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Abstract: Vegetable oil as an alternative fuel for diesel engine has attracted much attention all over the
world, and it is also expected to achieve the goal of global carbon neutrality in the future. Although
the product after transesterification, biodiesel, can greatly reduce the viscosity compared with
vegetable oil, the high production cost is one of the reasons for restricting its extensive development.
In addition, based on the current research on biodiesel in diesel engines, it has been almost thoroughly
investigated. Therefore, in this study, crude palm oil (CPO) was directly used as an alternative
fuel to be blended with commercial diesel. The combustion, engine performance and emissions
were investigated on a 4-cylinder, turbocharged, common rail direct injection (CRDI) diesel engine
fueled with different diesel-CPO blends according to various engine loads. The results show that
adding CPO to diesel reduces the maximum in-cylinder pressure and maximum heat release rate
to 30 Nm and 60 Nm. The most noteworthy finding is that the blend fuels reduce the emissions
of hydrocarbons (HC), nitrogen oxides (NOx) and smoke, simultaneously. On the whole, diesel
fuel blended with 30% CPO by volume is the best mixing ratio based on engine performance and
emission characteristics.

Keywords: crude palm oil; diesel engine; combustion; emission; carbon neutral

1. Introduction

The diesel engine is widely used in transportation, power generation, agriculture, the
military, construction, mining, maritime, propulsion and stationary, because of its high
torque, good stability, superior thermal efficiency, fuel economy and other advantages [1,2].
In particular, the diesel engine is a compression-ignition type, which has absolute ad-
vantages in high output power. This is also one of the reasons why the current electric
engine cannot completely replace the diesel engine. In addition, the carbon monoxide
(CO) and hydrocarbons (HC) emitted by a diesel engine are lower than those of a gasoline
engine. However, the nitrogen oxides (NOx) and particular matter (PM) emitted from
diesel engine are higher than those of a gasoline engine. Therefore, as long as the NOx
and PM emission from diesel engines are solved, it is believed that diesel engines will
continue to be paid more attention. Compared with the research on changing the engine
structure, more researchers focus on alternative and renewable fuels to reduce emissions
from an internal combustion engine (ICE) without any modification. The development of
alternative fuel for ICE has the advantages of a short cycle, quick effect and low cost [3,4].

Biodiesel, as the most reliable alternative fuel to diesel, has attracted the world’s atten-
tion because of its renewable, green, non-toxic, decomposable, and other environmental
benefits [5]. In addition, the cetane number of biodiesel (about 45–65) is generally higher
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than that of diesel (about 40–55), which means that diesel engines fueled with biodiesel
have better ignition characteristics. Fuel with a high cetane number can shorten the ignition
delay, increase the peak combustion pressure and temperature, and promote the formation
of NOx. Meanwhile, biodiesel is also a highly oxygenated fuel (about 11–15%). During
combustion, it can provide certain oxygen, promote combustion, reduce CO, HC and PM
emissions, but slightly increase NOx [6]. In particular, the oxygen content in biodiesel
plays an important role in the reduction of CO and PM emissions. Because the diesel
engine achieves spontaneous combustion through high pressure and temperature, the
mixing degree of fuel and air directly affects the combustion and emission characteristics.
Biodiesel has good benefits in improving the local oxygen deficiency area of the mixture.
In addition to the above advantages, biodiesel also has some disadvantages compared
with diesel fuel, such as high density, high viscosity, high surface tension, and high bulk
modulus of elasticity. The higher the kinematic viscosity and surface tension, the larger the
diameter of injection droplets, which makes it difficult to vaporize and atomize biodiesel
fuel. Therefore, these disadvantages directly affect the fuel injection timing and fuel at-
omization, resulting in the uneven mixing of fuel and air, thereby increasing the harmful
emissions [7,8]. In order to reduce the impact of the disadvantages of biodiesel on combus-
tion and emission, most researchers choose to use a mixture of biodiesel and diesel. An
et al. [9] investigated the influence of the use of waste cooking oil biodiesel/blend fuels on
performance, combustion and emission characteristics in a Euro IV diesel engine under low
engine speed and partial load conditions. They found that engine performance, combus-
tion and emission characteristics were improved with biodiesel addition. Raman et al. [10]
studied the performance characteristics of a single cylinder vertical cylinder direct injec-
tion diesel engine with rapeseed oil biodiesel blends. It was found that the CO and HC
emission of the diesel engine fueled with biodiesel and its blends were lower than diesel
fuel. Ağbulut et al. [11] compared the effects of diesel-biodiesel and various metal-oxide
based nanoparticles (TiO2, Al2O3, and SiO2) blends on combustion, performance, and
exhaust emission characteristics of a single-cylinder diesel engine. The results showed
that all metal-oxide based nanoparticles increased the cetane number, oxygen content,
viscosity, and heating value of biodiesel. Asokan et al. [12] investigated the performance,
combustion and emission characteristics of a single cylinder diesel engine fueled with
diesel-juliflora biodiesel blends (B20, B30, B40, B100). They reported that the CO, HC and
smoke for biodiesel and its blends are smaller or equal compared to diesel; however, the
brake thermal efficiency (BTE) for B100 is 31.11% and it is closer to diesel (32.05%) at full
load. In summary, the biodiesel is oxygenated fuel, which has an oxygen self-supported
effect in the combustion process, therefore, adding biodiesel to diesel can help to improve
the mixture, especially to reduce soot and PM emissions from diesel engines.

