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Abstract: In the era of rapid development in industry, an automatic production line is the fundamental
and crucial mission for robotic pick-place. However, most production works for picking and placing
workpieces are still manual operations in the stamping industry. Therefore, an intelligent system that
is fully automatic with robotic pick-place instead of human labor needs to be developed. This study
proposes a dynamic workpiece modeling integrated with a robotic arm based on two stereo vision
scans using the fast point-feature histogram algorithm for the stamping industry. The point cloud
models of workpieces are acquired by leveraging two depth cameras, type Azure Kinect Microsoft,
after stereo calibration. The 6D poses of workpieces, including three translations and three rotations,
can be estimated by applying algorithms for point cloud processing. After modeling the workpiece,
a conveyor controlled by a microcontroller will deliver the dynamic workpiece to the robot. In order
to accomplish this dynamic task, a formula related to the velocity of the conveyor and the moving
speed of the robot is implemented. The average error of 6D pose information between our system
and the practical measurement is lower than 7%. The performance of the proposed method and
algorithm has been appraised on real experiments of a specified stamping workpiece.

Keywords: dynamic modeling; pick and place; point cloud processing; pose estimation; stereo calibration

1. Introduction

Under the trend of Industry 4.0, the concept of unmanned factories has dramatically
emerged. All the governments over the world are also promoting smart manufacturing
policies. It is expected that by developing unmanned smart factories to cope with the
current shortage of labor, many manufacturers have introduced production lines combined
with the robotic arm. Especially, in the metal forming industry, manual work in the current
situation still plays an important role [1]. Hence, to improve production efficiency and
reduce labor costs, as well as reduce the danger of human loss when working with the high-
temperature workpiece in the hot-stamping process [2], it is required that the objects are
first arranged and placed in a position, and then the robot arm is used to pick up and unload
the materials to achieve the loading and unloading of the objects. The pre-work then is
more troublesome. In order to fully achieve automation of new-generation smart factories,
the combination of robotic arms and visual images has gradually become the current
development trend. Handreg et al. [3] illustrate an idea to convert the current standard
cold forming process of curved panels in the shipbuilding industry to computerized process
control and quality examination using a conventional press, crane set up, and point cloud
model based on a 3D vision system to monitor the production process successively. As
a suggestion for our study to utilize three-dimensional images in the stamping industry,
we have processed the point cloud to estimate the six-axis degree of freedom position
and feature point information of hot-stamping workpieces. The latest modern Microsoft
Azure Kinect camera [4], which is an application of the Time of Flight (ToF) principle [5],
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is the vision device used for this application to establish a 3D point cloud model in the
scene. Later, the point cloud is leveraged to process the 3D point cloud data through a
point-to-feature matching algorithm [6] to identify the stamping workpiece and its 6-DoF
(6 degrees-of-freedom) position. The stamping workpieces in this study are placed on a
conveyor to perform dynamic pick-and-place. Guo et al. [7] have a similar method of using
a Kinect camera and a laser scanner to construct the point cloud and identify the position
of the fruits, which were later used for harvesting. Compared to their research, a system
with two depth cameras calibrated by stereo calibration in our study will generate both
a target model point cloud and a reference model point cloud. Hence, the demand for a
lower processing time as well as accuracy can be met. Moreover, setting up two cameras
with two different viewing angles also allows the point cloud to fully model the object
with just one scan. After the 6-DoF position of the workpieces is figured out, they will
be transferred by the conveyor and the robot arm will pick them into the stamping die.
Zheng et al. [8] stated that in a hot-stamping production line of high-strength steel, in order
to evade oxidation and plasticity reduction when the temperature falls, the sheet metal has
to be shifted from the furnace to the stamping die as quickly as possible. Therefore, they
have proposed a method of synchronizing the motion of the feeding system. A description
related to the velocity of the conveyor and the moving speed of the robot is executed for the
purpose of dynamic transmission as our main goal of this study. After being placed into
the machine, the system will trigger a signal for stamping to move and complete stamping.
Finally, the system achieves the dynamic workpiece feeding process.

2. Research Methodology

The study uses ToF cameras to build a three-dimensional model and uses a pose esti-
mation system to identify the stamping workpiece. The conveyor is used as a transmission
system for delivering the workpiece to the robot gripping area. The workpiece 6D positions
are automatically uploaded to the controller and execute intelligently dynamic grasping.

2.1. Experimental Devices and Setup

The hardware devices used in this study are a 6-axis robotic arm of Syntec 81R.6
Axis (Syntec, Taiwan). for gripping experiments and a depth camera of Microsoft Azure
(Microsoft, Redmond, WA, USA) for object recognition. In addition, a stepper motor of
model StepSyn 103H7126-0461 (Sanyo Denki, Japan) and a driver of model DRV8825 (Texas
Instruments, Dallas, TX, USA) are used to control the conveyor system that utilizes a
microprocessor of Arduino Mega 2560 (Arduino, Italy).

