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Abstract: An accurate vessel fuel consumption prediction is essential for constructing a ship route
network and vessel management, leading to efficient sailings. Besides, ship data from monitoring
and sensing systems accelerate fuel consumption prediction research. However, the ship data
consist of three properties: sequential, irregular time interval, and feature importance, making
the predicting problem challenging. In this paper, we propose Time-aware Attention (TA) and
Feature-similarity Attention (FA) applied to bi-directional Long Short-Term Memory (LSTM). TA
acquires time importance by nonlinear function from irregular time intervals in each sequence and
emphasizes data depending on the importance. FA emphasizes data based on similarities of features
in the sequence by estimating feature importance with learnable parameters. Finally, we propose the
ensemble model of TA and FA-based BiLSTM. The ensemble model, which consists of fully connected
layers, is capable of simultaneously capturing different properties of ship data. The experimental
results on ship data showed that the proposed model improves the performance in predicting fuel
consumption. In addition to model performance, visualization results of attention maps and feature
importance help to understand data properties and model characteristics.

Keywords: BiLSTM; deep learning; ensemble; feature similarity attention; self-attention; time-aware
attention; vessel fuel consumption prediction

1. Introduction

Since the popularization of international trade, the shipping industry has made techni-
cal progress, making ships emerge as efficient transport [1]. Despite the efficiency of ships,
various sailings consisting of approximately 90% of global trade result in environmental
problems [2]. Due to environmental issues, the International Maritime Organization (IMO)
announced a regulation, which mandates ships to use fuel containing less than 0.5% Sul-
fur. However, it is expensive to replace the vessel fuel, and this regulation increases the
necessity of efficient sailings.

Including the efficiency of the ship, the technical progress of the shipping industry has
made it feasible to get not only sufficient ship data from sensing and monitoring systems,
but also weather data to consider external factors. These data have been used to develop
methods for predicting vessel fuel consumption [3–5]. These studies have been essential
for efficient sailings by constructing a ship route network for navigational strategies, route
planning, and managing vessel operation. Several attempts have been made to predict fuel
consumption through statistical and machine learning models. However, researchers have
recently used deep learning models, and they have shown that it outperforms the previous
methods [4,6].

For the past decades, many researchers in various domains have made significant
progress and achieved remarkable performance in deep learning. In the vessel domain,
some studies were conducted to predict fuel consumption using deep learning. The
previous methods can be divided into two parts depending on the kinds of deep learning
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models. First, the authors of [3–8] used Multi-Layer Perceptron (MLP). The authors of [3,5,8]
showed that the deep learning models outperformed the machine learning and statistical
models. They also discussed the usage of the proposed model for efficient sailings. The
authors of [4,6] focused on increasing the model performance by handling important
features and outliers. Although the authors of [7] adopted MLP, they addressed the
importance of sequential property in ship data. On the other hand, the authors of [9–11]
applied Long Short-Term Memory (LSTM) [12] to consider sequential ship data. Among
them, the authors of [9,10] proved that LSTM outperformed MLP and other machine
learning models which could not reflect sequential information. Although previous studies
contributed to efficient sailing by predicting fuel consumption, they did not fully consider
the ship data properties. Without understanding data, it is challenging to design a proper
model for the data. Thus, we first explore ship data and describe their properties. Because
ship data are acquired in time order, they have the characteristics of the temporal feature
data. Based on the characteristics, we describe ship data properties in detail. The three
main properties are given below:

1. Sequential data: Ship data acquisition from sensing or monitoring systems occurs
consecutively during sailings.

2. Irregular time interval: Each data interval in the sequence (i.e., sailing) can vary from
seconds to hours owing to the vessel type, sailing status or transport malfunction [7].
Besides, time irregularity can aggravate during processing of numerous noise and
missing data. Figure 1 shows that the irregular time interval occurs also in the dataset
in this paper.

3. Feature importance: The vessel fuel oil consumption is significantly affected by a few
features, which have a high correlation with fuel oil consumption [7,10,13]. As shown
in Figure 2, we deduce that fuel oil consumption has a high correlation with speed
and draft compared to other features. As their correlation coefficients are positive,
fuel oil consumption could increase as speed and draft become higher.

Although we describe the above three properties, there are some overlapped aspects
with each property. For example, the irregular time interval is an implicit property of the
sequential data. However, we distinguish the properties in detail to fully reflect individual
properties on the models.

In this study, we propose each attention-based model and their ensemble model to
accurately predict fuel oil consumption by representing the ship data properties. We
use bi-directional LSTM [14] as the backbone model to consider sequential property. For
irregular time interval property, we design Time-aware Attention (TA) based on self-
attention. TA represents irregular time information and alleviates the problem of time
irregularity in sequence models. To reflect the feature importance property, we propose
Feature-similarity Attention (FA). FA, which estimates feature importance, emphasizes
data based on feature similarity. Finally, we adopt the ensemble model of TA and FA-
based BiLSTM, which makes it feasible to reflect two different properties simultaneously.
Experimental results on the ship data show that the proposed models outperform the other
sequence and attention-based models. Furthermore, attention maps of different scenarios
and feature importance values illustrate the relationship between data properties and
models, which increases interpretability.
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Figure 1. Irregular time interval plot examples. Each plot shows acquired sequential ship data during
each voyage and their time difference. The time difference is calculated by t(i+1) − ti, where ti is the
time when the ith data was acquired during the voyage. The examples are sampled from the dataset
used in this paper.

Figure 2. Correlations between features including a dependent variable, fuel oil consumption (FOC).
In the correlation matrix, the correlation is higher as the color becomes darker. The correlation is
calculated by the dataset used in this paper.
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The rest of the paper is organized into various sections, beginning with a summary of
related works. This is followed by the proposed methods which contain TA, FA, and its en-
semble. Finally, we address the experimental results and analyze them using visualizations.