At present, the preparation of biodiesel mainly included direct use and blending
of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification.
Among them, transesterification reaction is the most common method for the preparation
of biodiesel [13]. Transesterification takes place between vegetable oils, animal fats, edible
waste fats or oils and alcohols (methanol, ethanol, butanol) in the presence of homogeneous
base catalysts (e.g., NaOH, KOH) [14]. However, many researchers have shown that when
using acid or alkali as catalyst to produce biodiesel, a wastewater containing catalyst is
mainly generated by the washing stage, resulting in secondary pollution to the environment.
Moreover, the purification process of biodiesel has to go through a cumbersome water
washing process and oil-water separation process, resulting in high production cost [15].
With the continuous updating of engine technology, the fuel injection system has been
greatly improved in recent decades. The present diesel engines such as fuel direct injection
pressures can be increased more than 200 MPa in a fuel pump injection system. Therefore,
directly using the mixture of vegetable oil and diesel seems to be another innovation
in the diesel engine. It will directly reduce the generation cost of biofuel and reduce the
environmental pollution during in the biofuel generation process. Moreover, replacement of
petroleum-derived fuels by biogenic fuels from renewable resources is of great significance
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to reduce dependence on petroleum oil, reduce greenhouse gas emissions and achieve the
goal of global carbon neutrality.

Filling a gap of the relevant literature, the present work presents the application
characteristics of direct mixing of crude palm oil (CPO) and diesel in a four-cylinder, four-
stroke, common rail direct injection (CRDI) diesel engine. The main input parameters are
engine load and fuel blend ratio. The output parameters analyzed are in-cylinder pressure,
peak in-cylinder pressure (Pmax), heat release rate (HRR), peak heat release rate (HRRmax),
coefficient of variation of the indicated mean effective pressure (COVimep), brake specific
fuel consumption (BSFC), carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides
(NOx) and smoke opacity.

2. Materials and Methods
2.1. Test Fuels

Five blended fuels were prepared through blending crude palm oil (CPO) at 0%, 10%,
30%, and 50% by volume with diesel fuel, which corresponded to BP0, BP10, BP30, and
BP50, respectively. The specific properties of the tested fuels are listed in Table 1. As shown
in Table 1, it can be clearly seen that the density and viscosity of CPO are higher than diesel,
especially its viscosity is nearly 16 times higher than diesel.

Table 1. Fuel properties.