Figure 1 demonstrates the overall setup of the system. Under the conditions of
the experiment, the room temperature was applied (15–25 ◦C). The distance from both
cameras to the object is in the range of 0.5 to 0.85 m, which satisfied the requirement of
the manufacturer (>0.5 m). A computer will be utilized as the main controller, which is
connected to the microprocessor, two depth cameras, and also the robot arm. The scanning
area will contain two cameras which are integrated into a fixed aluminum frame. After the
system has identified the posture of the objects, the conveyor will transmit the workpiece
for the robot to perform the dynamic gripping. The robot grasps the stamping workpiece
with the pneumatic gripper. Afterward, the full cycle of automation will be finished when
the robot feeds the workpiece to the stamping machine.

2.2. Point Cloud Contrustion and Pre-Processing

In order to achieve the dynamic feeding system, first, the point cloud which is later
used for pose estimation will be constructed [9]. Two depth devices are utilized for
generating the point cloud model. Afterward, some filters will be applied to the scene point
cloud with the purpose of resulting in the input object’s model for the lateral program.
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Figure 1. Experiment device setup of stereo vision scanning for dynamic workpiece.

2.2.1. Stereo Calibration Principle

Two ToF depth cameras will generate two distinguished point clouds. Combining
these two point clouds will create a point cloud with more details so the data for the
location system will be more accurate. Calibration for combining two point clouds is
performed using the stereo calibration principle [10]. Stereo calibration will help the study
to find out the transformation matrix rotation, R, and translation, t, between two RGB
cameras of the Azure Kinect.

Firstly, to use stereo calibration, the parameters of the transformation between an
object in 3D space and the 2D image observed by the camera from visual information have
to be determined. The pinhole camera model used to calibrate a camera is described in
Figure 2.

Figure 2. Calibration model of a camera in the dynamic workpiece modeling application.

Considering that P(X, Y, Z) is the 3D world coordinates point of the object, the 3D
coordinate of the same point in the camera frame, Pcam, is:

Pcam =
[

R t
]
P (1)

where R is the 3 × 3 rotation matrix and t is the 3 × 1 translation matrix. Let p(x, y) be the
position of the 3D point in the image coordinate, this will result in the 3D to 2D mapping;
here, K is the intrinsic matrix of the camera:

p = K
[

R t
]
P (2)
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The definition of the intrinsic matrix of the camera is as follows:

K =

 fx 0 cx
0 fy cy
0 0 1

 (3)

where fx is the X-axis focal length and fy is the Y-axis focal length of the camera, and(
cx, cy

)
is the coordinate of the principal point.

The camera calibration’s purpose is to find out the intrinsic parameter, K matrix, and
extrinsic parameters, R and t matrices. The calculation uses linear algebra to find all the
parameters. To achieve these parameters, multiple images of a checkerboard with a fixed
square size will be taken and all the calibration patterns (the cross-point of the black/white
consecutive squares) in each image will be found. These calibration patterns in the image
correspond to some 3D points in the world. These point-to-point correspondences will be
stored, and after that, the non-linear algorithm is used to solve the calibration parameters.

After the intrinsic matrices K1 and K2 of the two cameras are known, the next problem
is figuring out the rotation, R12, and translation, t12, between camera 1 and camera 2, which
will contribute to finding point correspondences in the left and right image planes. The
schematic diagram of the stereo calibration of the two cameras is described in Figure 3.

Figure 3. Schematic diagram of two cameras’ stereo calibration for dynamic workpiece modeling.

Let p1 and p2 be a point in the camera 1 and camera 2 image coordinates respectively,
which is the mapping of world coordinate P in 3D space (Figure 3). The fundamental
matrix F is defined as a mapping from a point in an image plane to an epipolar line in the
other image. Therefore, the following equation can be obtained:

l2 = Fp1 (4)

The form of the fundamental matrix in terms of the two camera projection matrices:
M1 and M2, may be derived algebraically. The ray that is back-projected from p1 by M1 is
obtained by solving:

M1P = p1 (5)

The one-parameter family of solutions of Equation (5) is of the form given by:

P(λ) = M−1
1 p1 + λC1 (6)

where M−1
1 is the pseudo-inverse of M1, i.e., M1M−1

1 = I, and C1 is the null vector, namely
the camera 1 center, defined by M1C1 = 0. The ray is parametrized by the scalar λ.