2. Related Work

In this section, we address three topics of related work (i.e., sequence model, attention
mechanism, and feature importance). We also investigate the previous studies of applying
deep learning models in the vessel fuel consumption domain.

2.1. Sequence Model

Recurrent Neural Network (RNN) [15,16] is one of the methods used to represent
sequential information and handle a variable-length sequence. However, RNN has gradient
vanishing problems in a long length sequence [17]. Long Short-Term Memory (LSTM) was
proposed in [12], to capture short- and long-term memory. LSTM consists of three separated
gates to update hidden and cell states. The process of updating states is given as follows:

it = σ(Wixt + Uiht − 1 + bi)

ft = σ(W f xt + U f ht − 1 + b f )

ot = σ(Woxt + Uoht − 1 + bo)

c̃t = tanh(Wcxt + Ucht−1)

ct = ft � ct − 1 + it � c̃t

ht = ot � tanh(ct)

(1)

where xt is the current input of time step t, and σ is sigmoid function. Each it, ft, and ot
denotes the input, forget and output gates, and bias for b, respectively. These gates control
the exposure of memory and assist in preserving short and long memory. After the success
of LSTM, Gated Recurrent Unit (GRU) was proposed in [18] as another type of recurrent
unit. RNNs achieved remarkable performance where sequential information was needed,
such as Natural Language Processing (NLP) and time-series domain.

In the vessel fuel consumption prediction, sequence models are essential as data
acquisition occurs consecutively during sailings. However, the irregularity of time interval
made it challenging to apply sequence models [7]. This is because RNNs share parameters
regardless of the irregular time interval. It means that RNNs equally update information in
the sequence, even when the time interval is not equal. Other researchers applied LSTM in
the vessel domain, but they did not consider irregularity of time [9,11]. This implies the
necessity of a sequence model addressing irregular time intervals.

2.2. Attention Mechanism

The attention mechanism is developed, especially in the machine translation domain.
It was introduced in [19] to preserve previous information and emphasize significant data
in the sequence. This improved model performance and alleviated the gradient vanishing
problem of RNNs since it used weighted previous information again. The achievement
of attention accelerated the development of other attention. Ref. [20] compared various
alignment functions and verified the global and local approach for attention. Ref. [21] used
attention based bi-directional LSTM (BiLSTM) for sentiment classification.

Recently, Transformer [22] achieved state-of-the-art performance in machine transla-
tion. Transformer’s self-attention consists of a scaled dot product between Q, K, and V,
which refer to query, key, and value, respectively. Each Q, K, and V is projected by input
X and its corresponding weights Wq, Wk, and Wv. The self-attention calculates the dot
products between the query and key, divides them by

√
dk as a scaling factor, where dk is

the dimension of features. It additionally applies a softmax function to obtain the attention
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weight, α, and is used to emphasize data on value. The process of self-attention is defined
as follows:

Attention(Q, K, V) = so f tmax(
QK>√

dK
)V (2)

Using the outputs of the previous layer as the inputs of self-attention, it emphasizes
significant information in a sequence. Due to good compatibility, other studies employed a
part of Transformer’s self-attention and applied it on RNNs [23,24]. Besides, the attention
mechanism’s effectiveness was not confined to machine translation, it was proved in
diverse domains (e.g., NLP, recommendation, and time series) [25–27].

In the irregular time interval domain, several studies have been conducted to apply
self-attention to address different time intervals in a sequence [28,29]. The authors of [29]
used a Transformer encoder, a symmetric time interval matrix, and a position matrix as
inputs to consider irregular time in the recommendation system. It also applied embedding
to represent hidden information from the time interval and position information. The
attention process is similar to the Transformer’s self-attention. It calculates the scaled dot
product between Q, K′, and V′, where K′ = K + ER

K + EP
K and V′ = V + EP

V + EP
V . Each ER

and EP is the result of embedding the time interval and position information. The attention
process is as follows:

Attention(Q, K′, V′) = so f tmax(
QK′>√

dK
)V′ (3)

The embedding of the irregular time intervals was useful in obtaining the hidden
information and time meaning of users when constructing the recommendation system.
Inspired by the work in [29], the difference of the domain and time meaning motivated us to
propose other approaches to represent the time interval. The irregular time interval occurs
in the vessel domain mainly because of the problem of data acquisition and preprocessing
for noise. The irregular time in the previous study reflects the behavior information of the
specific user, whereas the irregular time in the vessel does not represent hidden information
of the specific vessel. This indicates it is necessary to make representations considering
discontinuous time steps above all things.

2.3. Feature Importance

Addressing significant features has been studied for a long time. One of the methods
is feature selection based on criteria. The correlation coefficient and mutual information are
used to measure the relationship between features [30]. The features are selected depending
on the criteria values and their threshold [31].

The features can also be addressed during the model training phase. Various word
embedding techniques [32] were adopted for the model to learn how to express the features
(i.e., words). The authors of [33,34] focused on weighting features and forced to learn it.
They regarded the frequencies or correlation with a target as the feature importance. As
feature importance became a factor to weight features, the model could make better feature
representations. Weighting features also made both the outstanding model performance
and explanation of features feasible.

In the vessel fuel consumption prediction, there were efforts to handle important
features [6,7]. They attempted to reflect the feature importance by selecting them based
on correlation with a target. As the feature selection is just preprocessing to modify data,
the model still regards the remaining features equally [33]. Besides, not only the feature
selection requires the subjective deduction of the threshold, but also trials and errors to
verify it. This indicates the necessity that the model itself regards features differently based
on their importance. Researchers have recently shown that attention mechanisms can
make the model itself handle important features [35–39]. However, there are difficulties
in the application of the previous methods in the vessel domain. The authors of [37] only
focused on replacing the feature selection method using attention modules. In addition, the



Appl. Sci. 2021, 11, 11514 6 of 23

authors of [39] addressed the importance of feature interaction in the sparse feature space,
and the authors of [35,38] used the estimated feature importance in the unstructured data.
Although the authors of [36] proposed self-attention to estimate the feature importance
in tabular data, the feature importance was acquired on the instance-level, which did not
reflect the feature interaction in the sequence. Those backgrounds motivated us to develop
attention modules to handle important features in ship data.

