Pr values
when f (t) = eat, a = 0.25, t = 1.5, Gr = 3.5, λ1 = 0.6, λ2 = 0.2, M = 2.

Figure 4. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different Gr values
when f (t) = eat, a = 0.25, t = 1.5, Pr = 0.71, λ1 = 0.6, λ2 = 0.2, M = 2.

Figure 5. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different M values
when f (t) = eat, a = 0.25, t = 1.5, Gr = 3.5, λ1 = 0.6, λ2 = 0.2, Pr = 0.71.
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Figure 6. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different λ1 values
when f (t) = eat, a = 0.25, t = 1.5, Gr = 3.5, Pr = 0.71, λ2 = 0.2, M = 2.

Figure 7. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different λ2 values
when f (t) = eat, a = 0.25, t = 1.5, Gr = 3.5, λ1 = 0.6, Pr = 0.71, M = 2.

Figure 8. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different Pr values
when f (t) = sint, t = 1.5, Gr = 3.5, λ1 = 0.6, λ2 = 0.2, M = 2.
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Figure 9. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different Gr values
when f (t) = sint, t = 1.5, Pr = 0.71, λ1 = 0.6, λ2 = 0.2, M = 2.

Figure 10. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different M values
when f (t) = sint, t = 1.5, Gr = 3.5, λ1 = 0.6, λ2 = 0.2, Pr = 0.71.

Figure 11. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different λ1 values
when f (t) = sint, t = 1.5, Gr = 3.5, Pr = 0.71, λ2 = 0.2, M = 2.
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Figure 12. Velocity field under slip conditions as well as the velocity field under no-slip conditions for different λ2 values
when f (t) = sint, t = 1.5, Gr = 3.5, λ1 = 0.6, Pr = 0.71, M = 2.

5. Conclusions

A thorough investigation of Newtonian heating in addition to slip effects on the
unsteady magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid near an infinitely long
plate was analyzed in this research. The exact expressions of the analytical solution to
non-dimensional equations of velocity and temperature were explored by employing the
Laplace integral transformation under slipping boundary conditions under Newtonian
heating. Many graphs were portrayed to examine the effects of various physical parameters
such as the time relaxation parameter, λ1, magnetic number M, Prandtl number Pr, Grashof
number Gr and the time retardation parameter λ2. The graphical demonstration for
the temperature profile and velocity field for several connected parameters under slip
conditions and under no-slip conditions. The obtained results are summarized as:

• The temperature graphs show that the temperature profile decreases for higher values
of Pr.

• The graphs for the velocity field under slip conditions as well as the velocity field
under no-slip conditions show that the effects of λ1 and λ2 on the velocity contour
are quite the opposite.

• From the graphs, one can see that the elevated values of M and Pr reduced the velocity
curve.

• The velocity profile was stimulated in function of the increasing values of Gr.
• It can be observed that the velocity profile for no-slip flow is lower than the velocity

profile for slip flow.
• It was analyzed that for both functions f (t) = eat and f (t) = sint, the velocity field

represents the same curve pattern for all the involved system parameters.
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Nomenclature

Symbol Quantity Units
ω Non-dimensional velocity (−)
µ Dynamic viscosity (Kg·m−1·s−1)
θ Dimensionless temperature (−)
υ Kinematic coefficient of viscosity (m2·s−1)
Gr Thermal Grashof number (−)
g Acceleration due to gravity (m·s−2)
Tw Temperature of the plate (K)
βT Thermal expansion coefficient (Kg·m−3)
T∞ Temperature of fluid far away from the plat (K)
ρ Fluid density (Kg·m−3)
λ1 Relaxation time (−)
σ Electrical conductivity (s·m−1)
λ2 Retardation time (−)
Cp Specific heat at constant pressure (j·Kg−1·K−1)
Pr Prandtl number (−)
s Laplace parameter (−)
M0 Imposed magnetic field (W·m−2)
Q Heat generation/absorption (J·K−1·m−3·s−1)
M Total magnetic field (−)
t Time (s)
k Thermal conductivity of the fluid (W·m−2·K−1)
P Pressure (N·m−2)
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