Now consider two situations: when λ = 0 and λ = ∞, Equation (6) becomes:

λ = 0 → P = M−1
1 p1

λ = ∞ → P = C1
(7)
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These two points in the above situations can be imaged by camera 2, with projection
matrix M2 at M2M−1

1 p1 and M2C1 respectively, in the second view. The epipolar line is the
line joining these two projected points:

l2 = (M2C1)×
(

M2M−1
1 p1

)
(8)

From Equations (4) and (8), we obtain:

F = (M2C1)×
(

M2M−1
1

)
(9)

Now that the cameras are calibrated, let us assume that the world origin is at the
camera 1 center:

M1 = K1
[

I 0
]
M2 = K2

[
R12 t12

]
(10)

Then,

M−1
1 =

[
K−1

1
0T

]
C1 =

[
0
1

]
(11)

Therefore, substitute M1, M2, M−1
1 , and C1 to Equations (10) and (11), then Equation (9)

becomes:

F = (M2C1)×
(

M2M−1
1

)
=

{
K2
[

R12 t12
]
×
[

0
1

]}
×
{

K2
[

R12 t12
]
×
[

K−1
1

0T

]}
= (K2t12)×

(
K2R12K−1

1

) (12)

Hence, the expression for F = (K2t12)×
(

K2R12K−1
1

)
is purely in terms of K1, K2,

R12, and t12. The correspondence relation between the two images is defined by the
fundamental matrix, F, as:

pT
2 Fp1 = 0 (13)

Using the checkerboard to take multiple pictures and find the position in each calibra-
tion pattern, multiple sets of p1 and p2 will be calculated. Then, the fundamental matrix,
F, can be solved according to Equation (13). Afterward, Equation (12) is used to find the
rotation matrix, R12, and the translation matrix, t12, where the other parameters F, K1, and
K2 are known.

2.2.2. Object Segmentation

After the scene point cloud has been created and processed by the pass-through filter,
statistical outlier removal filter, and voxel grid filter to achieve the proper view of the
region of interest, the object’s point cloud will be segmented from the scene point cloud
by combining the random sample consensus (RANSAC) [11] and the Euclidean cluster
extraction algorithms [12].

The RANSAC Algorithm 1 is a learning technique to estimate the parameters of a
model by random sampling of inspected data. RANSAC utilizes the voting scheme to
estimate the optimal appropriate result of a processing dataset in which data components
carry both inliers and outliers. Data components in the dataset are used to determine one
or multiple models. In this study, the RANSAC algorithm was utilized to determine the
plane model, and the following will illustrate its pseudocode.
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Algorithm 1 RANSAC algorithm to find plane model

Input: Point cloud and model estimation.
Output: Plane Model M, which was rated best amongst all iterations

While (i ≤ maxIterations) do
Sample k points;
Estimate a plane model M;
Compute model inliers;
If (M is better than bestModel) then

MbestModel;
updateMaxIteration();

End if;
ii + 1;

End while;
Return bestModel

The target workpiece is placed on a worktable. In order to extract the point cloud
of the target object, a worktable plane is required to be removed from the scene. After
inputting the point cloud data, the plane model is estimated by applying RANSAC; then,
the plane inliers are eliminated from the input cloud data [13].

To achieve the object extraction, a method called clustering classification is applied.
A simple and powerful data clustering approach in the Euclidean sense can be executed
using an octree data structure. This algorithm will calculate the minimum distance between
points and divide the point cloud data into clusters by setting the distance threshold. The
cluster definition formula is as follows:

min
∣∣pi − pj

∣∣ ≥ dth (14)

where pi is the i point cloud data, pj is the j point cloud data, and dth is the distance thresh-
old. The distance between points is searched through the Nearest Neighbor Search (NNS)
in the K-Dimension Tree (KD-Tree) [14], and the Euclidean cluster extraction algorithm is
defined as follows Algorithm 2.

Algorithm 2 Euclidean cluster extraction algorithm to extract the workpiece point cloud

Input: Point cloud data P.
Output: Point cloud clusters Ci

Ci∅;//list of clusters
Q∅;//list of checked points

While (pi ∈ P) do
pi → Q ;
While (pi ∈ Q) do

If (rpk < dth) then
pk → Pk ;

End if;
While (pk ∈ Pk)

If (pk has not been processed) then
pk → Q ;

End if;
End while;

End while;
If (all points pi ∈ Q are processed) then

CiQ;
Q∅;

End if;
End while
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After processing through the above steps, the original point cloud model can be
clustered, and according to the threshold value, the target object from the scene can be
obtained to be input in the pose estimation program. Figure 4 will demonstrate the effect
as well as the steps of object segmentation in this study.

Figure 4. Effect of object segmentation in the study of dynamic workpiece feeding.

2.3. Pose Estimation System Construction

The cluster from the previous section segmentation will be the input cloud of the
pose estimation system. In addition, a reference point cloud of the subject also has to be
saved into the database before performing position prediction. Firstly, feature points of the
object will be estimated for further evaluation. Then, the matching methods between the
target point cloud and reference point cloud will be carried out by comparing the features
point values.

2.3.1. Feature Point Descriptor

This study uses the fast point-feature histograms (FPFH) [15] to estimate the feature
point. FPFH is the optimization method of its predecessor—point feature histograms
(PFH) [16]. PFH has the theoretical computational complexity of a point cloud P with
N points, O

(
N·k2), where k is the number of neighbors for each point p in P. The FPFH

overtakes the PFH in this aspect with the complexity of O(N·k), while still retaining the
advantage of the PFH [7].