Properties (Units) Diesel Fuel Crude Palm Oil

Density (kg/m3 at 15 ◦C) 836.8 903.8
Viscosity (mm2/s at 40 ◦C) 2.719 42.21

Calorific value (MJ/kg) 43.96 39.34
Cetane index 55.8 49

Flash point (◦C) 55 260
Oxygen content (%) 0 11.4

2.2. Test Method

A series of experiments were performed on a four-cylinder, four-stroke, common rail
direct injection (CRDI) turbocharged diesel engine with a displacement of 1991cc. The
detailed engine specifications are summarized in Table 2. The schematic diagram of the
engine test bed is presented in Figure 1. The test engine was coupled with an eddy current
(EC) type water-cooled dynamometer (DYTEK230, Hwanwoong Mechatronics Co., Ltd.,
Gyeongnam, Korea) with a maximum load of 230 kW. The engine speed and engine load
were controlled by the dynamometer through a controller. Moreover, a precise electronic
balance with 1 g precision (GP-100K, A&D Co. Ltd., Tokyo, Japan) was used to measure
fuel consumption; the in-cylinder pressure was measured by a piezoelectric pressure sensor
(Type 6056A, Kistler Korea Co., Ltd., Seongnam-si, Korea). The in-cylinder pressure value
with a crank angle was recorded from 200 engine cycles to calculate the heat release rate
(HRR) for analyzing combustion characteristics. All combustion data were acquired using a
National Instruments PCI-6040E (National Instruments, Austin, TX, USA) data acquisition
(DAQ) board and stored in a desktop. The CO, HC, and NOx emissions were measured
by a MK2 (GreenLine MK2, Eurotron (Korea) Ltd., Seoul, Korea) and HPC-501 (Nantong
Huapeng Electronics Co., Nantong City, Ltd., China) multi-gas analyzer. The smoke opacity
was measured with an OPA-102 (QROTECH Co., Ltd., Bucheon-si, Korea) smoke meter.
Three engine loads of 30, 60, and 90 Nm, were selected as the main engine operating
variables to test the blend fuels. The engine speed and the pilot and main injection timings
were fixed at 1500 rpm, 22◦ before top dead center (BTDC), and 7◦ BTDC, respectively.
Detailed operating conditions are listed in Table 3. Before starting to record data, the engine
was first warmed up with diesel under idling speed of 750 rpm without an engine load for
30 min until the cooling water temperature reached 85 ◦C. The engine was started using
diesel (BP0); once the engine warmed up, it was switched to BP10, BP30 and BP50. After
the testing of one kind of fuel, the fuel return valve was opened, all the fuel inside the fuel
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line, injection pump and injector was discharged by using a fuel pump, and finally the
fuel supply and return lines were washed with the next test fuel 3 times. After the fuel
change was completed, the engine was allowed to run about 10 min to attain a steady state
condition for each new test fuel. After all tests were finished, the engine was switched back
to diesel fuel again until the blend fuel was removed from the fuel line, injection pump
and injector, and then the engine was stopped.

Table 2. Specifications of the test engine.

Engine Parameter Units Specifications

Type - turbocharged CRDI diesel engine
Number of cylinders - 4

Bore × stroke mm 83 × 92
Injector hole diameter mm 0.17

Compression ratio - 17.7:1
Max. power kW/rpm 82/4000
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Figure 1. Schematic diagram of the experimental apparatus.

Table 3. Experimental and operating conditions.

Item Conditions

Test fuels BP0, B10, B30, B50
Engine load 30, 60, 90 Nm

Engine speed 1500 rpm
Fuel injection pressure 45 MPa
Pilot injection timing 22◦ BTDC
Main injection timing 7◦ BTDC
Intake air temperature 25 ± 3 ◦C

Cooling water temperature 85 ± 3 ◦C

2.3. Error and Uncertainty Analysis

Generally speaking, uncertainty can be divided into two main factors: fixed error and
random error. A variety of factors such as instrument selection and calibration, changes
in environmental conditions, testing and observation will lead to variation in error and
uncertainty. To reduce the negative impact of these uncertainties and ensure accuracy,
an uncertainty analysis is very important. Thus, in order to better evaluate the results of
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combustion and emissions, all tests were carried out three times and their average values
and standard deviation were taken for further analysis. The specifications of the exhaust
emission device and measurement systems are given in Table 4.

Table 4. Specifications of exhaust emission device and measurement systems.