3. Methodology

In this section, we first address the base sequence model which represents sequen-
tial data before attention layers. To consider sequence enough, we use BiLSTM as the
sequence model. Subsequently, we introduce Time-aware Attention (TA) which is capable
of capturing importance based on the time interval. It consists of transformation to the
time distance matrix, global time scaling, and function-based representation. After that,
we propose Feature-similarity Attention (FA) which includes obtaining feature similarity
based on feature importance. Finally, we propose the ensemble model of TA and FA, which
can consider both irregular time interval and feature similarity. As shown in Figure 3, each
two attention layer combines with self-attention and operates after the BiLSTM layer.

Figure 3. The structure of the ensemble model.

3.1. Sequence Model
3.1.1. Sequence Processing

Ship data have sequential property as the data acquisition occurs consecutively during
the sailing. Before introducing the sequence model in this study, it is necessary to describe
how we convert sailings into sequences, which are inputs of the model. Although we can
roughly define sequences based on sailings, sequence-length has a large deviation depending
on sailings. The deviation occurs owing to different sailing distances or preprocessing of
noise and missing data. Thus, we use the truncated sequence per sailing, S = {s1, s2, · · · , sn},
where n indicates the fixed max-length to truncate the sequence. If the length of S does not
satisfy fixed max-length, we pad them to zeros for guaranteeing the equal sequence length.
Each s consists of the k number of features (e.g., speed, heading, and draft).

3.1.2. BiLSTM Layer

We use BiLSTM as the base sequence model, which can fully consider both the forward
and backward direction. BiLSTM is combined by each forward and backward directional
LSTM. Each directional LSTM generates two hidden states, when input vector is the
truncated sequence S. The concatenation of two hidden states is the result of BiLSTM layer,
hi ∈ Rn×d, where i = {1, 2, · · · , n}, d is the hidden dimension size, and hi = [

−→
hi ,
←−
hi ]. hi is
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the sequential representation in the truncated sequence. As shown in Figure 3, the result of
BiLSTM, hi is used as the input of each attention layer.

3.2. Time-Aware Attention

As mentioned in Section 2.2, as self-attention does not represent irregular time in
the sequence, we propose TA to represent irregular time property. In addition, instead of
finding the hidden meaning of the time like in [29], TA uses time information to connect
discontinuous time steps in sequence models and emphasize data depending on time
importance. We assume that time importance would increase as the time interval decreases,
and design TA to reflect the time importance. It is divided into two parts, function-based
representation and combining with self-attention. First, we obtain time importance by
function-based representation. It also consists of the process to get a time distance matrix
and scale that matrix. After that, we get the time attention weight from the time importance
by combining it with self-attention. We combine with self-attention to capture hidden
information from data as TA is mainly designed to focus on time information.

3.2.1. Time Importance by Function-Based Representation

From each timestamp in the sequence S, we design a time distance matrix, T ∈ Rn×n,
by calculating the time difference between each timestamp in the sequence. We can observe
relative time distance in the sequence from tij, which indicates time difference between si
and sj.

T =


t11 t12 · · · t1n
t21 t22 · · · t2n
...

...
. . .

...
tn1 tn2 · · · tnn

 (4)

In the n by n symmetric matrix T, all of the diagonal elements are zero and others have
as larger values as far from each element. We redefine the scaled T as T′ = 1

log(e+T) [40] to
consider a global time relationship and represent time values into the range [0, 1]. Because
of scaling, elements of T′ are inversely represented by a time interval. We estimate the time
importance, αt, from T′. T′ is transformed by the function representation and a softmax
function. For the function representation, we use the sigmoid function, which transforms
from scaled time interval to time importance. The sigmoid function consists of learnable
parameters, gradient a and constant b.

f (x) =
1

1 + exp−ax+b , s.t. a > 0 (5)

In Equation (5), we force the range of the gradient a to be positive values. This
is because we assume time importance would increase as the time interval decreases.
Furthermore, the scaling process makes T have an inverse relationship between time
interval and time importance. Thus, the assumption can be satisfied by forcing the range
of a. Finally, we express the time importance with softmax, αt = so f tmax( f (T′)).

3.2.2. Time Attention Weight by Combining with Self-Attention

After getting the time importance αt, we obtain time attention weight by combin-
ing with self-attention. Time attention weight is used to make time-aware representa-
tion. We adopt Transformer’s self-attention to combine with our attention. Q ∈ Rn×d,
K ∈ Rn×d, V ∈ Rn×d of self-attention are represented by each weight, Wq,k,v ∈ Rd×d, and
the hidden states of BiLSTM, h ∈ Rn×d. d is the hidden dimension size, and it is maintained
during the attention process.

We transform Q, K into Qt = αt · Q ∈ Rn×d, Kt = αt · K ∈ Rn×d. They are new
representations considering time importance. As shown in Figure 4, each query–key pair,
Qt − Kt, Q− K, is used for scaled-dot product, where dk is the scaling factor of dimension
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size. The summation of each result is represented by hyperbolic tangent to get attention
weight αTA. We use hyperbolic tangent to expand the range of attention representation,
considering the summation process.

αTA = tanh(
QK>√

dk
+

QtK>t√
dk

) (6)

Zt = dropout(layernorm(FFN(Vt))) + h (7)

The value of TA, Vt ∈ Rn×d, is produced by time attention weight, Vt = αTA ·V. After
that, we get time-aware representation Zt ∈ Rn×d from Equation (7), which consists of
layer normalization, feed-forward network, and dropout as the Transformer did [22]. The
layer normalization is used to normalize the inputs and stabilize the learning process. As
the hidden dimension size is maintained, we can apply the skip-connection and make the
model to be optimized easily. Finally, Zt gets through the prediction layer, which consists
of three fully connected layers.