The FPFH algorithm proceeds as follows: for each query point p with its normal
vector n, only the relation between the point itself and its neighbors, pk (the neighbors are
chosen inside the sphere with the radius r), with the normal vector nk (not between
all of its neighbors as in PFH), is computed. Define the uwv frame (where u = nk,
v = (p− pk) × u, w = u × v) and the computation of the angular variations α, φ, θ
(which is called the simplified point feature histogram—SPFH) of n and nk as follows:

α = v·nk
φ = (u·(p− pk))/p− pk

θ = arctan(w·nk, u·nk)
(15)

Then, the final histogram of p is weighted through re-determination of its k-neighbors
and the previous SPFH values:

FPFH(p) = SPFH(p) +
1
k

k

∑
i=1

1
wki
·SPFH(pki) (16)

where the weight, wki, indicates the distance between point p and the neighbor point pki.
Figure 5 shows the effect area of the FPFH algorithm. In the figure, the query point p only
linked with its direct neighbors pk (inside the red-dashed circle). Each of the neighbors, pk
(in the figure, they are displayed with different colors with their own circle of region), are
linked with their own neighbors. The resulted histogram is weighted together with the
histogram of the point p to estimate the FPFH value. The gray connections marked with
number 2 between the point p and its neighbors together have a weight twice as large as
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other normal connections. The FPFH value of each query point p will be analyzed in the
next stage of the study.

Figure 5. Effect area diagram of estimated feature point for the dynamic workpiece using FPFH.

2.3.2. Coarse Alignment Matching

Coarse alignment matching provides an initial prediction of the change between two
point clouds by applying the sample consensus initial alignment (SAC-IA) algorithm [17].
In the SAC-IA algorithm, the target object point cloud’s feature descriptors are matched
with the reference’s feature descriptors to obtain a rough pose estimation. The series of
points that have almost identical FPFH values in the object as well as reference point cloud
will be figured out and then the transformation matrix between these corresponding points
is determined. The completion of the prevailing registration transformation of the point

cloud with n times iteration is evaluated by the Huber penalty function,
n
∑

i=1
H(li), which is

calculated by the following equation:

H(li) =

{
1
2 l2

i i f ‖li‖ < ml
1
2 ml(2‖li‖ −ml) i f ‖li‖ > ml

(17)

where ml is the threshold which is predetermined, and li is the distance differences between
after and before the transformation of each point.

2.3.3. Finish Alignment Matching

After the coarse alignment matching through the SAC-IA algorithm, the iterative
closest point (ICP) algorithm was applied to optimize the prediction and obtain the fi-
nal 6-DoF pose [18]. The reference point cloud and target point cloud which have been
transformed by the SAC-IA algorithm are considered as the input data for the ICP algo-
rithm. Then, the nearest corresponding point, Qi, will be found inside the target point
cloud, Q, for each point, Pi, of the reference point cloud, P. The finishing point pairs are
built up through the pair Pi-Qi. The error of the ICP finish alignment is defined by the
acquired error of Euclidean distance between corresponding point pairs Pi-Qi through the
following formula:

dk =
1
N

N

∑
1
‖Qi − RPi + T‖ (18)

where dk is the Euclidean distance, N is the number of iterations, and R and t are the
rotation and the translation matrix of the finish alignment, respectively.
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2.4. Position Error Compensation of Robot Arm

The robot arm has errors when going to the specified position using the linear move-
ment. This error happens due to the non-linearity of the positive sensitive detector (PSD).
To solve this problem, a polynomial fitting algorithm is proposed [19]; however, the method
will consider only the error of the XY plane. The Z-axis error will be ignored because, in
the range of the study, the height of the object is not enough for the Z-axis error to affect
the accuracy of the system.

Due to the different manufacturing processes, the size of the non-linear error of the
PSD of each robot arm will be different. According to the different degree of the non-
linearity of the PSD, the photosensitive surface of the PSD is usually artificially divided
into Region A and Region B. Region A is the center area which has good linearity and
a small measurement error; on the other hand, Region B is the margin area, where the
non-linear error is large and the measurement error is also large.

According to the principle of the PSD, the non-linear error of the PSD in the x and y
directions is relatively independent. There are error values in the x and y directions for the
measured values of each point on the PSD photosensitive surface. Consider the error of
each point to be Ex

(
xi, yj

)
for the X-axis and Ey

(
xi, yj

)
for the Y-axis. Equation (19) defines

the error:
∆x = Ex(xi, yi) = xi − xi0∆y = Ey(xi, yi) = yj − yj0 (19)

where xi and yj are the final positions after correction for the robot arm, and xi0 and yj0 are
the positions after calculation of the pose estimation system from Section 2.3. According to
the non-linear characteristics, the third-degree polynomials are chosen for fitting:

Ex
(

xi, yj
)
= a1x3 + b1y3 + c1x2y + d1xy2 + e1x2 + f1y2 + g1xy + h1x + i1y + k1

Ey
(

xi, yj
)
= a2x3 + b2y3 + c2x2y + d2xy2 + e2x2 + f2y2 + g2xy + h2x + i2y + k2

(20)

The polynomial fitting is mainly the calculation of its coefficients, using the measured
n-set of position coordinates and calculating according to Equation (19). Substituting ∆x
and ∆y into Equation (20) leads to the following sets of Equation (21):

A =



x3
1 y3

1 x2
1y1 x1y2

1 x2
1 y2

1 x1y1 x1 y1 1

x3
2 y3

2 x2
2y2 x2y2

2 x2
2 y2

2 x2y2 x2 y2 1

x3
3 y3

3 x2
3y3 x3y2

3 x2
3 y2

3 x3y3 x3 y3 1

x3
4 y3

4 x2
4y4 x4y2

4 x2
4 y2

4 x4y4 x4 y4 1
...