Parameter Accuracy

CO (ppm) ±0.62%
NOx (ppm) ±0.25%
HC (ppm) ±5%

Smoke opacity (%) ±1%
Load monitoring (Nm) ±0.2%
Speed measuring (rpm) ±5
Fuel consumption (g) ±2

Fuel injection pressure (bar) ±1
Intake air temperature (◦C) ±3

Cooling water temperature (◦C) ±3

3. Results and Discussions
3.1. Combustion Characteristics
3.1.1. In-Cylinder Pressure

To evaluate the effect of various engine loads on the combustion characteristics,
in-cylinder pressures for different fuels are compared under different engine loads and
at a constant engine speed of 1500 rpm. Figure 2 shows the variations of in-cylinder
pressures for four different fuels at engine loads of 30 Nm, 60 Nm and 90 Nm. The
physicochemical properties of fuel directly affect the combustion characteristics of diesel
engine, and the combustion effect of mixture in cylinder can be analyzed by cylinder
pressure [16]. As clearly shown in Figure 2, the peak in-cylinder pressure of the blend fuels
(BP10, BP30 and BP50) is lower than that of pure diesel (BP0). The pattern of variation
of in-cylinder pressure with a crank angle for BP10, BP30 and BP50 blends is similar
under all engine loads. It may be related to the disadvantages of crude palm oil (CPO),
such as high viscosity, high density and low cetane index. Especially for high viscosity,
as shown in Table 1, the viscosity of CPO is nearly 16 times higher than that of pure
diesel, which directly deteriorates the atomization effect and further affects the formation
of a homogeneous mixture. Similar results were also found by Nautiyal et al. [16] and
Prabu et al. [17]. Nautiyal et al. [16] also pointed out that the low volatility of fuel also leads
to poor mixture preparation and atomization, and then reduction of the peak in-cylinder
pressure. In addition, as the engine load increases from 30 Nm to 90 Nm, the in-cylinder
pressure of the blend fuels gradually approaches that of pure diesel. Moreover, it seems
that the initial in-cylinder pressure of blend fuels begins to rise earlier than that of pure
diesel. These are the consequence of the oxygen-containing characteristics of CPO, which
accelerate the combustion rate.

Figure 3 shows the comparison of peak in-cylinder pressure of all test fuels according
to engine load. The in-cylinder pressure peaks of pure diesel are 69.00 bar, 75.40 bar and
83.10 bar at 30 Nm, 60 Nm and 90 Nm, respectively. From Figure 3, it is obvious that
the peak in-cylinder pressures of the blend fuels are significantly lower than that of the
pure diesel. As mentioned earlier, this is related to the fuel characteristics of CPO, such
as low cetane index, high density and high viscosity (see Table 1). With the addition of
10%, 30% and 50% by volume of CPO to pure diesel, the peak in-cylinder pressure at
30 Nm is reduced by 2.90%, 3.62% and 3.33%, respectively; at 60 Nm it is reduced by
2.12%, 1.46% and 3.32%, respectively; at 90 Nm it is reduced by 1.20%, 2.65% and 2.41%,
respectively. On the other hand, with the increase of engine load from 30 Nm to 90 Nm,
the increase of peak in-cylinder pressure is mainly related to the increase of injected fuel
in the cylinder. This result is consistent with [18]. AhmetUyumaz [18] also reported that
the peak in-cylinder pressure is obtained later with increase of engine load due to more
fuel molecules tending to combust. Compared with 30 Nm, the peak in-cylinder pressures
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of blend fuel under medium (60 Nm) and high load (90 Nm) are closer to those of pure
diesel. This is because under a low load, the temperature in the cylinder, including wall
temperature and residual gas temperature, is relatively lower compared with that under
high load, which leads to delayed ignition. Coupled with the high density and high
viscosity of CPO, this further increases the physical and chemical delay, thereby increasing
the distance from pure diesel at the peak in-cylinder pressure. Similar results have also
been reported showing that peak in-cylinder pressure increased with engine load [19].
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3.1.2. Heat Release Rate