Figure 4. Attention process to combine with self-attention.

3.3. Feature-Similarity Attention

In this subsection, we introduce FA which emphasizes information based on feature
similarity and importance. Unlike the previous attention module [38], FA estimates feature
importance in sequential data and transforms it to make representations with the total
feature similarity. In detail, we use learnable feature importance parameters to obtain the
total similarity. This indicates that FA itself learns which feature is important, and reflects
it through the total similarity. FA consists of two parts, total similarity and combining
with self-attention. We first get a feature-wise distance which is the similarity between
data. The total similarity is the weighted sum between feature-wise distance and feature
importance. Through total similarity, we get feature attention weight and make feature
similarity representation. As mentioned in Section 3.2, we combine with self-attention to
obtain hidden information, which is different from FA.

3.3.1. Total Similarity Based on Feature Importance

To obtain the total similarity, we use feature-wise distance and the feature importance.
The feature-wise distance is L1 distance between pairs of the features. We defined the
truncated sequence, S = {s1, s2, · · · , sn}, which consists of nth sequential data. Each of si
has the k number of features except timestamp. Among k, we only use the k− p number
of features to estimate feature similarity. k is the total number of vessel features, and p is
the number of vessel formulation features. In truncated sequence S, vessel formulation
features always have the same values since the types of vessels are the same. That is why
we exclude p from total features. The feature-wise distance, D ∈ Rn×n×|k−p| is applied to
each feature between data in the sequence S and the equation is as below:

D =
∣∣∣xi

f − xj
f

∣∣∣ (8)
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where i = {1, 2, · · · , n}, j = {1, 2, · · · , n}, f = {1, 2, · · · , k− p}, and xi
f is f th feature of

ith data in sequence S. From feature-wise distance D, we observe how each feature of
data in sequence is different. However, it does not contain enough information since D is
simply calculated by L1 distance. We estimate the total similarity TS ∈ Rn×n to differently
reflect feature-wise distance based on feature importance. TS can compare the overall
distance between data. We apply a weighted sum on D to make the k− p number of the
features distance to total similarity, where the weight is the feature importance learnable
parameters, W = {w0, w1, · · · , wk−p}.

TS =
k−p

∑
f=1

∣∣∣xi
f − xj

f

∣∣∣ ∗ w f (9)

From Equation (9), the total similarity between data is represented by the feature-wise
distance and feature importance. Although each distance of the feature pair is equal, W
parameters differently represent TS depending on the feature importance. Finally, TS is
expressed as α f = so f tmax(TS).

3.3.2. Feature Attention Weight by Combining with Self-Attention

As what we did in Time-aware Attention Section 3.2, we combine with self-attention
to get attention weight and representation. Q ∈ Rn×d, K ∈ Rn×d, V ∈ Rn×d are represented
by each weight, Wq,k,v ∈ Rd×d, and the hidden states of BiLSTM, h ∈ Rn×d.

We make Q f = α f · Q ∈ Rn×d, K f = α f · K ∈ Rn×d, which are represented by the
total similarity. The rest of the process is the same as TA, getting attention weight and
making representation.

Vf = tanh(
QK>√

dk
+

Q f K>f√
dk

)V (10)

From Equation (10), we define the value Vf ∈ Rn×d. The feature similarity representa-
tion Z f ∈ Rn×d can be defined as Z f = dropout(layernorm(FFN(Vf ))) + h. Z f is used as
inputs of last prediction layer.

3.4. Ensemble
3.4.1. Necessity of Ensemble

In the previous sections, we proposed two different attentions: TA and FA. Each of
them concentrates on the different properties of ship data. TA emphasizes data depending
on time intervals, and it can be said to be time-dependent. On the other hand, the other
features except for timestamp, which FA tries to focus on, tend to be time-independent. For
instance, even though the time interval is large between data, their speed could be similar.
This inconsistency can disturb each attention model from obtaining accurate information if
we combine them at once. Thus, we adopt the ensemble model which combines different
predictors and alleviates instability of the model prediction [41,42].

3.4.2. Ensemble Layer

We use the ensemble model after learning each attention model, not the end-to-end
model, to avoid the inconsistency of the two attention models. In addition, we expect the
improvement of the model performance by designing the ensemble model of attention-
based models [43,44]. For the ensemble input, we concatenate the representations of each
attention model since there are only two models to ensemble.

Zensemble = concat(Zt, Z f ) (11)

The concatenated representation, Zensemble ∈ Rn×2d, gets through the ensemble model,
which consists of three fully connected layers. As the ensemble model uses the representa-
tions from TA and FA, it does not require an additional process. In addition, TA and FA
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handle time information and important features during the learning process without the
preprocess, the overall pipeline can be simply developed.

Despite discussing the inconsistency of the two attention models in this subsection,
we need to verify it. In Section 4, we address the inconsistent relationship between each
model. Besides, we demonstrate the drawbacks of the end-to-end model by comparing
two attention results of ensemble and end-to-end models.

4. Experiments

In this section, we introduce the details of our dataset and preprocessing. It is fol-
lowed by experimental settings and results. After comparing and verifying the proposed
model performance, we analyze the results with the visualization of attention maps and
feature importance.