...
...

...
...

...
...

...
...

...
x3

n−1 y3
n−1 x2

n−1yn−1 xn−1y2
n−1 x2

n−1 y2
n−1 xn−1yn−1 xn−1 yn−1 1

x3
n y3

n x2
nyn xny2

n x2
n x2

n xnyn xn yn 1



B =



∆x1 ∆y1

∆x2 ∆y2

∆x3 ∆y3

∆x4 ∆y4

...
...

∆xn−1 ∆yn−1

∆xn ∆yn


; C =



a1 a2

b1 b2

c1 c2

d1 d2

e1 e2

f1 f2

g1 g2

h1 h2

i1 i2
k1 k2



(21)

Then, the equation of A× C = B can be obtained using the least square method to
solve the coefficient, as shown in Equation (22):

C =
(

AT A
)−1

AT B (22)
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After finding all the coefficients by using Equation (22), these coefficients are applied
back into Equation (19) and the actual position after correction is obtained:

XR = Xout − ∆xYR = Yout − ∆y (23)

where XR and YR are the actual position for the robot, Xout and Yout are the output measured
values, and ∆x and ∆y are the coefficients calculated above.

2.5. Synchronization of Transmission Conveyor and Robot Arm

In order to accomplish the automation production line, we used a Syntec robot and a
microcontroller-controlled conveyor to transfer the workpiece to the stamping die. Further-
more, for the dynamic transmission workpiece to take place successfully, a formula needs
to be proposed to synchronize the movement of the robot and the conveyor.

First of all, the gripping position, Pgripping, needs to be recognized. To achieve the
gripping pose, the point cloud of the object in the reference position has to be considered.
The robot arm will be set to this position and its coordinates will be saved to the database
for calculating the later position change of the object. After the pose estimation system
figures out the relative position differences between the target point cloud and the reference
point cloud, the gripping position of the target object, Pgripping, will be calculated as the
sum of the reference position stored in the database, Pdatabase, and the relative position,
Pestimate. Equation (24) and Figure 6 describe the grab position of the target object.

Pgripping = Pdatabase + Pestimate (24)

Figure 6. Construction of the target object gripping pose.

Figure 7 depicts the home position of the robot, Probot, and the scanning position of the
conveyor, Pscan, to the gripping position, Pgripping. These positions, Probot and Pscan, need to
be known in advance and pre-set in the database to synchronize the operation of the robot
and the conveyor.

The travel time for the robot to move from the home position to the gripping position
of the object, tR→G, is calculated as the distance between the robot’s initial position, Probot,
and the gripping position, Pgripping, divided by the feed rate of the robot in linear movement,
FL. The following will demonstrate how to find tR→G:

tR→G =

∣∣Probot − Pgripping
∣∣

FL
(25)

The time, tS→G, for the conveyor to move from the scan position to the gripping
position is calculated by the distance of the scan position of the object, Pscan, to the grip-
ping position, Pgripping, divided by the speed of the conveyor, vconveyor. tS→G will be
expressed by:
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tS→G =

∣∣Pscan − Pgripping
∣∣

vconveyor
(26)

Figure 7. Initial positions of dynamic scanning region and robot gripping system on the conveyor.

Travel times tR→G and tS→G have to be synchronized for the robot to successfully
pick the workpiece while the conveyor is moving; therefore, tR→G = tS→G. Substitute into
Equations (25) and (26), obtaining:

vconveyor =
FL×

∣∣Pscan − Pgripping
∣∣∣∣Probot − Pgripping

∣∣ (27)

Equation (27) indicates that the vconveyor will be the linear function of the feed rate of
the robot in linear movement, FL.

3. Experimental Results

This study focuses on the pose estimation and the robot pick-place system. Conse-
quently, results that need to be found first are from the experiment on how accurately the
program can predict the position of the workpiece. Then, with the information conducted
from the pose estimation system, robot pick-place experiments were performed and re-
sulted in quantity visualization. Moreover, the robot error compensation results will be
demonstrated to verify the nonlinear correction method and increase the success rate of
dynamic pick-placing.