Figure 4 illustrates the variation of heat release rate (HRR) with the crank angle of four
different blend fuels under different engine loads. In Figure 4, three peaks of different sizes
can be obviously observed. The leftmost one is a small trough (negative HRR), which is a
slight decrease caused by the absorption of ambient temperature after pilot fuel injected
in the cylinder. The middle peak and the rightmost peak are the HRR rise caused by
pilot and main injection fuel combustion, respectively. Similar results have been reported
by Yilmaz et al. [20] and Nautiyal et al. [16]. It is widely known that the combustion
process of diesel engines can be divided into two major phases: premixed combustion
phase (PCH) and diffusion combustion phase (DCH). The PCH begins after the start of
injection (SOI) and reacts rapidly due to the presence of fuel-rich combustible areas formed
by mixing fuel and air during the ignition delay period. The PCH leads to a rapid increase
in the pressure and heat release in the cylinder. After the air around the fuel is consumed,
PCH immediately enters the DCH. Generally, PCH is much shorter than DCH due to the
burning being controlled with the air-fuel mixture [1,16]. From the combustion process
analysis in Figure 4, the combustion processes of all test fuels are similar. However, on
the whole, the HRR curves of the blend fuels are slightly shifted to the right which can be
attributed to the ignition delay (ID). ID is defined as the time between the SOI and the start
of combustion (SOC). ID can be divided into physical delay and chemical delay, which are
mainly determined by the properties of the fuel itself, such as viscosity, surface tension,
volatility and cetane number [21]. Therefore, the high viscosity and density of CPO are the
direct factors affecting fuel atomization, resulting in longer ID. On the other hand, with the
increase of engine load, the maximum values of HRR of blend fuels are closer to those of
diesel. Especially under high load (90 Nm), the maximum HRR of BP10 (46.67 J/CA) and
BP30 (47.06 J/CA) is slightly higher than that of diesel (46.46 J/CA). These phenomena
are mainly because the increase in load increases the temperature and pressure in the
cylinder, and reduces the negative effects of the high viscosity and high density of palm
oil. Moreover, the oxygen-containing characteristics of palm oil itself positively improve
combustion characteristics. Similar results were also reported by Patel et al. [22].
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Figure 5 plots the maximum values of HRR (HRRmax) profiles for four fuel blends
under different engine loads. As clearly shown in Figure 5, the HRRmax of blend fuels are
lower than that of pure diesel under medium and low load. At 30 Nm, the HRRmax of
BP10, BP30 and BP50 is 30.63 J/CA, 30.38 J/CA and 29.01 J/CA, which decreases by 6.49%,
7.26% and 11.43% compared with that of BP0, respectively. At 60 Nm, the HRRmax of BP10,
BP30 and BP50 is 37.11 J/CA, 37.78 J/CA and 38.19 J/CA, which decreases by 4.78%, 3.08%
and 2.03% compared with that of BP0, respectively. However, at 90 Nm, the HRRmax
of BP10 and BP30 increases by 0.45% and 1.29% compared with that of BP0, respectively.
Moreover, only a large amount of palm oil (50% by volume) added to diesel leads to the
slightly decline of HRRmax compared with pure diesel. The above results show that HRR
is mainly affected by engine operating conditions and fuel properties. With the increase
of engine load, a large amount of fuel and air enter the cylinder for combustion, which
greatly increases the temperature and pressure in the cylinder, especially the temperature
of the cylinder wall, and reduces the negative effects caused by the disadvantages of high
viscosity, high density and low cetane number of palm oil. In addition, the oxygen carried
by palm oil improves the oil-rich area and provides favorable conditions for improving
combustion quality. However, when the volume mixing ratio of palm oil is excessive, i.e.,
up to 50%, the disadvantage characteristics of palm oil break the balance. Even if the engine
load is very high, the HRRmax of BP50 is still reduced by 3.33% compared with that of
pure diesel. Therefore, choosing an appropriate engine load and palm oil mixing ratio can
give full play to the best performance of the fuel. Similar observations were also reported
by An et al. [2] and Patel et al. [22]. Bari et al. [23] reported that the decrease in HRRmax
was related to the composition (roughly 50% saturated and 50% unsaturated fatty acids) of
palm oil. They also indicated that some chemical reactions, such as the cracking of double
bond of carbon chain, shorten the ignition delay, resulting in less fuel injection, which is
also one of the reasons for reducing HRRmax.
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3.1.3. Engine Performance