4.1. Dataset

We use 2.5 million units of ship and weather data from 19 types of containers. The
data are collected by the container sensors from 2016 to 2019. We use ship spec data from
Lloyd List Intelligence. The nominal twenty-foot equivalent unit TEU of containers is from
4000 to 13,000. A dependent variable, fuel oil consumption (FOC), is acquired from the main
diesel engine of the containers. Before cleansing the data, we select the features that we can
use. However, more than half of the features consist of many missing values. This disturbs
the model learning and it is difficult to replace the missing values. To avoid these problems,
we exclude unusable features. The feature draft is divided into four parts (i.e., forward,
starboard, port, and aft) depending on the position. We integrate four draft features into the
draft as their values are slightly different. Through the exclusion and integration feature
process, 19 features were left for use. In reference to the work in [9], we also divide the
features into several categories (i.e., navigational status, formulation, performance, and
weather data). Table 1 presents the list of features. In the learning process, we remove the
vessel code feature to generalize the model regardless of the vessel types.

Table 1. List of features selected after exclusion and integration process.

Category Features Unit

Performance
Fuel oil consumption tons/hour
Speed over ground knot/hour
Heading degree

Navigational

Vessel code string
Timestamp UTC
Latitude degree
Longitude degree
Draft meter

Formulation

Length overall meter
Breadth meter
Depth meter
Dead weight tons
Gross ton inter tons

Weather

Wind speed m/s
Wind direction degree
Sea water temperature Celsius degree
Airpressure hPA
Current speed m/s
Current direction degree

We set two criteria for removing abnormal data and imputation of missing data since
there are still missing and abnormal data. First, we detect abnormal data from the criteria.
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The detected data is defined as removal candidates. If they satisfy the imputation criteria,
we replace them with other values. The criteria for removal of abnormal data is as follows:

(1) Illogical values. Some values that are not possible to exist are defined as removal
candidates.
(a) Out of range values in latitude, longitude, and direction features.
(b) Negative values in FOC, speed over groud (SOG), and draft features.
(c) Meaningless symbols in features.

(2) Abnormal values. Some values are possible to exist, but strongly out of the distribu-
tion. We define them as removal candidates.
(a) Zero values in FOC, SOG, and draft.
(b) Strongly out of the distribution in SOG and draft features.
(c) Sequential abnormal data through moving average.

By applying the removal criteria, we can define abnormal data as removal candidates.
We subsequently check the possibility of imputation on the removal candidates and missing
data based on the imputation criteria. The imputation criteria are as below:

1. Sequential values. Ship data are sequential during sailings. In the sequence, if
abnormal or missing data are between other normal data, we replace the data with
the moving average value.

2. Static values. If the data are static like the water temperature feature, we use the
hourly or daily average value for imputation.

We replace the removal candidates and missing data based on the criteria. However,
if the data are dynamic like the direction feature or there is no normal data nearby in
a sequence, we remove them. With the removal and imputation processes, the datasets
are approximately 2 million. We could only apply imputation in some cases since the
malfunction of the sensing systems tends to last for a certain period of time. We use the
processed data in the experiments.

4.2. Benchmark Models

In this subsection, we introduce base models and attention modules to compare the
performance with the proposed models. We selected them from the previous studies and
modified the details to fit our task. First, to verify the importance of the sequential property,
we compare between a simple MLP like [7] and sequence models. The previous studies in
vessel domain used LSTM [12], and we add GRU [18]. We also consider a bi-directional
version for sequence models. We use three layers for MLP and two layers for sequence
models. Each sequence model has a prediction layer, which consists of three fully connected
layers. Regarding sequence models, we apply other attention modules to compare with the
proposed attention module. Each attention module is located before the prediction layer.
The authors of [21] applied attention to BiLSTM, and used a dot-product between hidden
states and random initial vectors. We regard this attention as Attention-based BiLSTM (AB)
in experiments. Additionally, we adopt Transformer’s self-attention in sequence models as
in [23,24]. We call it Self-Attention (SA) in the experiments.

4.3. Implementation Details

We add our attention types based on the benchmark models. We regard our attention
types as TA, FA, and ensemble (ENS). Each TA and FA is applied to the sequence models
and is located before the prediction layer. For the ENS layer, we use three fully connected
layers. The models are backpropagated by a loss function, mean squared error (MSE). We
first conduct base experiments without an attention layer. We set the learning rate, batch
size, and sequence length of 0.001, 200, and 50, respectively. In addition, we compare the
models on the different hyperparameter combinations. Based on the results without the
attention layer, we determine the hidden size and dropout for the attention experiments.
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4.4. Evaluation Metrics

As our data are time-series data, we split the data in time order to avoid data leakage.
The portions of each train, validation, and test set are 70%, 15%, and 15%, respectively. The
validation and test sets consist of ship data in 2019 as the total portion of data is the most in
that year. We use mean average error (MAE) and root mean squared error (RMSE) to evaluate
the model performance on the test set.

4.5. Experimental Results

We conduct two experiments in this subsection. First, we determine the hyperparame-
ters in the base models. Besides, we verify the importance of the sequential property by
comparing MLP and sequence models. As attention modules need the backbone model,
we use the sequence model with the best settings of the previous sequence models. We
add attention modules on the sequence models and compare the performance based on
attention types. Simultaneously, we verify the performance of attention modules by com-
paring them with sequence models without attention modules. In the experiments, MAE
and RMSE show the error between the prediction values and real FOC.

Base Experiment. Table 2 shows the prediction performance of the base models, MLP,
LSTM, GRU, and their bi-directional models. As mentioned for the sequential property of
ship data, sequence models achieve better performance than MLP. Besides, BiGRU shows
the best performance among the other base sequence models. Based on the performance of
the models with the different hyperparameters, we select the hyperparameters to use for
further experiments.

Table 2. Comparison between base models.