3.1. Experiment on the Accuracy of the Pose Estimation System

The accuracy of the pose estimation system plays an important role for the robot
arm to correctly pick up the stamping workpiece. Therefore, the experiment in Section 3.1
measures the accuracy of the pose estimation system and focuses on the error range between
the estimated distance and the actual moving distance. All of the translation and rotation
axes have to be involved in this experiment. The experiment has two sub-experiments,
where the first one examined each individual 6-axis X, Y, Z, RX, RY, and RZ error, and the
other checked the repetition of the pose estimation system.
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Firstly, the three translation axes X, Y, Z errors are considered. As shown in Figure 8a
for the X and Y-axis, the workpiece is initially placed next to the base which is considered
to be the reference position; afterward, place a block next to the base which will enable
the workpiece to move a distance of 60mm (width of the block is 60mm). Then compared
to the reference position, the workpiece is moved 60mm (the new position that needs to
be measured); continue the experiment with other distances of 120mm, 180mm, and the
other direction of −60mm, −120mm, −180mm. Figure 8b displays the experiment for
Z-axis. Similar to the experiment of the X and Y-axis, this experiment also uses a block to
move the workpiece but in the vertical direction (Z-axis) and the base now is the worktable.
The experiment is carried out by using a block with height of 25mm. The distances of
experiment are 25mm, 50mm, 75mm, 100mm, 125mm, and 150mm. Both in the reference
and measured position, the workpiece point cloud is modeled for later recorded the error
between the real distance and estimating distance.

Figure 8. Setup of standard positions for different estimation poses of the dynamic workpiece using a predetermined
dimension block for (a) the X-axis and Y-axis and (b) the Z-axis.

Now, considering the rotation axes RX, RY, and RZ, the experiment setup for these
axes is shown in Figure 9. The worktable is now recognized as the base and the reference
position is where the workpiece is placed on the worktable. The experiment used the
BOSCH rangefinder (Bosch, Germany) to estimate the angle. For the reference position,
the rangefinder shows 0◦. Thereafter, the workpiece is rotated by placing a block under its
side. Now, the new position angle will be shown on the rangefinder. The experiment was
conducted with the angles of 30◦, 20◦, 10◦, −10◦, −20◦, and −30◦ for the RX and RY axes
and 10◦, 30◦, 45◦, 60◦, 75◦, and 90◦ for the RZ-axis.
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Figure 9. Setup of standard rotation angles for different estimation poses of the dynamic workpiece using the professional
laser rangefinder of BOSCH.

The method of the pose estimation system of this study is shown in Figure 10a–f
for the three translation axes of X, Y, and Z and the three rotation axes of RX, RY, and
RZ. Similar to the description of the experiment setup above, the camera generates point
clouds of the workpiece in both reference and measured positions to create the reference
and measured cloud, respectively. In the figure, the blue point cloud is the reference point
cloud, and the green point cloud is the cloud that needs to be measured for distance and
angle. Each sub-experiment focuses on one axis in the total 6-DoF, and the estimated result
is then compared with the real distance (or angle) to find the error.

Figure 10. Building reference point cloud models of each 6-DoF pose for estimating measured clouds of the dynamic
workpiece in the (a) i-axis, (b) Y-axis, (c) Z-axis, (d) RX-axis, (e) RY-axis, and (f) RZ-axis.

As shown in Figure 11, the translation error of the pose estimation of this study is
considered to be reasonable and can be used in practical applications. Figure 11 confirms
that the error of the translation axis ranges between 0.825 and 9.834 mm and 0.825~5.810%,
and the average error is 5.417 mm and 4.850% for the X-axis, 4.001 mm and 3.513% for the
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Y-axis, and 1.570 mm and 2.214% for the Z-axis. The trend of Figure 11a points out that in
the X and Y axes, the larger the distance between the reference and the measured points,
the higher the error of the system. On the contrary, a smaller distance will lead to a higher
error percent in the system. The same trend appears in the error of the Z-axis (Figure 11b).

Figure 11. Translation errors of workpiece modeling at different estimated poses for the (a) XY-axis and the (b) Z-axis.

Figure 12 demonstrates the rotation error of the system. For the RX and RY axes
(Figure 12a), and the RZ-axis (Figure 12b), the errors are small if the real angle differences
are small, but the error percent will increase when the angle differences decrease. The error
and error percentage of the rotation axis range 0.13◦~2.67◦ and 0.37~16.40%, respectively.
The average error and error percentage of the RX-axis are 1.36◦ and 6.38%, respectively, the
average error and error percentage of the RY-axis are 1.01◦ and 6.01%, respectively, and the
average error and error percentage for the RZ-axis are 1.21◦ and 2.59%, respectively.

Figure 12. Rotation errors of workpiece modeling at different estimated poses for (a) the RX and RY axes and (b) the RZ-axis.

The second sub-experiment was conducted to examine the repetition accuracy of
the pose estimation system. The setup of this sub-experiment is similar to the above
experiments (as shown in Figures 8 and 9). First, the workpiece is placed in the reference
position, then it is moved to the new position that needs to be measured. However, in this
experiment, the workpiece will be repositioned in all 6 axes. The measured position will be
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estimated 10 times; later, the data will be analyzed to find the repetition error of the pose
estimation system.