Figure 6 compares the coefficient of variation of the indicated mean effective pressure
(COVimep) for all test fuels according to various engine loads. Cyclic variations occur
during combustion due to mixture composition, thermodynamic conditions, initial tem-
perature and pressure alteration for each cycle [18]. The higher the COVimep, the more
unstable the combustion, which even leads to vehicle drivability problems. As shown in
Figure 6, the variation of COVimep of this CRDI diesel engine fueled with all test fuels
under low (30 Nm) load and high load (90 Nm) is slightly larger than that under medium
load (60 Nm) and does not show a stable change with the increase of the palm oil blend
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ratio. However, at 60 Nm, the COVimep decrease gradually with the addition of palm
oil to diesel. That is, the COVimep of BP10, BP30 and BP 50 decrease by 9.32%, 17.31%
and 21.43% compared with that of BP0, respectively. In addition, the average value of
COVimep for all test fuels at 60 Nm and 90 Nm are lower than that at 30 Nm due to the
increase of the fuel extent in the mixture [24]. Generally, COVimep less than 2.5% is the
upper limit of stable combustion [24], while more than 10% being the upper limit of vehicle
drivability problems [25]. On the whole, all test fuels obtained relatively stable combustion
without large cycle-to-cycle variations under all engine operating conditions. This may be
attributed to the improved combustion quality of palm oil as an oxygenated fuel.
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Figure 7 shows the brake specific fuel consumption (BSFC) for all test fuels according
to various engine loads. BSFC is an important indicator to evaluate the fuel economy of an
engine. The smaller the BSFC is, the more economical the fuel is. As shown in Figure 7,
the BSFCs of most blend fuels are higher than that of pure diesel. At 30 Nm, the BSFC of
BP 10, BP30 and BP 50 increase by 9.16%, 8.38% and 14.23% compared with that of BP 0,
respectively. At 60 Nm, the BSFC of BP 10, BP30 and BP 50 increase by 1.99%, 5.31% and
9.02% compared with that of BP 0, respectively. However, at 90 Nm, the BSFC of BP 10,
BP30 and BP 50 decrease by 5.71%, 0% and 1.34% compared with that of BP 0, respectively.
This means that palm oil blended fuels consume more fuel per energy extracted under
medium and low load. This is because the calorific value of palm oil is lower than that of
diesel (see Table 1), thereby more fuel needs to be consumed to achieve the same output.
Moreover, the disadvantages of high density and high viscosity of palm oil cannot be
improved under medium and low load, which further leads to incomplete combustion
and consumes a lot of fuel. A similar result was reported in Ref. [26]. Generally, the
lower the calorific value of the fuel, the more fuel needs to be consumed. However, in this
study, the addition of palm oil reduced BSFC at 90 Nm. This shows that the variation of
BSFC is not only related to physical properties of palm oil such as calorific value, density
and viscosity, but also related to whether it contains oxygen. Under high load, the blend
fuels get rid of the negative effects of high density and high viscosity of palm oil, and the
oxygen-containing characteristics play a major role in promoting the full combustion of
the fuel. In addition, it is clearly seen that the BSFCs for all test fuels are reduced with an
increase of the engine load. This may be mainly attributed to the increase of temperature
and pressure in the cylinder due to the increase of the engine load, which improves the
combustion quality and reduces the combustion loss. This is consistent with the results of
other researchers [17,27].
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3.2. Emission Characteristics
3.2.1. CO Emission