Model Hidden Size
Dropout = 0.1 Dropout = 0.3

MAE RMSE MAE RMSE

MLP 32 0.375 0.518 0.457 0.598

LSTM 4 0.350 0.466 0.417 0.528
8 0.348 0.475 0.358 0.489

BiLSTM 4 0.348 0.467 0.366 0.470
8 0.353 0.475 0.362 0.476

GRU 4 0.344 0.462 0.378 0.488
8 0.333 0.447 0.376 0.488

BiGRU 4 0.325 0.434 0.393 0.498
8 0.334 0.447 0.428 0.524

Attention Experiment. After the experiments of base models, we compared each
attention type on sequence models. Our attentions are TA, FA, ENS, and others are AB and
SA. Table 3 presents the prediction performance of each attention on the sequence models.
Generally, it records better performance besides AB when we apply attention. For SA, we
notice the improvement of performance except BiGRU. For our models, at least one of TA
and FA outperforms SA and sequence models without attention modules. Besides, ENS
achieves the best performance. The MAE of ENS with BiLSTM is 0.3, which indicates that
the prediction error at a point in time is 0.3 tons/hour. Considering the range of the FOC is
from 0 to 10, the prediction is approximate to the real FOC.
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Table 3. Comparison between different attention types.

Model Metric
Attention Type

- AB SA TA FA ENS

LSTM MAE 0.348 0.360 0.332 0.329 0.323 0.315
RMSE 0.475 0.484 0.454 0.448 0.441 0.436

BiLSTM MAE 0.348 0.356 0.321 0.309 0.309 0.301
RMSE 0.467 0.468 0.435 0.426 0.425 0.417

GRU MAE 0.326 0.333 0.319 0.319 0.326 0.315
RMSE 0.447 0.447 0.433 0.431 0.441 0.429

BiGRU MAE 0.325 0.337 0.323 0.336 0.320 0.314
RMSE 0.434 0.445 0.446 0.448 0.429 0.424

As there is a significant improvement from TA, FA, and ENS in BiLSTM relative to the
other methods, we select BiLSTM as the backbone model. From the above experiments,
we observe the improvement of the performance by capturing the ship data properties. It
is more useful to consider the sequential property than applying MLP. TA, FA, and ENS
designed to capture data properties are effective to predict fuel consumption accurately.

4.6. Further Experiments

We verified the performance of the proposed methods from the previous experiments.
However, ENS performance is dependent on TA and FA performance. In this subsection,
we evaluate and verify the methods to improve TA and FA performance. We expect it
to increase the performance of ENS. Last, we apply our attention modules on the recent
backbone model, Transformer [22]. By adopting the other backbone model, we also verify
the compatibility of the proposed attention modules. For further experiments, we keep the
settings that we found the most proper from the previous experiments.

Sequence Length Experiment. For the previous experiments, we fixed the sequence
length n = 50 as a default value. However, it is necessary to verify the results depending
on different sequence lengths, since the information for sequence models depends on
the sequence length. We set n = {25, 50, 75, 100} and compared the performance of
each attention model. As shown in Table 4, the model performance decreases as the
sequence length increases. In contrast, the attention type ENS achieves the best performance
regardless of sequence lengths. For our dataset and models, n = 50 is suitable and we keep
the setting for the other experiments.

Table 4. Experiment results of different sequence lengths.

Model Attention Type n MAE RMSE

BiLSTM
TA 25 0.316 0.435
FA 25 0.311 0.427

ENS 25 0.311 0.425

BiLSTM
TA 50 0.309 0.426
FA 50 0.309 0.425

ENS 50 0.301 0.417

BiLSTM
TA 75 0.323 0.438
FA 75 0.333 0.449

ENS 75 0.312 0.427

BiLSTM
TA 100 0.336 0.454
FA 100 0.343 0.461

ENS 100 0.326 0.439
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Time Masking Experiment. In attention modules, we can also adjust the amount of infor-
mation by the masking technique. We considered the time-based masking technique [27,29]
for TA. This masking technique forces attention to consider only information satisfying
the masking standard. For our data, the range of time interval accumulation is from 0 to
1500. The time interval accumulation refers to the accumulating time difference between
right before data in the sequence. Based on the range, we define a hyperparameter mask-
ing time, mt. TA uses only the data for which the time interval accumulation is under
mt. mt = None indicates that we did not adopt the masking technique and it is equal to
mt = 1500. As shown in the time masking of Figure 5, if mt = 800, TA ignores the data
over mt and uses only the data under mt to apply the attention. Table 5 shows a slight
improvement compared to TA without mt, when mt is 800. TA achieves better performance
when considering the sequence data within a certain period of time. In addition, there is a
tendency to decrease the model performance when mt decreases. This is because TA uses
only a small portion of data in sequence as the mt reduces.

Table 5. Experiment results of TA using time masking parameter.

Model Metric
mt

200 400 600 800 1000 1200 None

BiLSTM-TA MAE 0.31 0.314 0.316 0.304 0.311 0.315 0.309
RMSE 0.427 0.431 0.431 0.422 0.428 0.431 0.426

Figure 5. Masking techniques for time (left) and total similarity (right).

Total Similarity Masking Experiment. FA captures important data in sequence
through the total feature similarity TS. Unlike time, TS has no specific range. Based
on the idea of local attention [20], we used bottom N% masking, on the hyperparameter
m f . It means that we ignored the bottom N% data based on the TS values in the sequence
when applying the attention. The TS masking of Figure 5 ignores the five numbers of data
with the lowest TS values when m f = 10%. Table 6 shows that there is slight improvement
when we ignore only 0% to 20% data. Similar to the results of the masking TA experiment,
the performance of FA decreases as the portion of ignoring data increases.

Time Function Experiment. In Section 3.2, we handled function representation f (x)
used for making time importance. We used the sigmoid function with the learnable
gradient and constant. For this experiment, we verified the performance of TA based
on other functions, such as linear, quadratic, cubic, and exponential functions. Table 7
presents the summary of the results. Nonlinear functions are more suitable for estimating
time importance.
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Table 6. Experiment results of FA using N% parameter

Model Metric
m f (%)

30 25 20 15 10 5 None

BiLSTM-FA MAE 0.319 0.318 0.309 0.311 0.308 0.309 0.309
RMSE 0.437 0.435 0.422 0.424 0.421 0.423 0.425

Table 7. Experiment results of TA depending on functions.