As shown in Figure 13a, the translation error ranges 0.024~8.563 mm, which is
0.080~9.937%. The rotation error ranges 0.094◦~2.908◦, which is 0.314~9.923% (Figure 13b).
The average error percentages of each axis are 3.905%, 3.182%, 5.087%, 6.013%, 6.189%,
and 5.523% for the X, Y, Z, RX, RY, and RZ axes, respectively. The error values which were
measured were all less than 10% and 9 mm. For the purpose of researching and developing,
the pose estimation repetition error is adequate for the robot system to successfully pick
up the object. All the measurements were performed independently; hence, each time,
measuring repetition errors will result in a different set of errors and do not relate to any of
the previous sets of measurements.

Figure 13. Repetition error and error percentage of the 6-DoF pose estimation system: (a) translations of X, Y, and Z axes,
and (b) rotations of RX, RY, and RZ axes.

3.2. Robot Error Compensation Results

As mentioned in Section 2.4, we utilized the non-linear correction algorithm to com-
pensate for the robot error. Figure 14 demonstrates the robot error experiment setup. First,
the checkerboard (side of each square is 20 mm) is placed on the worktable; then, the work-
table center point is considered to be the centroid and does not have an error (meaning in
the worktable center point, Ex = Ey = 0).

Figure 14. Initial position of robot and conveyor and gripping position.
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The worktable center point is set to be the base point, where the error is 0 for both the
X and Y axes (Figure 15). The theory position of the other points (blue dots in 0) in the
region of interest (red-dashed rectangle in 0) will be setup according to the base point and
will be inputted into the controller. After the robot moves to the input position, the error is
observed and measured, which is the displacement between the supposed input position
(blue dot) and the actual moving position, by using the caliper. There are total of 198 points
that were measured in the study.

Figure 15. Positioning errors of the robot on the XY plane (a) before compensation and (b) after compensation.

Using the input positions, the matrix A was calculated by recalling Equation (21).
The matrix B is the error measured between the input and the actual position, recalling
Equation (22) to obtain matrix C—the coefficient matrix:

C =



1.03× 10−6 −4.95× 10−7

2.25× 10−7 6.48× 10−7

−4.55× 10−7 −9.55× 10−8

3.69× 10−7 2.43× 10−7

−2.21× 10−4 2.77× 10−4

3.11× 10−5 −2.03× 10−4

2.98× 10−4 3.01× 10−4

−0.20 −0.03
−0.12 −0.27
44.69 17.46


(28)

After applying the coefficient matrix to the calculation, the robot’s positioning accuracy
significantly improved. 0a shows the robot error before using the compensation function.
As can be seen, the error of the robot was very large, up to 39.69 mm on the X-axis and
45.45 mm on the Y-axis. The average error without correction was 10.55 and 20.86 mm
on the X-axis and the Y-axis, respectively. On the other hand, 0b demonstrates the sharp
enhancement of the robot positioning. Compared to before compensation, the average
translation errors can now reduce by over 20 times with the X-axis and 40 times with
the Y-axis, to 0.49 and 0.37 mm on average, respectively. The maximum errors were also
downgraded to 3.47 and 2.50 mm for the X and Y axes, respectively.

Figure 16 visualizes the positions of all the points which were considered in the
experiment. As shown in the figure, the real measurement positions (the red circle) of the
input have a larger error compared to the input positions (the black square). However,
after compensation using the non-linear correction algorithm, the robot positions (the
blue triangle) have come closer to the input positions, and this statement is proven by
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the fact that the blue triangle points almost coincide with the black square points. This
result indicates that the robot error can be solved by applying the coefficient function by
software compensation.

Figure 16. Position differences of the robot before and after compensation using the non-linear
correction algorithm for robot pick-place.

3.3. Experiment of the Dynamic Stack Workpiece Feeding System

Figure 17 shows schematic diagram of dynamic workpiece feeding. When the signal
starts to be transmitted and the pose estimation program is activated and completes the
positioning of the object, the robot and the conveyor will move simultaneously so that
while the conveyor is still moving, the robot will successfully pick up the object. The linear
feed rate of the robot arm was set at 0.03 m/s. The distance between gripping position
and scanning position was set at 0.5 m, and between gripping position and robot home
position was set to 0.3 m. The dynamic task was accomplished by applying Equation (27)
related to the velocity of the conveyor and the feed rate of the robot arm. Therefore, the
velocity of the conveyor will be calculated as in Equation (29):

vconveyor =
FL×

∣∣Pscan − Pgripping
∣∣∣∣Probot − Pgripping

∣∣ =
0.3× 0.5

0.3
= 0.5 m/s (29)

After the camera finishes forming the point cloud, the program will predict the 6-DoF
pose of the object based on that point cloud. If there is an object, the program will predict
the location of the object, but if the object does not appear, the program will stop here.
The position of the object will then be added with the conveyor’s travel distance, then
transmitted over the Ethernet connection, and the robot arm will begin to pick up the object
to the stamping machine. The rest of the task will be the stamping machine’s responsibility,
and the pick-placing task is completed. The loop will continue if there are still objects
to stamp.