Figure 8 illustrates the variation of CO emission for four different fuels according
to various engine loads from 30 Nm to 90 Nm. As shown in Figure 8, the CO emission
is significantly increased as the percentage of palm oil is increased at all engine loads.
At 30 Nm, the CO emission of BP10, BP30 and BP50 increases by 7.04%, 31.69% and 36.62%
compared with that of BP 0, respectively. At 60 Nm, the CO emission of BP10, BP30 and
BP50 increases by 1.48%, 18.52% and 27.41% compared with that of BP 0, respectively.
At 90 Nm, the CO emission of BP10, BP30 and BP50 increases by 21.13%, 24.65% and
45.77% compared with that of BP0, respectively. It is widely known that CO emission is
produced by incomplete combustion of fuel due to insufficient oxygen. Many researchers
have reported that oxygenated fuels such as biodiesel reduce diesel engine CO emission
due to the oxygen contained in biodiesel. The oxygen carried by biodiesel improves the
fuel/air equivalence ratio, especially for improving the problem of insufficient oxygen in
local fuel-rich areas, thereby promoting more carbon molecules to oxidize [24,28]. However,
in this study, the increase in CO caused by adding palm oil to diesel may be mainly related
to the high density, high viscosity and low cetane index of palm oil. Bari et al. [23] and
Altın et al. [29] also reported similar results. Bari et al. [23] reported that the increase
of CO emission is related to the difficult atomization caused by the heavy compounds
produced by the chemical reactions of palm oil. Altın et al. [29] also reported that the CO
emission of a single cylinder diesel engine fueled with various raw vegetable oil fuels is
more than that of diesel engine. They pointed out that the poor spraying qualities and
uneven mixture were the main reasons for increasing CO emission. On the other hand, the
CO emissions for all test fuels are decreased with the increase of engine loads from 30 Nm
to 90 Nm. Compared with at 30 Nm, the CO emissions of all fuels are reduced by 55.26%
and 48.30% on average at 60 N and 90 Nm, respectively. This is mainly attributed to the
rise of temperature in the cylinder, which is conducive to the oxidation of CO emission
with the increase of engine load [28].
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3.2.2. HC Emission

Figure 9 describes the effect of four different fuels on HC emission at different loads.
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As shown in Figure 9, the HC emission is significantly decreased as the percentage
of the palm oil is increased at all engine loads. At 30 Nm, the HC emission of BP10,
BP30 and BP50 decreases by 15.15%, 36.36% and 42.42% compared with that of BP 0,
respectively. At 60 Nm, the HC emission of BP10, BP30 and BP50 decreases by 18.75%,
40.63% and 53.13% compared with that of BP0, respectively. At 90 Nm, the HC emission
of BP10, BP30 and BP50 decreases by 5.41%, 43.24% and 43.24% compared with that of
BP0, respectively. In general, the generation of HC is mainly related to the following four
reasons: (i) misfires and partial burns; (ii) flame quenching in crevice volumes; (iii) wall
quenching and deposits; (iv) oil absorption [30]. In addition, fuel properties such as density,
viscosity, surface tension, cetane number and oxygen content are also the main factors
affecting HC emission.

On the whole, the impact factors affecting HC emission are divided into positive
impact factors (i.e., oxygen) and negative impact factors (i.e., high viscosity, high surface
tension). The positive impact factor is beneficial to reduce HC emission, while the negative
impact factor is to increase HC emission. As shown in Figure 9, adding palm oil to diesel
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reduces HC emission because the influence of positive factors is stronger than negative
factors. Palm oil is an oxygenated fuel. The oxygen carried by palm oil changes the fuel/air
equivalence ratio and reduces the possibility of flame quenching in crevice volumes.
Moreover, in this study, the addition of palm oil reduced HC emission, but increased
CO emission due to the difference of formation mechanism. Similar findings have been
reported by An et al. [2] Moreover, the average HC emissions of all test fuels first decrease
and then increase with the engine load increasing from 30 Nm to 90 Nm. As explained
earlier, the increase of engine load leads to the increase of temperature and pressure in
the cylinder and the increase of turbulence rate, so as to promote the formation of a more
uniform mixture of fuel and air, improve combustion efficiency and finally reduce HC
emission [31].

3.2.3. NOx Emissions

Figure 10 depicts the NOx emissions for all test fuels according to various engine loads.
It can be seen that the NOx emissions are significantly reduced with the addition of palm
oil at each engine load. At 30 Nm, the NOx emissions of BP10, BP30 and BP50 decrease by
2.44%, 10.13% and 13.88% compared with that of BP 0, respectively. At 60 Nm, the NOx
emissions of BP10, BP30 and BP50 decrease by 5.44%, 14.85% and 19.61% compared with
that of BP0, respectively. At 90 Nm, the NOx emissions of BP10, BP30 and BP50 decrease by
4.99%, 6.13% and 14.76% compared with that of BP0, respectively. In addition, the NOx of
all fuels at 60 Nm and 90 Nm increase by 86.29% and 178.85% respectively compared with
that at 30 Nm. According to the NOx generation mechanism, NOx emissions are divided
into thermal NOx, prompt NOx and fuel NOx. Generally, a large amount of NOx emissions
is generated when the temperature in the cylinder is higher than 1500 ◦C [32]. In addition,
oxygen concentration and residence time are factors affecting NOx emissions. Many
researchers have reported that most biodiesel has a high cetane number and oxygen content,
which makes the premixed phase closer to the stoichiometric conditions, resulting in the
increase of the cylinder temperature, thereby increasing NOx emissions [16]. Nevertheless,
the NOx emissions decrease significantly with the increase of palm oil percentage in blend.
This is because palm oil has a lower cetane number and calorific value than diesel, and its
viscosity is nearly 16 times higher than diesel (see in Table 1). These characteristics hinder
the excessive rise of temperature in the cylinder, thus curbing the generation rate of NOx
emissions. Moreover, the significant increase of NOx emissions caused by the increase of
engine load is mainly due to the rise of temperature in the cylinder and the larger flame
area generated when more fuel is supplied. This is consistent with the study results from
Leevijit et al. [33].
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3.2.4. Smoke Emission