Model Metric
Function

Linear Quadratic Cubic Exponential Sigmoid

BiLSTM-TA MAE 0.314 0.316 0.312 0.307 0.309
RMSE 0.431 0.432 0.428 0.424 0.426

Ensemble Combination Experiment. From the previous result Tables 5–7, we ob-
served the performance depending on the masking and function types. We designed
combinations of TA and FA to determine the optimal ENS in the searching space. We
selected the top of the two models from each previous result. We also included naive TA
and FA, which used the sigmoid function for TA and did not apply any masking. As shown
in Figure 6, we found the effect of ENS depending on different functions and masking. In
f (x) = sigmoid or mt = 800, it generally proves better performance than others. On the
other hand, the performance decreases as m f increases. Finally, it achieves the best perfor-
mance when we combined TA with mt = 800, f (x) = sigmoid, and FA with m f = 10%. It
is also the same compared to all other experimental results.

Module Compatibility Experiment. The previous experiments show the results when
the backbones are RNNs. In this experiment, we use Transformer [22] as the backbone
model to verify the compatibility of the proposed attention modules and the effect of the
backbone. As the number of features is limited, we adopt the 2 and 4 layers of Transformer
with small hidden sizes. In addition, we apply the proposed attention modules instead of
the Transformer’s attention module.

Table 8 shows the results of Transformer depending on different hyperparameters.
The single Transformer with four layers shows the best performance when the hidden
size is 32. When we compare the results with the previous experiment, Table 3, Trans-
former outperforms some of RNNs. However, the single Transformer does not get to the
performance of the RNNs with the proposed attention modules. As the data are numeric,
the embedding for representation in Transformer is not effective. In addition, the limited
number of features is the other reason for the low performance of Transformer. Even in this
situation, we notice the improvement of the performance, when we adopt the proposed
attention modules, especially for the ENS. When we apply ENS, Transformer-4 with 64
hidden sizes shows the best performance including the results of the previous experiments.
From this experiment, we verified the compatibility of the proposed attention modules.
In the vessel domain, TA, FA, and ENS can replace the previous attention modules and
exhibit better performance by considering ship data properties.
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Figure 6. Experiment results of ensemble combinations. (a) MAE and (b) RMSE.

Table 8. Attention experiment on the different backbone model. The two backbones of the table refer
to Transformer models with two and four layers.

Backbone Hidden Size Attention Type MAE RMSE

Transformer-2

32

- 0.357 0.467
TA 0.364 0.461
FA 0.352 0.463
ENS 0.333 0.452

64

- 0.355 0.473
TA 0.364 0.480
FA 0.363 0.480
ENS 0.325 0.447

Transformer-4

32

- 0.338 0.451
TA 0.345 0.452
FA 0.348 0.456
ENS 0.326 0.437

64

- 0.361 0.471
TA 0.357 0.474
FA 0.349 0.467
ENS 0.303 0.415
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4.7. Visualization and Results Analysis

In this subsection, we interpret the attention models and data properties through the
visualization of feature importance and attention maps. By visualizing the attention maps,
we observe the characteristics of TA, FA, and how it is different from SA. In addition, we
verify the necessity of ENS by showing the drawbacks of the end-to-end model.

4.7.1. Feature Importance Analysis

We addressed the feature importance parameter W in Section 3.3. W adjusted the
total similarity between the data by multiplication with the feature-wise distance. Figure 7
shows the estimated feature importance from FA. We observed that especially draft and
SOG have the largest absolute values. This indicates that draft and SOG considerably affect
total similarity compared to other features. As their values are negative, the total similarity
would decrease as the difference of draft and SOG in the sequence increases. This means
that, if the draft and SOG are different from other data, that data would be less considered
for FA. As we find the importance of draft and SOG from FA, the importance can also be
interpreted generally. SOG is significant as the speed directly affects FOC. We can interpret
the importance of draft into two parts. First, draft shows the relative weight of cargo, which
affects FOC. In addition, sailing stability or hidden weather information, such as wind
wave, can be demonstrated through draft [45]. Draft is more useful because our dataset
does not include the wind wave feature. This analysis shows that FA is effective not only
for prediction but also for determining important features.

Figure 7. Estimated feature importance from Feature-similarity Attention.

4.7.2. Time-Aware Attention Map Analysis

TA Scenario 1. The first case is when the time interval increases rapidly. As shown in
Figure 8, they are attention maps of each SA and TA, when sequence length is 50. Time
plots show the time difference right before the data and accumulated time in the sequence.
In this case, the time interval increases above 300 min compared to right before, at the 8th
data of the sequence. TA specifically ignores these data. However, SA emphasizes the
around area together, which means that SA cannot represent the exact time information. In
addition, we can interpret the TA attention map in two parts, (i.e., row-wise and column-
wise). Row-wise indicates the influence of data on other data when estimating attention
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weight. In this case, 8th and 9th rarely affect the other data. Column-wise is the influence of other
data on the data. We observe that both 8th and 9th are affected by themselves than others.

Figure 8. TA Scenario 1. The case when the time difference increases rapidly.

TA Scenario 2. The other case of TA is when the time difference is approximately
10 min and steady. As shown in time plots of Figure 9 (TA scenario 2.1.), the accumulation
of time interval increases gradually. Compared to SA, TA equally emphasizes the area
where the time difference is steady. For example, TA emphasizes data similarly in a boxed
area. In Figure 9 (TA scenario 2.2.), although the time difference is regular, its scale is small
and approximately 1 min. In this case, TA emphasizes the overall data similarly. TA also
divides the areas where the time difference is steady. However, the areas are not distinct
compared to TA scenario 2.1. as the scale of the time difference is small.