There were two experiments—the first with a single object and the second with a
stack of two objects. Figures 18 and 19 show cases where the robot successfully picked up
the object to stamping die with single and piled objects, respectively. Figures 18a and 19a
show the workpieces that were placed in random positions, Figures 18b and 19b show the
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scene point cloud of each case, Figures 18c and 19c show the results of the pose estimation
system, and finally, Figures 18d and 19d show the images of the robot successfully picking
up the object.

Figure 17. Flow chart of pose estimation and robot control programs for the dynamic workpiece
feeding control system.

Figure 18. Cont.
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Figure 18. Dynamic single object on the conveyor (a) in a random position, (b) automatically identifying the RGB point cloud
scene of the object, (c) estimating the object 6-DoF poses, and (d) the robot grasping the object in the dynamic experiment.

Figure 19. Dynamic piled workpieces on the conveyor (a) in a random position, (b) automatically identifying the RGB point
cloud scene of a top object, (c) estimating the object 6-DoF poses of a top object only, and (d) robot grasping the top object in
the dynamic experiment.
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The results’ data are presented in Table 1. Compared with static feeding (90% and
95%), dynamic feeding will have a significantly lower success rate—down to 65% in the
case of 2 objects and 70% in the case of 1 object. The sudden drop in success rate is due
to hardware limitations. The conveyor travel speed is not constant due to resistance and
friction caused by the spindle shaft and the belt. The program’s object position estimation
time will not change in this experiment.

Table 1. Results of dynamic workpiece feeding compared with static workpiece feeding.

Item
Static Dynamic

Case 2 Case 1 Case 2 Case 1

Number of experiments 20 20 20 20
Successful case 18 19 13 14

Failure case 3 1 7 6
Successful rate (%) 90 95 65 70

Pose estimation time
(seconds) 12 7 12 7

4. Conclusions and Future Prospects

In this study, we have developed an automatic feeding system for dynamic workpieces
of the stamping industry using a robotic arm and 3D cameras. The main contents covered
in the study were divided into three sections. The first part was the formation of a 3D
point cloud using depth cameras and combining two point clouds from these cameras with
different angles setup into a complete point cloud by stereo calibration. The accuracy of
the point cloud has been found to be satisfactory to perform computational tasks, with
a 4.7 mm mean distance of point-to-point cloud error. In terms of the accuracy of object
information in the point cloud, it has also been shown to be steady, with less than a 7%
error in positioning and a 5% error in height. Using the generated point cloud as input
for the pose estimation system was the second part of this study. We used several point
cloud processing algorithms, with emphasis on Euclidean cluster extraction to segment
the workpiece with other objects on the worktable, FPFH to evaluate the feature points
of the target object as well as the reference object, and SAC-IA and ICP respectively, to
align the target and reference point cloud and find the transformation matrix. The error of
the estimated system was a high-grade error, with an average of less than 6 mm for the
translation error and 3◦ for the rotation error. The repeatability error of the system was also
kept stable, with an average of only 7% error. The last part was the transmission system
with motion synchronization between the robotic arm and the conveyor to successfully pick
up the objects. Before being used to pick up the object, the robotic arm will be calibrated
by the nonlinear correction algorithm to find the appropriate adjustment coefficients
that contribute to the accuracy of the manipulator. Compared to before compensation,
the average translation errors were able to reduce by over 20 times with the X-axis and
40 times with the Y-axis, to 0.49 and 0.37 mm on average, respectively. The dynamic
feeding experiment was performed with quite satisfactory success (>65%), despite the
influence of limited hardware installation. This has proven to be viable in production with
more invested equipment.

In the future, in addition to improving the device to meet the stability, another algo-
rithm (potentially a Neural Network application algorithm) can be applied to calculate the
position of the workpiece faster, to obtain real-time estimation. With the use of the fast
refresh rate—Azure Kinect, the advantage of this study is that the scanning time for point
cloud formation was within a second. However, using FPFH in combination with SAC-IA
and ICP to compare and provide estimated locations of a workpiece requires a minimum
of seconds. Therefore, the study can hardly be achieved in real-time. Besides, to increase
the success rate of dynamic workpiece grabbing, as mentioned above, it is also necessary
to have more stable devices. Since the depth sensors have a certain operating temperature
(10–25 ◦C), the accuracy of processing point cloud data can be affected if the temperature
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is high. As a result, the workpiece modeling has to be carried out before undergoing the
austenitization process. An experiment examining the influence of thermal radiation on
modeling will be performed in future work. In the end, the study is only a simulation of a
feeding system, and some other devices, which have the effect of supporting production
automation, such as sensors measuring product quality and cameras playing the role of
an observation and alarm alert when the system has problems, can be integrated to create
a full-cycle stamping process. The robotic arm is also not the only option of stamping
workpiece feeding automation, and other kinematic architectures should be applied in
terms of size, payload, and preferences.
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