Figure 11 presents smoke opacity for four different test fuels according to various
engine loads. At 30 Nm, the smoke opacity of BP10, BP30 and BP50 decreases by 9.38%,
6.25% and −18.75% (increase) compared with that of BP 0, respectively. At 60 Nm, the
smoke opacity of BP10, BP30 and BP50 decreases by 5.88%, 11.77% and 8.82% compared
with that of BP0, respectively. At 90 Nm, the smoke opacity of BP10, BP30 and BP50
decreases by 9.88%, 11.11% and 6.17% compared with that of BP0, respectively. Except
for B50, the smoke opacity under 30 Nm is increased, and the smoke opacity of most
blend fuels is lower than that of diesel. This may be because the density and viscosity of
palm oil with a higher mixing ratio are higher, which worsens the atomization effect and
leads to incomplete combustion. The reason for the reduction of smoke opacity caused
by the addition of palm oil may be mainly attributed to the oxygen content of palm oil.
In addition, the formation of diesel smoke is not only related to incomplete combustion,
but also related to the combustion of aromatic hydrocarbons [16]. Palm oil is a kind of
vegetable oil, which does not contain sulfur and aromatic hydrocarbons. Therefore, adding
palm oil to diesel reduces smoke emission. Silitonga et al. [34] pointed out that oxygenated
fuel can inhibit the formation of aromatic hydrocarbons and carbon black due to the strong
bond combination of carbon atoms and oxygen atoms in oxygenated fuel. Moreover, the
low cetane number of the fuel leads to longer ignition delay, which provides longer mixing
time between fuel and air, thereby reducing smoke emission. On the other hand, with the
increase of engine load, the average smoke opacity of all fuels first decreases slightly and
then increases significantly. This is mainly because there are more fuel rich areas under
lower and higher loads. The reason for the obvious increase of smoke opacity under 90
Nm may be mainly due to the increase of fuel injected into the cylinder, which increases
the fuel droplet size and is not conducive to the formation of homogeneous mixture [31].
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Figure 11. Smoke opacity for all test fuels according to various engine loads.

4. Conclusions

In this work, different diesel–crude palm oil (CPO) blend fuels were investigated in
terms of combustion, engine performance and emission characteristics in a four-cylinder,
turbocharged common rail direct injection (CRDI) diesel engine according to various engine
loads. The major findings can be summarized as follow:

I. With the increase of palm oil concentration, the in-cylinder pressure and heat
release rate (HRR) of most blend fuels are reduced, and the ignition start is delayed.

II. Based on the coefficient of variation of the indicated mean effective pressure
(COVimep), most of the tested fuels are lower than 2.5%, which indicates that
this diesel engine can run all the blend ratios of palm oil without any operating
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problems. However, based on the high density, high viscosity and low calorific
value of palm oil, burning diesel-CPO blends lead to the increase of brake specific
fuel consumption (BSFC).

III. HC, NOx and smoke opacity are reduced simultaneously when the diesel en-
gine burning diesel-CPO blends, compared with diesel, however, CO emission
is increased.

IV. Overall, by comparing the effects of diesel-CPO blends on engine performance,
combustion and emission characteristics, it is found that the direct mixing of up to
30% CPO is the most appropriate for this CRDI diesel engine.
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