Figure 9. TA Scenario 2. The case when the time difference is steady (TA scenario 2.1.). The case
when the time difference is small and steady (TA scenario 2.2.).
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4.7.3. Feature-Similarity Attention Map Analysis

FA Scenario 1. Now, we address the attention map of FA in Figure 10 (FA scenario 1.).
As FA does not reflect the time, it emphasizes data regardless of time. By comparing
attention maps and SOG, we observe that both SA and FA divide areas based on SOG. In
other words, both models equally emphasize data in which SOG is similar. In this case, the
main difference between SA and FA is that FA divides more detailed symmetric areas. FA
keeps an equal relationship between affecting (row-wise) and being affected (column-wise).
However, SA is only concerned with affecting (row-wise). It means that the data differently
affect other data based on SOG, but the data are just affected by others equally every time.
Unlike FA, this unequal relation results in the limited representation of SA.

Figure 10. FA Scenario. The case when the features are stable (FA scenario 1.). The case when the
features are unstable (FA scenario 2.).

FA Scenario 2. Figure 10 (FA scenario 2.) shows the other case of FA. Unlike FA
scenario 1., features are unstable in the sequence. In addition, SOG suddenly changes at the
index 30 in the SOG plot. Although the features are changing, SA splits the areas discretely
based on only SOG and equally emphasizes data in the same areas. However, FA divides
specific areas and emphasizes them differently depending on the feature values, even in
the same areas. Thus, FA considers the change of other feature values, whereas SA cannot
reflect the change of SOG or other features.

From the above comparison between the proposed and the previous attention modules,
we observe that TA and FA reflect ship data properties. However, in the perspective of
time and feature, SA shows a limited representation. The above attention maps and the
lower prediction performance reveal this limited representation. In addition, compared to
TA and FA, SA does not give an accurate interpretation perspective.

4.7.4. Comparison between Ensemble and End-to-End Model

Last, we compare ENS and End-to-End (E2E) results and verify the necessity of ENS.
Figure 11 shows each attention map of TA and FA from ENS and E2E. Here, there is an
inconsistency between time intervals and features. In the time plot, from the 30 to 35 indices,
the time interval increases. However, SOG keeps similar values at the point where the time
interval increases rapidly. In this inconsistency, TA and FA focus on their properties when
we use ENS. TA ignores the point where the time interval increases, whereas FA emphasizes
the same point because the feature values are similar. However, TA and FA of E2E do
not fully consider the ship data properties. As shown in the TA attention map of E2E,
TA of E2E does not ignore the data where the time interval increases. This indicates that
when using E2E, TA and FA affect each other during the learning process. This interaction
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causes TA and FA not to capture the different properties. It also results in lower prediction
performance of E2E. The RMSE of ENS is 0.417, whereas that of E2E is 0.445. The lower
performance also occurs when we replace the backbone model as Transformer. Thus, ENS
performs better than E2E in our case since each TA and FA can focus on capturing different
properties without interactions.

Figure 11. Comparison between Ensemble and E2E.

5. Discussion

In this section, we discuss how the proposed models can contribute to efficient sailings
in the shipping industry. We suggest that the proposed models can support sea route
planning by predicting the FOC of the voyage. Among the data collected by the container
sensors, we bring three voyage data, which head to the same destination from the same
departure but take different sea routes. Then, we compare the predicted FOC (tons) of each
route and verify the model would decide a more efficient route.

As shown in Figure 12, each ship heads to Brisbane from Singapore. The FOC compar-
ison result of Figure 12 shows the real FOC and the predicted FOC. Based on the model
prediction result, we can infer that routes A and B are more efficient. Even considering the
prediction error, the model suggested the efficient route as the real FOC of route A and B
were lower than route C. It indicates that the proposed models can support deciding the
efficient routes. Including the decision-making for the efficient route, the proposed models
can contribute to constructing a sea route network of even unseen ships. For example, if
there are new ship data with other specs, it is challenging to estimate the new ship’s FOC
of the specific route. In this case, the proposed models can predict FOC by substituting
the new ship’s spec into the existing route. Those applications can be more useful with
Automatic identification system (AIS) data which is easy to access. AIS data have the
same features as ship data but do not contain FOC. Thus, with AIS data, the proposed
models can construct a sea route network for deciding an efficient route and even covering
unseen ships.
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Figure 12. Voyage examples and FOC comparison of the voyages. In voyage examples, D1 and D2

indicate departure and destination, respectively. The predicted FOC of each route is estimated by the
ensemble model of TA and FA-based BiLSTM.

6. Conclusions

In this paper, we described three main properties of ship data (i.e., sequential, irregular
time interval, and feature importance) for prediction. We used BiLSTM as a backbone
model to capture sequential property. For the irregular time interval and feature importance
property, we proposed TA, FA, and their ensemble model. The experimental results showed
that the model performance is improved by considering the ship data properties. Each
attention also provided information to interpret the model and data. TA was useful for
understanding the time relationship in the sequence. It captured the point where the
time interval increases rapidly. FA emphasized data in the sequence by considering the
feature-based similarities. It provided the estimated feature importance that can be useful
to understand data.

As we designed the model to reflect the ship properties, it can be more appropriate
when the ship data properties are apparent. For example, preprocessing ship data can
result in more aggravated time irregularity in the sequence. Even in this situation, the
proposed model can operate well by considering the time information. Besides, by esti-
mating the feature importance, the model can determine and reflect important features
without a feature selection process. These advantages of the model lead to predicting fuel
consumption accurately and flexibly in different data situations. Finally, we expect that an
accurate prediction of the model can improve the efficiency of sailing using the methods,
such as constructing the sea route network. In addition, the model can provide attention
maps and feature importance information. Attention maps identify the effect of features
on the FOC at the specific route during sailing. This analysis can be done in detail by
considering the important features from the estimated feature importance. The sea route
network constructed by the model contains not only the accurate FOC but also information
to understand the route situation. Thus, by providing information to understand the
networks in diverse, the sea route network can support decision-making for navigational
strategies and routing planning.
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